石井 敦 (ISHII, Atsushi)

Preprints:

Publications:

  • [39] Atsushi Ishii and Kanako Oshiro,
    Normalized quandle twisted Alexander invariants,
    Internat. J. Math. 35 (2024), no. 5, Paper No. 2450011.
  • [38] Atsushi Ishii and Kanako Oshiro,
    Derivatives with Alexander pairs for quandles,
    Fund. Math. 259 (2022), no. 1, 1-31.
  • [37] Atsushi Ishii and Kanako Oshiro,
    Quandle twisted Alexander invariants,
    Osaka J. Math. 59 (2022), no. 3, 683-702.
  • [37] Atsushi Ishii and Kanako Oshiro,
    Quandle twisted Alexander invariants,
    Osaka J. Math. 59 (2022), no. 3, 683-702.
  • [36] Atsushi Ishii,
    The fundamental multiple conjugation quandle of a handlebody-link,
    J. Math. Soc. Japan 74 (2022), no. 1, 1-23.
  • [35] Atsushi Ishii and Kanako Oshiro,
    Row relations of twisted Alexander matrices and shadow quandle $2$-cocycles,
    Topology Appl. 301 (2021), Paper No. 107513.
  • [34] Atsushi Ishii, Masahide Iwakiri, Seiichi Kamada, Jieon Kim, Shosaku Matsuzaki and Kanako Oshiro,
    Cocycles of $G$-Alexander biquandles and $G$-Alexander multiple conjugation biquandles,
    Topology Appl. 301 (2021), Paper No. 107512.
  • [33] Atsushi Ishii, Shosaku Matsuzaki and Tomo Murao,
    A multiple group rack and oriented spatial surfaces,
    J. Knot Theory Ramifications 29 (2020), no. 7, 2050046, 20 pp.
  • [32] Atsushi Ishii, Masahide Iwakiri, Seiichi Kamada, Jieon Kim, Shosaku Matsuzaki and Kanako Oshiro,
    Biquandle (co)homology and handlebody-links,
    J. Knot Theory Ramifications 27 (2018), no. 11, 1843011, 33 pp.
  • [31] Atsushi Ishii, Ryo Nikkuni and Kanako Oshiro,
    On calculations of the twisted Alexander ideals for spatial graphs, handlebody-knots and surface-links,
    Osaka J. Math. 55 (2018), no. 2, 297--313.
  • [30] Atsushi Ishii, Masahide Iwakiri, Seiichi Kamada, Jieon Kim, Shosaku Matsuzaki, Kanako Oshiro,
    A multiple conjugation biquandle and handlebody-links,
    Hiroshima Math. J. 48 (2018), no. 1, 89--117.
  • [29] Atsushi Ishii,
    Handlebody-knots and the development of quandle theory (Japanese),
    S\=ugaku 48 (2018), no. 1, 63--80.
  • [28] Atsushi Ishii and Sam Nelson,
    Partially multiplicative biquandles and handlebody-knots,
    Contemp. Math. 689 (2017) 159--176.
  • [27] Scott Carter, Atsushi Ishii, Masahico Saito and Kokoro Tanaka,
    Homology for quandles with partial group operations,
    Pacific J. Math. 287-1 (2017), 19--48.
  • [26] Atsushi Ishii,
    The Markov theorems for spatial graphs and handlebody-knots with Y-orientations,
    Internat. J. Math. 26 (2015), 1550116, 23 pp.
  • [25] Atsushi Ishii,
    A multiple conjugation quandle and handlebody-knots,
    Topology Appl. 196 (2015), 492--500.
  • [24] Atsushi Ishii, Kengo Kishimoto and Makoto Ozawa,
    Knotted handle decomposing spheres for handlebody-knots,
    J. Math. Soc. Japan 67 (2015), 407--417.
  • [23] Atsushi Ishii and Akira Masuoka,
    Handlebody-knot invariants derived from unimodular Hopf algebras,
    J. Knot Theory Ramifications 23 (2014), 1460001, 24 pp.
  • [22] Atsushi Ishii, Masahide Iwakiri, Yeonhee Jang and Kanako Oshiro,
