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Abstract

Bugeaud [6] introduced the number of digit changes to measure the
complexity of the base-b expansions of algebraic irrational numbers. We
give lower bounds of the number of digit changes which are generalizations
of results in [12]. We also study the number of occurrences of words in
the binary expansions of algebraic irrational numbers.

1 Introduction

Let b be an integer greater than 1. Then, as is well known, the base-b expansions
of all rational numbers are ultimately periodic. However, very little is known
on the base-b expansions of algebraic irrational numbers. For instance, it is still
not proven that the digit 0 appears infinitely often in the decimal expansion of√
2.
We recall the definition of normal numbers. We call a positive real number ξ

to be normal in base b if and only if, for any word w on the alphabet {0, 1, . . . , b−
1}, w occurs in the b-ary expansion of ξ with average frequency tending to b−|w|,
where |w| denotes the length of w. Borel [4] proved that almost all positive
numbers are normal in any integral base b. He [5] conjectured that each algebraic
irrational number is normal in any base b. However, it is generally difficult to
check whether a given positive number is normal in base b. For instance, there
is no algebraic irrational number proven to be normal in base 10.

We introduce known results on the digits of the base-b expansions of algebraic
irrational numbers. In what follows, Let N be the set of nonnegative integers
and Z+ the set of positive integers. We write the integral and fractional parts of
a real number x by ⌊x⌋ and {x}, respectively. Moreover, let ⌈x⌉ be the smallest
integer not less than x. Let ξ be an algebraic irrational number and b an integer
greater than 1. In what follows, denote the base-b expansion of ξ by

ξ =
R∑

h=−∞

s
(b)
h (ξ)bh, (1.1)

where s
(b)
h (ξ) is the h-th digit in the base-b expansion of ξ written as

s
(b)
h (ξ) = ⌊ξb−h⌋ − b⌊ξb−h−1⌋ ∈ {0, 1, . . . , b− 1}
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and R = R(b; ξ) is the maximal integer with sR(ξ) ̸= 0. The base-b expansion
of ξ is often written as ξ =

∑∞
h=−M ahb

−h, where M is an integer and ah is the
−h-th digit of ξ in the base-b expansion. However, we use the representation
(1.1) because it is convenient for introducing symmetric signed expansions of
integers and real numbers.

We first consider the block complexity. Namely, we count the number
βb(ξ;N) of distinct blocks of length N occurring in the base-b expansions of
ξ. The number βb(ξ;N) is written as

βb(ξ;N) = Card{s(b)h (ξ)s
(b)
h−1(ξ) . . . s

(b)
h−N+1(ξ) | h ∈ Z, h ≤ R},

where Card denotes the cardinality. If Borel’s conjecture is true, then any finite
word w on the alphabet {0, 1, . . . , b − 1} appears in the b-ary expansion of ξ.
That is, we have

βb(ξ;N) = bN

for any positive integer N . Ferenczi and Mauduit [10] showed that

lim
N→∞

(βb(ξ;N)−N) = ∞,

applying a reformulation of Ridout’s theorem [14]. Adamczewski and Bugeaud
[1] verified that

lim
N→∞

βb(ξ;N)

N
= ∞,

using the Schmidt subspace theorem by Adamczewski, Bugeaud, and Luca [2].
Moreover, Bugeaud and Evertse [7] proved for any positive real number δ less
than 1/11 that

lim sup
N→∞

βb(ξ;N)

N(logN)δ
= ∞,

improving the quantitative parametric subspace theorem from [9].
Next we estimate the number of nonzero digits in the base-b expansions of

algebraic irrational numbers ξ. For any integer N , put

λb(ξ;N) = Card{h ∈ Z | −N ≤ h ≤ R, s
(b)
h (ξ) ̸= 0}.

In this paper O denotes the Landau symbol and ≫ the Vinogradov symbol.
Namely, f = O(g) and g ≫ f imply that |f | ≤ Cg for some constant C. f ∼ g
means that the ratio of f and g tends to 1. If ξ is normal in base b, then we
have

λb(ξ,N) ∼ b− 1

b
N

as N tends to infinity. Let D be the degree of ξ. Bailey, Borwein, Crandall, and
Pomerance [3] showed that if b = 2, then

λ2(ξ;N) ≥ C1(ξ)N
1/D (1.2)
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for all sufficiently large N , where C1(ξ) is an effectively computable positive
constant depending only on ξ. Moreover, Rivoal [15] improved the constant
C1(ξ) for certain classes of algebraic irrational numbers ξ.

Bugeaud [6] introduced the number of digit changes to measure the com-
plexity of the base-b expansions of algebraic irrational numbers ξ. Put

γb(ξ;N) = Card{h ∈ Z | −N ≤ h ≤ R− 1, s
(b)
h (ξ) ̸= s

(b)
h+1(ξ)}.

If ξ is normal in base b, then we have

γb(ξ;N) ∼ b2 − b

b2
N =

b− 1

b
N

as N tends to infinity because

Card{(i, j) ∈ N2 | i, j ≤ b− 1, i ̸= j} = b2 − b.

Bugeaud [6] proved, using a quantitative Ridout’s theorem [13], that

γb(ξ;N) ≥ 3(logN)1+1/(w(b)+4) · (log logN)−1/4

for any sufficiently large N , where w(b) means the number of the distinct prime
factors of b. Bugeaud and Evertse [7] improved the quantitative parametric
subspace theorem by Evertse and Schlickewei [9]. Consequently, they showed
that

γb(ξ;N) ≥ C2
(logN)3/2

(log 6D)1/2(log logN)1/2
(1.3)

for all sufficiently large N , where C2 is an effectively computable positive ab-
solute constant. In the case of b = 2, the author [12] improved (1.3) as
follows: Let ξ be an algebraic irrational number with minimal polynomial
ADXD + AD−1X

D−1 + · · · + A0 ∈ Z[X], where AD > 0. Suppose that there
exists an odd prime number p which divides the coefficients AD, AD−1, . . . , A1,
but not the constant term A0, which we call the prime divisor assumption. Then
there exists an effectively computable positive constant C3(ξ) depending only
on ξ such that

γ2(ξ;N) ≥ C3(ξ)N
1/D (1.4)

for any sufficiently large N . We give a numerical example of (1.4). We consider
the case of ξ = 1/

√
3. Then the minimal polynomial of ξ is A2X

2+A1X+A0 =
3X2 − 1. Thus, p=3 satisfies the prime divisor assumption because 3 divides
A2 and A1, but not A0. Let ε be an arbitrary positive real number less than 1.
Then there exists an effectively computable positive constant C4(ε) depending
only on ε such that

