Algebraic independence of the values and the derivatives of a certain family of Lambert-type series

Haruki Ide (Keio University)

Let $\alpha_1, \ldots, \alpha_r$ be algebraic numbers with $0 < |\alpha_i| < 1$ $(1 \le i \le r)$ and $\{R_k\}_{k\ge 0}$ a certain linear recurrence including Fibonacci sequence. We consider the Lambert-type series $H_i(x) = \sum_{k=0}^{\infty} \alpha_i^{R_k}/(1 - \alpha_i^{R_k}x)$ $(1 \le i \le r)$, where x is a complex variable. For each i $(1 \le i \le r)$, Tanaka proved the algebraic independence of the infinite set \mathcal{H}_i consisting of the values and the derivatives of any order of $H_i(x)$ at any distinct algebraic numbers except its poles. Moreover, the speaker and Tanaka showed that, if $\alpha_1, \ldots, \alpha_r$ are multiplicatively independent, then the infinite set $\mathcal{H} = \bigcup_{i=1}^r \mathcal{H}_i$ consisting of the values and the derivatives of any order of $H_1(x), \ldots, H_r(x)$ at any distinct algebraic numbers except their poles is algebraically independent. Extending these results, we present in this talk a necessary and sufficient condition on $\alpha_1, \ldots, \alpha_r$ for the infinite set \mathcal{H} to be algebraically independent.