    A $G$-family of quandles and handlebody-knots,
    Illinois J. Math. 57 (2013), 817--838.
  • [21] Kai Ishihara and Atsushi Ishii,
    An operator invariant for handlebody-knots,
    Fund. Math. 217 (2012), 233--247.
  • [20] Atsushi Ishii and Masahide Iwakiri,
    Quandle cocycle invariants for spatial graphs and knotted handlebodies,
    Canad. J. Math. 64 (2012), 102--122.
  • [19] Atsushi Ishii, Kengo Kishimoto, Hiromasa Moriuchi and Masaaki Suzuki,
    A table of genus two handlebody-knots up to six crossings,
    J. Knot Theory Ramifications 21 (2012), 1250035, 9 pp.
  • [18] Atsushi Ishii and Kengo Kishimoto,
    A finite type invariant of order at most 4 for genus 2 handlebody-knots is a constant map,
    Topology Appl. 159 (2012), 1115--1121.
  • [17] Atsushi Ishii,
    On normalizations of a regular isotopy invariant for spatial graphs,
    Internat. J. Math. 22 (2011) 1545--1559.
  • [16] Atsushi Ishii and Kengo Kishimoto,
    The quandle coloring invariant of a reducible handlebody-knot,
    Tsukuba J. Math. 35 (2011) 131--141.
  • [15] Atsushi Ishii and Kengo Kishimoto,
    The IH-complex of spatial trivalent graphs,
    Tokyo J. Math. 33 (2010) 523--535.
  • [14] Atsushi Ishii,
    The leading finite type coefficients of the Links-Gould polynomial of a link,
    Kyungpook Math. J. 50 (2010) 49--58.
  • [13] Atsushi Ishii, Naoko Kamada and Seiichi Kamada,
    The Miyazawa polynomial for long virtual knots,
    Topology Appl. 157 (2010) 290--297.
  • [12] Atsushi Ishii,
    Smoothing resolution for the Alexander-Conway polynomial,
    Acta Math. Vietnam. 33 (2008) 321--333.
  • [11] Atsushi Ishii,
    Moves and invariants for knotted handlebodies,
    Algebr. Geom. Topol. 8 (2008) 1403--1418.
  • [10] Atsushi Ishii,
    The skein index for link invariants,
    J. Math. Soc. Japan 60 (2008) 719--740.
  • [9] Atsushi Ishii, Naoko Kamada and Seiichi Kamada,
    The virtual magnetic Kauffman bracket skein module and skein relations for the $f$-polynomial,
    J. Knot Theory Ramifications 17 (2008) 675--688.
  • [8] Atsushi Ishii,
    The pole diagram and the Miyazawa polynomial,
    Internat. J. Math. 19 (2008) 193--207.
  • [7] Atsushi Ishii and Taizo Kanenobu,
    A relation between the LG polynomial and the Kauffman polynomial,
    Topology Appl. 154 (2007) 1407--1416.
  • [6] Atsushi Ishii,
    The Links-Gould polynomial as a generalization of the Alexander-Conway polynomial,
    Pacific J. Math. 225 (2006) 273--285.
  • [5] Atsushi Ishii, David De Wit and Jon Links,
    Infinitely many two-variable generalisations of the Alexander-Conway polynomial,
    Algebr. Geom. Topol. 5 (2005) 405--418.
  • [4] Atsushi Ishii and Taizo Kanenobu,
    Different links with the same Links-Gould invariant,
    Osaka J. Math. 42 (2005) 273--290.
  • [3] Atsushi Ishii,
    Algebraic links and skein relations of the Links-Gould invariant,
    Proc. Amer. Math. Soc. 132 (2004) 3741--3749.
  • [2] Atsushi Ishii,
    The Links-Gould invariant of closed 3-braids,
    J. Knot Theory Ramifications 13 (2004) 41--56.
  • [1] Atsushi Ishii,
    The Links-Gould invariants of the Kanenobu knots,
    Kobe J. Math. 20 (2003) 53--61.