γ2

(
1√
3
, N

)
≥ 1− ε√

2

√
N

for each integer N greater than C4(ε).
The main purpose of this paper is to generalize the inequality (1.4) to any

integral base b. We also estimate the number of occurrences of words in the
binary expansions of algebraic irrational numbers. In Section 2 we state the
main results, introducing the symmetric signed expansions of integers and real
numbers. In Section 3 we study more details of the symmetric signed expansions.
In Section 5 we prove the main results, using the preliminaries in Section 4.
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2 Main results

We introduce signed digit expansions of integers and real numbers in integral
base b ≥ 2. Heuberger and Prodinger [11] showed that any integer n is uniquely
represented as a finite sum

n =
M∑
h=0

σ
(b)
h (n)bh =:

(
σ
(b)
M (n) . . . σ

(b)
0 (n)

)
b
, (2.1)

where the word σ
(b)
M (n) . . . σ

(b)
0 (n) satisfies the following conditions which we call

the digit conditions in this paper:

1.

|σ(b)
h (n)| ≤ b

2
for any h; (2.2)

2.

If σ
(b)
h (n) =

b

2
, then 0 ≤ σ

(b)
h+1(n) ≤

b

2
− 1; (2.3)

3.

If σ
(b)
h (n) = − b

2
, then − b

2
+ 1 ≤ σ

(b)
h+1(n) ≤ 0. (2.4)

(2.1) is called the symmetric signed digit expansion of n. In what follows, we
denote it by the SSDE of n for simplicity. We call

νb(n) :=
M∑
h=0

|σ(b)
h (n)|

the cost of the expansion (2.1). In the case of b = 2, SSDEs coincide with
non-adjacent forms or signed separated binary expansions. In a sequence of
signed bits, we will denote −a by a for any integer a. For instance, we have
(101)3 = 32 − 1 = 8 and ν3(8) = 2. In Section 3 we show that any real number
is represented as

ξ =
M∑

h=−∞

σ
(b)
h (ξ)bh =:

(
σ
(b)
M (ξ) . . . σ

(b)
0 (ξ).σ

(b)
−1(ξ) . . .

)
b

(2.5)

where the sequence σ
(b)
h (ξ) (h = M,M−1, . . .) satisfies the digit conditions. We

also call (2.5) the SSDE of ξ. Note that (2.5) converges absolutely because the

sequence σ
(b)
h (ξ) (h = M,M − 1, . . .) is bounded. Although the SSDEs (2.1) of

any integers are uniquely determined, the SSDEs (2.5) of real numbers are not
generally unique. For instance, we have

1

2
= (0.1ω)3 = (1.1

ω
)3,
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where, for any nonempty finite word v, we denote the right-infinite word vv . . . by
vω. In Section 3 we prove that the SSDE of any rational number ξ is ultimately
periodic. Namely,

ξ =
(
σ
(b)
M (ξ) . . . σ

(b)
0 (ξ).σ

(b)
−1(ξ) . . . σ

(b)
−L(ξ)v

ω
)
b
,

where v = v1 . . . vr is a nonempty finite word. Assume that r is the least period
of the SSDE of ξ. We call ρ =

∑r
h=1 |vh| the cost of the period of ξ. For

instance, the cost of the period of 1/2 = (0.1ω)3 is 1. Lemma 3.2 implies that
the period r and the cost ρ of the period are uniquely determined by ξ although
the SSDE of ξ is not generally unique.

We state the main results on the number of digit changes of the (ordinary)
base-b expansions of algebraic irrational numbers, using the SSDEs of certain
rational numbers. The key observation is as follows: Let η be a rational number
with |η| = p/q, where p ≥ q ≥ 2 are relatively prime integers. Assume that q
and b are also relatively prime. Then the SSDE of η is not finite. Namely, the
cost of the period of η is not zero. In fact, if the SSDE of η is finite, then we
have η = A/bl with A ∈ Z and l ∈ N, which is a contradiction.

THEOREM 2.1. Let b be an integer greater than 1 and ξ a positive algebraic
irrational number with minimal polynomial ADXD + · · · + A0 ∈ Z[X], where
AD > 0. Assume that there is a positive integer u satisfying the following three
assumptions:

1. u and b are relatively prime;

2. u does not divide A0(b− 1)D;

3. u divides Ah(b− 1)D−h for any h = 1, . . . , D.

Let r be the least period of the SSDE of

η := −A0(b− 1)D

u

and let ρ be the cost of the period of η. Then, for an arbitrary positive real
number ε less than 1, there exists an effectively computable positive constant
C4(b, ξ, ε) depending only on b, ξ, and ε such that

γb(ξ;N) ≥ (1− ε)µ(ξ)N1/D

for any integer N with N ≥ C4(b, ξ, ε), where

µ(ξ) =
1

2b− 3

(ρ
r

)1/D
νb

(
AD

u

)−1/D

.

Note that if b = 2 and if u is a prime number, then the assumptions in
Theorem 2.1 coincide with the prime divisor assumptions which we mentioned in
Section 1. We give a numerical example of Theorem 2.1. Consider the case where
b = 3 and ξ = 1/2

√
2. Then the minimal polynomial of ξ is A2X

2+A1X+A0 =
8X2 − 1. Thus, u = 8 satisfies the assumptions in Theorem 2.1. In fact, u
divides A1(b − 1) = 0 and A2(b − 1)0 = 8, but not A0(b − 1)2 = −4. We get
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η = 1/2 = (0.1ω)3. In particular, r = ρ = 1. Moreover, since the SSDE of A2/u
is (1)b, we have νb(A2/u) = 1. Hence,

µ

(
1

2
√
2

)
=

1

3
.

Let ε be any real number less than 1. Then Theorem 2.1 implies that

γ3

(
1

2
√
2
;N

)
≥ 1− ε

3

√
N

for any sufficiently large N .
However, we cannot apply Theorem 2.1 in the case of b = 3 and ξ′ =

1/
√
2. In fact, the minimal polynomial of ξ′ is A′

2X
2 + A′

1X + A′
0 = 2X2 − 1.

Suppose that u′ satisfies the third assumption in Theorem 2.1. Then u′ divides
A′

2(b − 1)0 = 2. Hence, u′ does not fulfill the second assumption in Theorem
2.1.

In the rest of this section, we consider the number of occurrences of words in
the (ordinary) binary expansions of algebraic irrational numbers ξ. Recall that
the binary expansion of ξ is (1.1) with b = 2. For any nonempty finite word w
on the alphabet {0, 1}, put

f(ξ, w;N) := Card{−N ≤ h ≤ R− |w|+ 1 | s(2)h+|w|−1(ξ) . . . s
(2)
h (ξ) = w}.

