Limit points of fractional parts of geometric sequences *

Hajime Kaneko

Abstract

Let $\alpha>1$ be an algebraic number and ξ a nonzero real number. In this paper, we compute the range of the fractional parts $\left\{\xi \alpha^{n}\right\}(n=0,1, \ldots)$. In particular, we estimate the maximal and minimal limit points. Our results show, for example, that if $\theta(=24.97 \ldots)$ is the unique zero of the polynomial $2 X^{2}-50 X+1$ with $X>1$, then there exists a nonzero ξ^{*} satisfying $\lim \sup _{n \rightarrow \infty}\left\{\xi^{*} \theta^{n}\right\} \leq 0.02127 \ldots$ On the other hand, we also prove for any nonzero ξ that $\lim \sup _{n \rightarrow \infty}\left\{\xi \theta^{n}\right\} \geq 0.02003 \ldots$

1 Introduction

Koksma [11] proved for nonzero ξ that the geometric progressions $\xi \alpha^{n}(n \geq 0)$ are uniformly distributed modulo 1 for almost all $\alpha>1$. He also showed for $\alpha>1$ that $\xi \alpha^{n}(n \geq 0)$ are uniformly distributed modulo 1 for almost all real ξ. There is, however, no criterion of uniform distribution for the series $\xi \alpha^{n}(n \geq 0)$ with given $\alpha>1$ and $\xi \neq 0$.

Let μ be the Haar measure of the torus \mathbb{R} / \mathbb{Z} with $\mu(\mathbb{R} / \mathbb{Z})=1$. We write the canonical map from \mathbb{R} onto \mathbb{R} / \mathbb{Z} by τ. For any interval $I \subset \mathbb{R}$, we call $J=\tau(I)$ an interval in \mathbb{R} / \mathbb{Z}.

We take $\alpha>1$ and $\xi \neq 0$. Let $J(\alpha, \xi)$ be one of the shortest interval in \mathbb{R} / \mathbb{Z} containing all limit points of $\xi \alpha^{n} \bmod \mathbb{Z}(n \geq 0)$. Note that $J(\alpha, \xi)$ is uniquely determined unless the set of limit points of $\xi \alpha^{n} \bmod \mathbb{Z}(n \geq 0)$ consists of two elements. We now recall the definition of Pisot and Salem numbers. Pisot numbers are algebraic integers greater than 1 whose conjugates different from themselves have absolute values strictly less than 1. Salem numbers are algebraic integers greater than 1 which have at least one conjugate with modulus 1 and exactly one conjugate outside the unit circle. Pisot [14] proved for an algebraic $\alpha>1$ and a nonzero ξ that if the sequence $\xi \alpha^{n} \bmod \mathbb{Z}(n \geq 0)$ has only finitely many limit points, then α is a Pisot number and $\xi \in \mathbb{Q}(\alpha)$. For further details of powers of Pisot and Salem numbers we refer the reader to [2].

We put

$$
\mu(\alpha, \xi)=\mu(J(\alpha, \xi))
$$

For example, $J(\alpha, 1)=\{0 \bmod \mathbb{Z}\}$ and $\mu(\alpha, 1)=0$, where α is a Pisot number, because the trace of α^{n} is a rational integer. Tijdeman [15] proved for every

[^0]half integer $\alpha=N / 2>2$ that there exists a nonzero $\xi=\xi(\alpha)$ such that
$$
\mu(\alpha, \xi) \leq \frac{1}{2(\alpha-1)}
$$

Flatto [8] pointed out that, for each rational $\alpha=a / b>1$, there is a nonzero $\xi=\xi(\alpha)$ with

$$
\begin{equation*}
\mu(\alpha, \xi) \leq \frac{b-1}{b(\alpha-1)}=\frac{b-1}{a-b} . \tag{1.1}
\end{equation*}
$$

He proved the inequality above using Tijdeman's method.
Koksma's Theorem implies that if $\alpha>1$ is given, then, for almost all ξ, the set

$$
\left\{\xi \alpha^{n} \bmod \mathbb{Z} \mid n=0,1, \ldots\right\}
$$

is dense in \mathbb{R} / \mathbb{Z}. In particular, $\mu(\alpha, \xi)=1$. On the other hand, Tijdeman [15] showed that if $\alpha>2$ is given, then there exists a nonzero $\xi=\xi(\alpha)$ with

$$
\begin{equation*}
\left\{\xi \alpha^{n}\right\} \leq \frac{1}{\alpha-1}(n=0,1, \ldots) \tag{1.2}
\end{equation*}
$$

where $\left\{\xi \alpha^{n}\right\}$ denotes the fractional part of $\xi \alpha^{n}$. In particular, such α and ξ satisfy

$$
\begin{equation*}
\mu(\alpha, \xi) \leq \frac{1}{\alpha-1} \tag{1.3}
\end{equation*}
$$