Errata:

  • [20] p.114 L.11, L.12
    H_I^3(R_p;\mathbb{Z}_p)_{R_p} in Osaka, and showed that H_I^3(R_3;\mathbb{Z}_3)_{R_3}
    --> H_I^2(R_p;\mathbb{Z}_p)_{R_p} in Osaka, and showed that H_I^2(R_3;\mathbb{Z}_3)_{R_3}
  • [17] p.1557 Lb.3
    _{\Gamma_1^G,\Gamma_2^G}(f)
    --> _{\Gamma_1^G,\Gamma_2^G}(f)/2
  • [17] p.1558 L.12, L.13, L.17 for the proof for G=K_5
    (the right-hand side)
    --> 2 (the right-hand side)
  • [11] p.1404 L.3
    It was extended to spatial Euler graphs by the author
    --> It was extended to spatial Euler graphs by Ishii
  • [11] p.1416 Proposition 8
    $x_{-i}=x_{n-i}$
    --> $x_{-i}=x_{p-i}$
  • [4] p.273 L.12
    whose chirality is not undetected by
    --> whose chirality is not detected by

Proceedings:

  • [19] Atsushi Ishii,
    The products of Alexander invariants and quandle cocycle invariants,
    研究集会「結び目の数学VIII」報告集, 2016年2月, 191--200.
  • [18] Atsushi Ishii,
    Invariants for knotted handlebodies,
    研究集会「量子群と量子トポロジー」報告集, 2010年9月, 149--158.
  • [17] Atsushi Ishii,
    A writhe polynomial for spatial graphs,
    研究集会「結び目の数学II」報告集, 2010年1月, 146--153.
  • [16] Atsushi Ishii,
    On a normalization of a regular isotopy invariant for spatial graphs,
    研究集会「Intelligence of Low Dimensional Topology」報告集, 2009年12月, 47--56.
  • [15] Atsushi Ishii and Masahide Iwakiri,
    A quandle cocycle invariant for handlebody-links,
    研究集会「結び目のトポロジーX」報告集, 2008年2月, 95--102.
  • [14] Atsushi Ishii,
    Moves and invariants for knotted handlebodies,
    研究集会「Intelligence of Low Dimensional Topology」報告集, 2007年12月, 31--40.
  • [13] Atsushi Ishii,
    Smoothing resolution for the Alexander-Conway polynomial,
    Intelligence of Low Dimensional Topology 2006, Series on Knots and Everything, 40. World Scientific Publishing Co., 2007年6月, 51--56.
  • [12] Atsushi Ishii,
    The pole diagram and the virtual crossing number,
    研究集会「結び目のトポロジーIX」報告集, 2007年1月, 218--225.
  • [11] Atsushi Ishii,
    An algebra for the Alexander-Conway polynomial,
    研究集会「結び目のトポロジーVIII」報告集, 2006年2月, 171--180.
  • [10] Atsushi Ishii,
    Quantum invariants of virtual links and Cartan subalgebras,
    研究集会「結び目と多様体の幾何と代数III」報告集, 2005年12月, 152--161.
  • [9] Atsushi Ishii,
    On the LG quantum link invariant,
    北海道大学数学講究録 Series #89, 2005年2月, 48--52.
  • [8] Atsushi Ishii,
    The LG polynomial as a generalization of the Alexander-Conway polynomial,
    研究集会「結び目のトポロジーVII」報告集, 2005年2月, 136--145.
  • [7] Atsushi Ishii,
    The LG^{m,1} invariants and the Alexander-Conway polynomial (joint work with D. De Wit and J. Links),
    研究集会「Intelligence of Low Dimensional Topology」報告集, 2004年12月, 99--107.
  • [6] Atsushi Ishii and Taizo Kanenobu,
    A relation between the Links-Gould invariant and the Kauffman polynomial,
    研究集会「結び目のトポロジーVI」報告集, 2004年2月, 50--58.
  • [5] Atsushi Ishii and Taizo Kanenobu,
    Different links with the same Links-Gould invariant,
    研究集会「結び目のトポロジーVI」報告集, 2004年2月, 59--73.
  • [4] Atsushi Ishii,
    The Links-Gould invariants of the Kanenobu knots,
    研究集会「Intelligence of Low Dimensional Topology」報告集, 2003年12月, 135--144.
  • [3] Atsushi Ishii,
    Skein relations of the Links-Gould invariant and algebraic links,
    研究集会「結び目と多様体の幾何と代数II」報告集, 2003年12月, 91--98.
  • [2] Atsushi Ishii,
    The Links-Gould invariant as Vassiliev invariant,
    研究集会「結び目のトポロジーV」報告集, 2003年2月, 60--69.
  • [1] Atsushi Ishii,
    The Links-Gould invariant of closed 3-braids,
    研究集会「結び目と多様体の幾何と代数」報告集, 2003年1月, 109--119.