If Borel’s conjecture is true, then we have

f(ξ, w;N) ∼ N

2|w|

as N tends to infinity.
First we consider the case where the length of w is 1. Let D be the degree

of ξ. Then (1.2) implies that

f(ξ, 1;N) ≫ N1/D

for any sufficiently large N . Take a positive integer M such that 2M > ξ. Using
(1.2) again, we get

f(ξ, 0;N) = f(2M − ξ, 1;N) +O(1) ≫ N1/D.

Next we consider the case of |w| = 2. We have

f(ξ, 01;N) =
1

2
γ2(ξ;N) +O(1), (2.6)

f(ξ, 10;N) =
1

2
γ2(ξ;N) +O(1). (2.7)

Thus, by (1.3), (2.6), and (2.7), we get

f(ξ, 01;N) ≫ (logN)3/2

(log logN)1/2
, f(ξ, 10;N) ≫ (logN)3/2

(log logN)1/2

for any sufficiently large N . If ξ satisfies the prime divisor assumption, then
(1.4), (2.6) and (2.7) imply that

f(ξ, 01;N) ≫ N1/D, f(ξ, 10;N) ≫ N1/D
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for every sufficiently large N . However, for any algebraic irrational number ξ,
it has neither been proven that

lim
N→∞

f(ξ, 00;N) = ∞

nor that

lim
N→∞

f(ξ, 11;N) = ∞.

On the other hand, for any positive irrational number ξ, we have

lim
N→∞

(f(ξ, 00;N) + f(ξ, 11;N)) = ∞

In fact, if

lim
N→∞

(f(ξ, 00;N) + f(ξ, 11;N)) < ∞

then the binary expansion of ξ is written as ξ = (sM . . . s0.s−1 . . . s−L(01)
ω)2,

which is a contradiction.
We now give lower bounds of the number f(ξ, 00;N)+f(ξ, 11;N) for certain

classes of algebraic irrational numbers ξ as follows:

THEOREM 2.2. Let ξ be a positive algebraic irrational number with minimal
polynomial ADXD + · · · + A0 ∈ Z[X], where AD > 0. Assume that there is a
positive odd integer u′ satisfying the following two assumptions:

1. u′ does not divide 3DA0;

2. u′ divides 3D−hAh for any h = 1, . . . , D.

Let r′ be the least period of the SSDE of

η′ := −3DA0

u′

and let ρ′ be the cost of the period of η′. Then, for any positive real number
ε less than 1, there exists an effectively computable positive constant C5(ξ, ε)
depending only on ξ and ε such that

f(ξ, 00;N) + f(ξ, 11;N) ≥ (1− ε)µ′(ξ)N1/D

for any integer N with N ≥ C5(ξ, ε), where

µ′(ξ) =
1

6

(
ρ′

r′

)1/D

ν2

(
AD

u′

)−1/D

.

We consider the case of ξ = 1/
√
5. The minimal polynomial of ξ is A2X

2 +
A1X + A0 = 5X2 − 1. It is easily seen that u = 5 satisfies the assumptions in
Theorem 2.1. Observe that the SSDE of η is

η =
1

5
=
(
0.(0101)ω

)
2
.
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In particular, we get r = 4 and ρ = 2. We have ν2(A2/u) = ν2(1) = 1. Thus,

µ

(
1√
5

)
=

1√
2

Let ε be an arbitrary positive real number less than 1. Theorem 2.1 implies
that

γ2

(
1√
5
;N

)
≥ 1− ε√

2

√
N

for all sufficiently large N . Hence, using (2.6) and (2.7), we obtain

f

(
1√
5
, 01;N

)
≥ 1− ε

2
√
2

√
N , f

(
1√
5
, 10;N

)
≥ 1− ε

2
√
2

√
N

for every sufficiently large N . On the other hand, u′ = 5 satisfies the assump-
tions in Theorem 2.2. The SSDE of η′ is

η′ =
9

5
=
(
10.(0101)ω

)
2
.

Thus, we get r′ = 4 and ρ′ = 2. Since ν2(A2/u
′) = ν2(1) = 1, we obtain

µ′
(

1√
5

)
=

1

6
√
2
.

Hence, using Theorem 2.2, we deduce that

f

(
1√
5
, 00;N

)
+ f

(
1√
5
, 11;N

)
≥ 1− ε

6
√
2

√
N

for any sufficiently large N .

3 Symmetric signed expansions of real numbers

In this section we prove for any integral base b ≥ 2 that each real number ξ has
at least one SSDE. In the case of b = 2, Dajani, Kraaikamp, and Liardet [8]
showed that any real number has the SSDE, or signed separated binary (SSB)
expansion, and studied their ergodic properties. Now we assume that b is odd.
Then the SSDE of ξ is given as follows: There exists a nonnegative integer R
such that |ξ| < bR/2. We have

0 < ξ +
bR

2
< bR.

Write the ordinary base-b expansion of ξ + bR/2 by

ξ +
bR

2
=

R−1∑
h=−∞

s
(b)
h

(
ξ +

bR

2

)
bh.

Since

bR

2
=

R−1∑
h=−∞

b− 1

2
bh,
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we obtain

ξ =
R−1∑

h=−∞

(
s
(b)
h

(
ξ +

bR

2

)
− b− 1

2

)
bh.

Let us define the sequence (σ
(b)
h (ξ))∞h=−∞ by

σ
(b)
h (ξ) =

{
0 (h ≥ R),

s
(b)
h

(
ξ + bR/2

)
− (b− 1)/2 (h ≤ R− 1).

(3.1)

This sequence satisfies the digit conditions defined in Section 2 because |σ(b)
h (ξ)| ≤

(b− 1)/2 for every h. Hence, the SSDE of ξ is

ξ =

∞∑
h=−∞

σ
(b)
h (ξ)bh.

We now consider the case where b is even. Recall that any integer n has a unique

SSDE
∑

σ
(b)
h (n)bh. Heuberger and Prodinger [11, p.388] showed for any h ∈ N

that σ
(b)
h (n) is represented as

σ
(b)
h (n) =

b−1∑
j=0

(⌊
n

bh+1
+

j

b
+

I(j < b/2) + b/2

b(b+ 1)

⌋

−b

⌊
n

bh+2
+

j

b
+

I(j < b/2) + b/2

b(b+ 1)

⌋)
, (3.2)

where

I(j < b/2) =

{
1 (j < b/2),
0 (j ≥ b/2).

We construct the SSDE of a real number ξ, using (3.2). For any integer h, put

σ
(b)
h (ξ) =

b−1∑
j=0

(⌊
ξ

bh+1
+

j

b
+

I(j < b/2) + b/2

b(b+ 1)

⌋

−b

⌊
ξ

bh+2
+

j

b
+

I(j < b/2) + b/2

b(b+ 1)

⌋)
. (3.3)

THEOREM 3.1. Let b be an integer greater than 1 and ξ a real number. Then

the sequence (σ
(b)
h (ξ))∞h=−∞ satisfies the digit conditions. Moreover,

ξ =
∞∑

h=−∞

σ
(b)
h (ξ)bh, (3.4)

where σ
(b)
h (ξ) = 0 for any sufficiently large h.

Proof. We only have to show Theorem 3.1 in the case where b is even. Put

σ = (σ
(b)
h (ξ))∞h=−∞. We verify that σ satisfies the digit conditions. First we

consider the case where ξ is an integer. Heuberger and Prodinger [11] showed
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that (2.2), (2.3), and (2.4) hold for any nonnegative integer h. Observe for any

integer k that σ
(b)
h−k(ξ) = σ

(b)
h (ξbk). Thus, (2.2), (2.3), and (2.4) holds for every

integer h. Let

Ξ :=
{ n

bl

∣∣∣n, l ∈ Z
}
.

If ξ ∈ Ξ, then σ satisfies the digit conditions because

σ
(b)
h

(
ξ

bl

)
= σ

(b)
h+l(ξ)

for all integers h and l.
Let ξ be an arbitrary real number. Note for each integer h that σh(ξ) is

an integer and that the function σh(·) is right-continuous. In particular, there
exists a positive real number δ(h, ξ) depending only on h and ξ such that

σh(ξ + x) = σh(ξ)

for any real number x with 0 ≤ x < δ(h, ξ). Hence, we deduce for any real
number ξ that σ fulfills the digit conditions because Ξ is dense in R.

Let δ be a positive real number less than 1. Put

s
(b)
h (δ; ξ) :=

⌊
ξ

bh
+ δ

⌋
− b

⌊
ξ

bh+1
+ δ

⌋
.

Note that s
(b)
h (δ; ξ) = 0 for any sufficiently large h because δ > 0. σ

(b)
h (ξ) is

written as

σ
(b)
h (ξ) =

b−1∑
j=0

s
(b)
h

(
δ(j);

ξ

b

)
, (3.5)

where

δ(j) =
j

b
+

I(j < b/2) + b/2

b(b+ 1)
∈ (0, 1).

Thus, σ
(b)
h (ξ) = 0 for every sufficiently large h. Hence, for the proof of Theorem

3.1, it suffices to check (3.4).
Let again δ be a positive real number less than 1. Then

∞∑
h=0

s
(b)
h (δ; ξ)bh =

∞∑
h=0

(⌊
ξ

bh
+ δ

⌋
− b

⌊
ξ

bh+1
+ δ

⌋)
bh

= ⌊ξ + δ⌋. (3.6)

Since

s
(b)
h (δ; ξ) = δ − bδ −

{
ξ

bh
+ δ

}
+ b

{
ξ

bh+1
+ δ

}
,

the sequence s
(b)
−h(δ; ξ) (h = 0, 1, . . .) is bounded. Thus, we get

−1∑
h=−∞

s
(b)
h (δ; ξ)bh

=

−1∑
h=−∞

b1+h

({
ξ

bh+1
+ δ

}
− δ

)
−

−1∑
h=−∞

bh
({

ξ

bh
+ δ

}
− δ

)
= {ξ + δ} − δ. (3.7)
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Combining (3.6) and (3.7), we obtain that

∞∑
h=−∞

s
(b)
h (δ; ξ)bh = ξ.

Therefore, we conclude that

∞∑
h=−∞

σ
(b)
h (ξ)bh =

b−1∑
j=0

∞∑
h=−∞

s
(b)
h

(
δ(j);

ξ

b

)
bh = ξ.

Finally, we proved Theorem 3.1.

Theorem 3.1 implies that any real number ξ has at least one SSDE. We
determine the condition when ξ has distinct SSDEs. Let

b1 :=

{
(b− 1)/2 (if b is odd),

b/2 (if b is even).

Moreover, if b is even, then put b2 := b1 − 1.

LEMMA 3.2. Let ξ be a real number.
(1) Assume that b is odd. If ξ has distinct SSDEs, then they are given by

ξ = (. . . (s− 1)bω1 )b =
(
. . . sb1

ω
)
b
,

where s is an integer.
(2) Suppose that b is even. If ξ has distinct SSDEs, then they are written as

ξ = (. . . (s− 1)(b1b2)
ω)b =

(
. . . s(b2 b1)

ω
)
b

or

ξ = (. . . (s− 1)(b2b1)
ω)b =

(
. . . s(b1 b2)

ω
)
b
,

where s is an integer.

Proof. Assume that b is odd. If necessary, multiplying ξ by b−R with suitable
R ∈ N, we may assume that |ξ| < 1/2 and that the SSDE of ξ is denoted as

ξ =

−1∑
h=−∞

σhb
h.

Then the ordinary base-b expansion of ξ + 1/2 is given by

ξ +
1

2
=

−1∑
h=−∞

(
σh +

b− 1

2

)
bh. (3.8)

Thus, if ξ has distinct SSDEs, then ξ+1/2 has distinct (ordinary) b-ary expan-
sions of the form

ξ +
1

2
= (. . . (A− 1)(b− 1)ω)b = (. . . A0ω)b , (3.9)
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where A is an integer with 1 ≤ A ≤ b−1. Comparing (3.8) and (3.9), we deduce
that the SSDEs of ξ are written as

ξ = (. . . (s− 1)bω1 )b =
(
. . . sb1

ω
)
b
,

where s = A− b1.
In what follows, suppose that b is even. Let

W := {a = (ah)
−1
h=−∞ | a satisfies the digit conditions}.

Then W is a nonempty compact subset of {−b/2, . . . , b/2}N endowed with the
weak topology. For any a = (ah)

−1
h=−∞ ∈ W, put

φ(a) :=
−1∑

h=−∞

ahb
h.

Now we show that

|φ(a)| ≤ (0.(b1b2)
ω)b =

b+ 2

2(b+ 1)
. (3.10)

Since φ : W → R is continuous and since W is compact, the image φ(W) has
the maximal element

x =

−1∑
h=−∞

whb
h,

where w = (wh)
−1
h=−∞ ∈ W. Note that

1

b
· b
2
+

1

b2

(
b

2
− 1

)
+

x

b2
= (0.b1b2w−1w−2 . . .)b ∈ φ(W)

because the sequence b1b2w−1w−2 . . . satisfies the digit conditions. We get

x =
w−1

b
+

w−2

b2
+

∞∑
h=3

w−h

bh
≤ w−1

b
+

w−2

b2
+

x

b2

≤ 1

b
· b
2
+

1

b2

(
b

2
− 1

)
+

x

b2
≤ x, (3.11)

where for the first and last inequalities of (3.11) we use the maximality of x. In
particular, the equalities hold in (3.11). Using the equalities of (3.11) and the
maximality of x, we obtain

φ(a) ≤ x =
b+ 2

2(b+ 1)
.

Since φ(W) is symmetric with respect to the origin, we deduce (3.10).
We define the sequence u = (uh)

−1
h=−∞ ∈ W as follows:

uh =

{
b/2 (h is odd),

b/2− 1 (h is even).

12



Then we have φ(u) = x. Let again a = (ah)
−1
h=−∞ ∈ W. We claim that if

φ(a) = x, then a = u. We also claim that if φ(a) = −x, then a = (−uh)
−1
h=−∞.

Suppose that φ(a) = x and that a ̸= u. Put

−R = max{h ≤ −1 | ah ̸= uh}.

It is easily seen that u is the maximal element of W with respect to the lexico-
graphic order. So we have

u−R ≥ 1 + a−R.

Observe for any integer h that

uhb
h + uh−1b

h−1 − ahb
h − ah−1b

h−1 ≥ −bh, (3.12)

by the definition of u and the digit conditions on a. Hence, using (3.12) and
φ(a) = φ(u), we obtain

0 =

−1∑
h=−∞

uhb
h −

−1∑
h=−∞

ahb
h ≥ b−R +

−R−1∑
h=−∞

(uh − ah)b
h

≥ b−R −
∞∑
h=0

b−R−1−2h > 0,

which is a contradiction. Therefore, we proved the first claim. The second claim
follows from the first one and the following observation: for any a ∈ W, we have
φ(−a) = −φ(a), where −a = (−ah)

−1
h=−∞.

We now check the second statement of Lemma 3.2. Write the distinct SSDEs
of ξ by

ξ =
R∑

h=−∞

σhb
h =

R∑
h=−∞

σ′
hb

h. (3.13)

Put

M = max{h ∈ Z | σh ̸= σ′
h}.

Multiplying ξ by b−M , we may assume that M = 0. Namely, σh = σ′
h for any

positive integer h. If necessary, considering the numbers ξ′ = ξ −
∑R

h=1 σhb
h

instead of ξ, we may assume that σh = σ′
h = 0 for any positive integer h. Thus,

(3.10) and (3.13) imply that

|σ0 − σ′
0| =

∣∣∣∣∣
−1∑

h=−∞

σ′
hb

h −
−1∑

h=−∞

σhb
h

∣∣∣∣∣
≤ 2x =

b+ 2

b+ 1
< 2.

Hence, we get

|σ0 − σ′
0| = 1.
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Without loss of generality, we may assume that

σ0 = σ′
0 + 1. (3.14)

Note that (σ−1, σ
′
−1) ̸= (−b/2, b/2). In fact, if (σ−1, σ

′
−1) = (−b/2, b/2), then

the digit conditions on (σh)
0
h=−∞ and (σ′

h)
0
h=−∞ imply that

1− b

2
≤ σ0 ≤ 0, 0 ≤ σ′

0 ≤ b

2
− 1,

which contradicts (3.14). Assume that σ−1 = −b/2. Using (3.10) and σ′
−1 ≤

−1 + b/2, we obtain that

ξ =

0∑
h=−∞

σhb
h = 1 + σ′

0 +

−1∑
h=−∞

σhb
h ≥ 1 + σ′

0 − x

= σ′
0 +

1

b

(
b

2
− 1

)
+

1

b
x

≥ σ′
0 + σ′

−1b
−1 +

1

b

−1∑
h=−∞

σ′
h−1b

h =
0∑

h=−∞

σ′
hb

h = ξ.

Thus, the equalities hold in the inequalities above. Using (3.14), we obtain

−1∑
h=−∞

σhb
h = −x, σ′

−1 = −1 +
b

2
,

−1∑
h=−∞

σ′
h−1b

h = x.

By our claims in the proof of Lemma 3.2,

σh = −uh, σ
′
h−1 = uh

for any negative integer h. Namely, we deduce that the distinct SSDEs of ξ are
represented as

ξ = (σ′
0.(b2b1)

ω)b =
(
(1 + σ′

0).(b1 b2)
ω
)
b
.

Similarly we prove Lemma 3.2 in the case of σ−1 ≥ 1− b/2. By (3.10)

ξ =

0∑
h=−∞

σhb
h

≥ 1 + σ′
0 +

1

b

(
1− b

2

)
+

1

b

−1∑
h=−∞

σh−1b
h

≥ 1 + σ′
0 +

1

b

(
1− b

2

)
− 1

b
x

= σ′
0 + x ≥

0∑
h=−∞

σ′
hb

h = ξ.

Since the equalities hold in the inequalities above, we obtain

σ−1 = 1− b

2
,

−1∑
h=−∞

σh−1b
h = −x,

−1∑
h=−∞

σ′
hb

h = x.
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Our claims in the proof of Lemma 3.2 imply that

σh−1 = −uh, σ
′
h = uh

for any negative integer h. Hence, the distinct SSDEs of ξ are written as

ξ = (σ′
0.(b1b2)

ω)b =
(
(1 + σ′

0).(b2 b1)
ω
)
b
.

Therefore, we verified Lemma 3.2.

In the rest of this section we prove the ultimate periodicity of the SSDEs of
rational numbers.

LEMMA 3.3. The SSDE of any rational number ξ is ultimately periodic.

Proof. We may assume that the SSDE of ξ is unique by Lemma 3.2. In par-
ticular, the digits of the SSDE of ξ are given by (3.1) and (3.3). In the case
where b is odd, the SSDE of ξ is ultimately periodic because the ordinary b-ary
expansion of ξ + bR/2 is ultimately periodic, where R is a nonnegative integer
with |ξ| < bR/2.

Suppose that b is even. We use the same notation as in the proof of Theorem

3.1. For any j with 0 ≤ j ≤ b − 1, the sequence s
(b)
−h(δ(j); ξ/b) (h = 0, 1, . . .) is

ultimately periodic because

s
(b)
−h

(
δ(j);

ξ

b

)
= δ(j)− bδ(j)− {ξbh−1 + δ(j)}+ b{ξbh−2 + δ(j)}.

Hence, using (3.5), we deduce that the SSDE of ξ is ultimately periodic.

4 Preliminaries

We study the cost function νb(·) defined in Section 2, where b is an integer
greater than 1. Heuberger and Prodinger [11] showed that the SSDE of an
integer n gives the minimal cost among the signed digit representations of n.
That is, assume that n =

∑R
h=0 ahb

h, where R ∈ N and ah ∈ Z for any h with
0 ≤ h ≤ R. Then

νb(n) ≤
R∑

h=0

|ah|. (4.1)

In particular, we have

νb(n) ≤ |n| (4.2)

because

n = 1 + · · ·+ 1︸ ︷︷ ︸
|n|

or n = −1− · · · − 1︸ ︷︷ ︸
|n|

.

Note that νb(n) = νb(−n) for any integer n.
Bailey, Borwein, Crandall, and Pomerance [3] proved the following: Let n

be a nonnegative integer with ordinary binary expansion n =
∑M

h=0 sh2
h, where
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sh ∈ {0, 1} for h = 0, 1, . . . ,M . Write the cost, or the Hamming weight, of this

expansion by λ(n) :=
∑M

h=0 sh. Let m and n be any nonnegative integers. Then
we have

λ(m+ n) ≤ λ(m) + λ(n), λ(mn) ≤ λ(m)λ(n),

which we call the convexity relations in this paper. We show for any integral
base b ≥ 2 that the function νb(·) also fulfills the convexity relations, which are
generalizations of Lemma 2.1 in [12].

LEMMA 4.1. Let m and n be integers. Then we have

νb(m+ n) ≤ νb(m) + νb(n) (4.3)

and

νb(mn) ≤ νb(m)νb(n). (4.4)

Proof. We can easily check (4.3) and (4.4) in the case of mn = 0. So we may
assume that mn ̸= 0. For simplicity, put ν(k) := νb(k) for an integer k. Let

Λ := {±bh | h ∈ N}.

Then there exist t1, . . . , tν(m), t
′
1, . . . , t

′
ν(n) ∈ Λ such that

m =

ν(m)∑
i=1

ti, n =

ν(n)∑
j=1

t′j .

We get

m+ n =

ν(m)∑
i=1

ti +

ν(n)∑
j=1

t′j

and

mn =

ν(m)∑
i=1

ν(n)∑
j=1

tit
′
j .

Hence, using (4.1), we obtain (4.3) and (4.4) because tit
′
j ∈ Λ for any i and

j.

Combining (4.2) and (4.3), we get

νb(m+ n)− νb(m) ≤ νb(n) ≤ |n|

and

νb(m)− νb(m+ n) ≤ νb(−n) ≤ |n|.

Hence, for all integers m and n,

|νb(m+ n)− νb(m)| ≤ |n|. (4.5)
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LEMMA 4.2. Let ξ be a positive real number and B a positive integer. Then,
for any k ∈ Z+ and N ∈ N, we have

νb(⌊BkbNξk⌋) ≤ νb(B⌊bNξ⌋)k + 2k+1Bk max{1, ξk}.

Proof. Write the ordinary base-b expansion of ξ by

ξ =
R∑

h=−∞

shb
h,

where R ∈ N and 0 ≤ sh ≤ b− 1 for any h with h ≤ R. Put

ξ1 :=

R∑
h=−N

shb
h, ξ2 :=

−N−1∑
h=−∞

shb
h.

Then we have

ξ1 ≤ ξ, ξ2 ≤ b−N (≤ 1). (4.6)

Observe that

BkbNξk = BkbN (ξ1 + ξ2)
k

= BkbNξk1 +BkbN
k∑

i=1

(
k

i

)
ξk−i
1 ξi2. (4.7)

For any real numbers x and y, it is easily seen that

|⌊x+ y⌋ − (⌊x⌋+ ⌊y⌋)| ≤ 1 (4.8)

and that

|⌊x− y⌋ − (⌊x⌋ − ⌊y⌋)| ≤ 1. (4.9)

Thus, using (4.6), (4.7), and (4.8), we get

⌊BkbNξk1 ⌋ ≤ ⌊BkbNξk⌋

and

⌊BkbNξk⌋ ≤ ⌊BkbNξk1 ⌋+

⌊
BkbN

k∑
i=1

(
k

i

)
ξk−i
1 ξi2

⌋
+ 1

≤ ⌊BkbNξk1 ⌋+

⌊
Bk

k∑
i=0

(
k

i

)
max{1, ξk}

⌋
+ 1

= ⌊BkbNξk1 ⌋+
⌊
2kBk max{1, ξk}

⌋
+ 1.

In particular, we have

|⌊BkbNξk⌋ − ⌊BkbNξk1 ⌋| ≤
⌊
2kBk max{1, ξk}

⌋
+ 1.
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Hence, using (4.5), we obtain

νb(⌊BkbNξk⌋) ≤ νb(⌊BkbNξk1 ⌋) +
⌊
2kBk max{1, ξk}

⌋
+ 1. (4.10)

In what follows, we estimate the value νb(⌊BkbNξk1 ⌋). Note that BbNξ1 is an
integer. Lemma 4.1 implies that

νb(B
kbkNξk1 ) ≤ νb(BbNξ1)

k = νb(B⌊bNξ⌋)k. (4.11)

Denote the SSDE of BkbkNξk1 by

BkbkNξk1 =
M∑
h=0

σhb
h.

Put

θ1 :=
M∑

h=(k−1)N

σhb
h−(k−1)N

and

θ2 :=

−1+(k−1)N∑
h=0

σhb
h−(k−1)N .

Then we have |θ2| < 1 because |σh| ≤ b/2 for any h. Using θ1 ∈ Z and

θ1 + θ2 = BkbNξk1 ,

we get

|⌊BkbNξk1 ⌋ − θ1| ≤ 1. (4.12)

By (4.5), (4.11), and (4.12), we obtain

νb(⌊BkbNξk1 ⌋) ≤ 1 + νb(θ1) = 1 +
M∑

h=(k−1)N

|σh|

≤ 1 +
M∑
h=0

|σh| = 1 + νb(B
kbkNξk1 )

≤ 1 + νb(B⌊bNξ⌋)k. (4.13)

Combining (4.10) and (4.13), we conclude that

νb(⌊BkbNξk⌋) ≤ νb(B⌊bNξ⌋)k + 2k+1Bk max{1, ξk}.

In the rest of this section we give lower bounds of the costs of certain classes
of integers.
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LEMMA 4.3. Let η be a rational number. Let r be the least period of the
SSDE of η and let ρ be the cost of the period of η. Assume that ρ is positive.
Then there exists an effectively computable positive constant C6(b, η) depending
only on b and η such that

νb(⌊bNη⌋) ≥ ρ

r
N − C6(b, η)

for any N ∈ N.

Proof. Denote the SSDE of η by

η =
M−1∑
h=−∞

σhb
h = (σM−1 . . . σ0.σ−1 . . . σ−Lv

ω)b ,

where L is a positive integer and v is a finite word of length r. For the proof of
Lemma 4.3, we may assume that N ≥ L. Put

ηN :=
M−1∑
h=−N

σhb
h.

The SSDE of bNηN ∈ Z is written as

bNηN = σM−1 . . . σ−L v . . . v︸ ︷︷ ︸
⌊(N−L)/r⌋

v′,

where v′ is the prefix of v of length r{(N − L)/r}. In particular,

νb(b
NηN ) ≥ ρ

⌊
N − L

r

⌋
. (4.14)

Since

|bNη − bNηN | =

∣∣∣∣∣bN
−N−1∑
h=−∞

σhb
h

∣∣∣∣∣ =
∣∣∣∣∣

−1∑
h=−∞

σh−Nbh

∣∣∣∣∣ ≤ 1,

we get

|⌊bNη⌋ − bNηN | ≤ 2. (4.15)

Hence, using (4.5), (4.14), and (4.15), we obtain

νb(⌊bNη⌋) ≥ νb(b
NηN )− 2 ≥ ρ

r
N − C6(b, η).

5 Proofs of the main results

We give lower bounds of the number γb(ξ;N) of digit changes in base b ≥ 2,
using the cost function νb(·).
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LEMMA 5.1. Let b be an integer greater than 1 and ξ a positive real number.
Then

νb
(
(b− 1)⌊ξbN⌋

)
≤ (2b− 3)γb(ξ;N) + 1

for any N ∈ N.

Proof. Without loss of generality, we may assume that ⌊ξbN⌋ ≥ 1. For simplic-
ity, put γ := γb(ξ;N). Then the ordinary base-b expansion of ⌊ξbN⌋ is written
as

⌊ξbN⌋ =
(
a1 . . . a1︸ ︷︷ ︸

l(1)

a2 . . . a2︸ ︷︷ ︸
l(2)

. . . aγ . . . aγ︸ ︷︷ ︸
l(γ)

)
b
,

where ai ∈ {0, 1, . . . , b− 1} and l(i) ∈ Z+ for each i. Thus, we get

(b− 1)⌊ξbN⌋ =
γ∑

i=1

ai
(
bei − bfi

)
,

where ei and fi are nonnegative integers for any i. Using (4.1), we obtain

νb
(
(b− 1)⌊ξbN⌋

)
≤ 2

γ∑
i=1

|ai|. (5.1)

For any i with 1 ≤ i ≤ γ − 1, at least one of ai and ai+1 are less than or equal
to b− 2. Hence,

2

γ∑
i=1

|ai| ≤ 2
(⌈γ

2

⌉
+ (b− 2)γ

)
≤ (2b− 3)γ + 1. (5.2)

Therefore, (5.1) and (5.2) imply Lemma 5.1.

Proof of Theorem 2.1.
Let N ∈ N. Since ADξD + · · ·+A0 = 0, we get

ηbN =
D∑

h=1

Ah(b− 1)D−h

u
(b− 1)hbNξh. (5.3)

In what follows, we estimate the cost of the integral part of (5.3) in two ways.
By the first and second assumptions of Theorem 2.1, the cost ρ is positive.
Thus, by Lemma 4.3,

νb(⌊ηbN⌋) ≥ ρ

r
N − C6(b, η). (5.4)

The third assumption of Theorem 2.1 implies that u divides Ah(b − 1)D−h for
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any h with 1 ≤ h ≤ D. Using (4.5), (4.8), (4.9) and Lemma 4.1, we get

νb(⌊ηbN⌋) = νb

(⌊
D∑

h=1

Ah(b− 1)D−h

u
(b− 1)hbNξh

⌋)

≤ νb

(
D∑

h=1

Ah(b− 1)D−h

u
⌊(b− 1)hbNξh⌋

)
+

D∑
h=1

|Ah|(b− 1)D−h

u

≤
D∑

h=1

νb

(
Ah(b− 1)D−h

u
⌊(b− 1)hbNξh⌋

)
+

D∑
h=1

|Ah|(b− 1)D−h

u

≤
D∑

h=1

νb

(
Ah(b− 1)D−h

u

)
νb
(
⌊(b− 1)hbNξh⌋

)
+

D∑
h=1

|Ah|(b− 1)D−h

u
. (5.5)

Using Lemmas 4.2 and 5.1, we get

νb(⌊(b− 1)hbNξh⌋) ≤
(
(2b− 3)γb(ξ;N) + 1

)h
+ 2h+1(b− 1)h max{1, ξh} (5.6)

for any h with 1 ≤ h ≤ D. Combining (5.4), (5.5), and (5.6), we obtain

ρ

r
N ≤ P

(
γb(ξ;N)

)
, (5.7)

where P (X) ∈ R[X] is a polynomial with leading term

(2b− 3)Dνb

(
AD

u

)
XD.

Hence, for any positive real number u, there exists an effectively computable
positive constant C7(b, ξ, u) depending only on b, ξ, and u such that

γb(ξ;N) ≥ u

for any N with N ≥ C7(b, ξ, u). Let ε be an arbitrary positive number less
than 1. Then there exists an effectively computable positive constant C4(b, ξ, ε)
depending only on b, ξ, and ε such that

P
(
γb(ξ;N)

)
≤ (1− ε)−D(2b− 3)Dνb

(
AD

u

)
γb(ξ;N)D. (5.8)

for any integer N with N ≥ C4(b, ξ, ε) because (1− ε)−D > 1. Using (5.7) and
(5.8), we conclude that

γb(ξ;N) ≥ (1− ε)µ(ξ)N1/D

for any N ≥ C4(b, ξ, ε). Therefore, we proved Theorem 2.1.
In what follows, we assume that b = 2. We use the same notation as in

Section 2. Put

F (ξ;N) := f(ξ, 00;N) + f(ξ, 11;N)

= Card{−N ≤ h ≤ R− 1 | s(2)h (ξ) = s
(2)
h+1(ξ)}.
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LEMMA 5.2. Let ξ be a positive real number. Then

ν2(3⌊ξ2N⌋) ≤ 6F (ξ;N) + 2

for any N ∈ N.

Proof. Let v = sL−1 . . . s1s0 be a finite word on the alphabet {0, 1}. For any
nonnegative real number x, put

vx := v . . . v︸ ︷︷ ︸
⌊x⌋

v′,

where v′ is the prefix of v of length ⌊{x}|v|⌋. Recall that

(v)2 =
L−1∑
h=0

sh2
h.

For the proof of Lemma 5.2, we may assume that ⌊2Nξ⌋ ≥ 1. Then the binary
expansion of ⌊ξ2N⌋ is written as

⌊ξ2N⌋ =
(
vx1
1 wy1

1 vx2
2 wy2

2 . . . v
xl−1

l−1 w
yl−1

l−1 vxl

l

)
2

(5.9)

or

⌊ξ2N⌋ =
(
vx1
1 wy1

1 vx2
2 wy2

2 . . . v
xl−1

l−1 w
yl−1

l−1 vxl

l wyl

l

)
2
, (5.10)

where, for each i, vi ∈ {01, 10}, 2xi, yi ∈ Z+, and wi ∈ {0, 1} is the last letter of
vxi
i . The last block of the right-hand side of (5.10) is different from that of (5.9).
For instance, assume that vi = 10 and that xi = 3. Then we have vxi

i = 101010
and wi = 0. By the definition of wi,

F (ξ;N) =
∑
i≥1

yi.

First we assume that ⌊ξ2N⌋ is denoted as (5.9). Let i be a positive integer.
Then we get

3 (vxi
i )2 = (11 . . . 1)2 = 2k − 1

or

3 (vxi
i )2 = (11 . . . 10)2 = 2k − 2,

where k is a positive integer. In particular,

ν2
(
3 (vxi

i )2
)
≤ 2. (5.11)

Similarly,

ν2((w
yi

i )2) ≤ 2

because (wyi

i )2 = 0 or (wyi

i )2 = 2m − 1, where m is a positive integer. Thus, by
Lemma 4.1

ν2 (3(w
yi

i )2) ≤ ν2(3)ν2 ((w
yi

i )2) ≤ 4. (5.12)
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In particular, if l = 1, then we have

ν2(3⌊2Nξ⌋) = ν2 (3(v
x1
1 )2) ≤ 2 ≤ 6F (ξ;N) + 2.

So we may assume that l ≥ 2. (5.9) is rewritten as

⌊ξ2N⌋ =
l∑

i=1

2ti(vxi
i )2 +

l−1∑
i=1

2ui(wyi

i )2,

where ti and ui are nonnegative integers for each i. Using (5.11), (5.12), and
Lemma 4.1, we obtain

ν2
(
3⌊ξ2N⌋

)
≤

l∑
i=1

ν2
(
3 · 2ti(vxi

i )2
)
+

l−1∑
i=1

ν2
(
3 · 2ui(wyi

i )2
)

=

l∑
i=1

ν2
(
3(vxi

i )2
)
+

l−1∑
i=1

ν2
(
3(wyi

i )2
)

≤ 2l + 4(l − 1) = 6(l − 1) + 2

≤ 6
l−1∑
i=1

yi + 2 = 6F (ξ;N) + 2.

Next we consider the case where ⌊ξ2N⌋ is written as (5.10). Namely,

⌊ξ2N⌋ =
l∑

i=1

2ti(vxi
i )2 +

l∑
i=1

2ui(wyi

i )2,

where ti and ui are nonnegative integers for every i. By (5.11), (5.12) and
Lemma 4.1,

ν2
(
3⌊ξ2N⌋

)
≤

l∑
i=1

ν2
(
3 · 2ti(vxi

i )2
)
+

l∑
i=1

ν2
(
3 · 2ui(wyi

i )2
)

=
l∑

i=1

ν2
(
3(vxi

i )2
)
+

l∑
i=1

ν2
(
3(wyi

i )2
)

≤ 2l + 4l = 6l ≤ 6

l∑
i=1

yi = 6F (ξ;N).

Hence, we proved Lemma 5.2.

Proof of Theorem 2.2.
Let N ∈ N. Using ADξD + · · ·+A0 = 0, we get

η′2N =

D∑
h=1

3D−hAh

u′ 3h2Nξh. (5.13)

We estimate the cost of the integral part of (5.13) in two ways. Since u′ is odd
and since u′ satisfies the first assumption of Theorem 2.2, the cost ρ′ is positive.
Hence, Lemma 4.3 implies that

ν2(⌊η′2N⌋) ≥ ρ′

r′
N − C6(2, η

′). (5.14)
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By the second assumption of Theorem 2.2, u′ divides 3D−hAh for each h with
1 ≤ h ≤ D. Using (4.5), (4.8), (4.9) and Lemma 4.1, we obtain

ν2(⌊η′2N⌋) = ν2

(⌊
D∑

h=1

3D−hAh

u′ 3h2Nξh

⌋)

≤ ν2

(
D∑

h=1

3D−hAh

u′

⌊
3h2Nξh

⌋)
+

D∑
h=1

3D−h|Ah|
u′

≤
D∑

h=1

ν2

(
3D−hAh

u′

⌊
3h2Nξh

⌋)
+

D∑
h=1

3D−h|Ah|
u′

≤
D∑

h=1

ν2

(
3D−hAh

u′

)
ν2
(⌊
3h2Nξh

⌋)
+

D∑
h=1

3D−h|Ah|
u′ . (5.15)

By Lemmas 4.2 and 5.2, for each h with 1 ≤ h ≤ D,

ν2(⌊3h2Nξh⌋) ≤ (6F (ξ;N) + 2)h + 2h+13h max{1, ξh}. (5.16)

Combining (5.14), (5.15), and (5.16), we obtain that

ρ′

r′
N ≤ P ′(F (ξ;N)

)
,

where P ′(X) ∈ R[X] is a polynomial whose leading term is

6Dν2

(
AD

u′

)
XD.

Let ε be any positive number less than 1. Then, in the same way as in the proof
of Theorem 2.1, we deduce the following: There exists an effectively computable
positive constant C5(ξ, ε) depending only on ξ and ε such that

F (ξ;N) ≥ (1− ε)µ′(ξ)N1/D

for any integer N with N ≥ C5(ξ, ε). Finally we verified Theorem 2.2.
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[4] É. Borel, Les probabilités dénombrables et leurs applications arithmétiques,
Rend. circ. Mat. Palermo 27 (1909), 247-271.
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