The author [10] proved the following:
Let ξ be a nonzero real number. Take arbitrary positive numbers δ and M. Then there exists an α satisfying $\alpha>M$ and

$$
\mu(\xi, \alpha) \leq \frac{1+\delta}{\alpha}
$$

Let $\iota(=2.025 \ldots)$ be the unique solution of $34 X^{3}-102 X^{2}+75 X-16=0$ with $X>2$. Dubickas [7] verified for $1<\alpha<\iota$ that there is a nonzero $\xi=\xi(\alpha)$ such that

$$
\begin{equation*}
\mu(\alpha, \xi) \leq 1-\frac{2(\alpha-1)^{2}}{9(2 \alpha-1)^{2}} \tag{1.4}
\end{equation*}
$$

It is easy to check that if $2<\alpha<\iota$ is given, then

$$
1-\frac{2(\alpha-1)^{2}}{9(2 \alpha-1)^{2}}<\frac{1}{\alpha-1}
$$

Thus (1.4) is stronger than (1.3) for $2<\alpha<\iota$. We now review Dubickas's estimation of maximal and minimal limit points of the sequence $\left\{\xi \alpha^{n}\right\} \quad(n=$ $0,1, \ldots)$. Let us define notation about polynomials and algebraic numbers. Let $B(X)=b_{m} X^{m}+\cdots+b_{0}$ be an arbitrary polynomial with real coefficients. We denote the length of $B(X)$ by

$$
L(B)=\left|b_{m}\right|+\cdots+\left|b_{0}\right|
$$

Let $\alpha>1$ be an algebraic number with minimal polynomial $P_{\alpha}(X)=a_{d} X^{d}+$ $\cdots+a_{0} \in \mathbb{Z}[X]$, where $a_{d}>0$ and $\operatorname{gcd}\left(a_{d}, \ldots, a_{0}\right)=1$. Define the length of α by

$$
L(\alpha)=L\left(P_{\alpha}(X)\right)
$$

Put furthermore

$$
L_{+}(\alpha)=\sum_{i=0}^{d} \max \left\{0, a_{i}\right\}, L_{-}(\alpha)=\sum_{i=0}^{d} \max \left\{0,-a_{i}\right\}
$$

Next, let $l(\alpha)$ be the reduced length of α defined by

$$
l(\alpha)=\min \left\{l^{\prime}(\alpha), l^{\prime}\left(\alpha^{-1}\right)\right\}
$$

where

$$
l^{\prime}(\alpha)=\inf _{B(X) \in \mathbb{R}[X]}\left\{L\left(B(X) P_{\alpha}(X)\right) \mid B(X) \text { is monic }\right\}
$$

Formulae about $l(\alpha)$ and $l^{\prime}(\alpha)$ were studied by Dubickas [5]. Take a nonzero real ξ. If α is a Pisot or Salem number, then assume $\xi \notin \mathbb{Q}(\alpha)$. We write the integral part of a real number x by $[x]$. Dubickas [6] showed that the sequence

$$
\left(\sum_{i=0}^{d} a_{d-i}\left[\xi \alpha^{n-i}\right]\right)(n=0,1, \ldots)
$$

is not ultimately periodic. In particular,

$$
\left|\sum_{i=0}^{d} a_{d-i}\left[\xi \alpha^{n-i}\right]\right| \geq 1
$$

for infinitely many $n \geq 0$ because nonzero integers occur infinitely many times in this sequence. Since

$$
0=\sum_{i=0}^{d} a_{d-i} \xi \alpha^{n-i}=\sum_{i=0}^{d} a_{d-i}\left(\left[\xi \alpha^{n-i}\right]+\left\{\xi \alpha^{n-i}\right\}\right),
$$

we have

$$
\left|\sum_{i=0}^{d} a_{d-i}\left\{\xi \alpha^{n-i}\right\}\right|=\left|\sum_{i=0}^{d} a_{d-i}\left[\xi \alpha^{n-i}\right]\right| \geq 1
$$

for infinitely many n. Thus we get

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\{\xi \alpha^{n}\right\} \geq \min \left\{\frac{1}{L_{+}(\alpha)}, \frac{1}{L_{-}(\alpha)}\right\} \tag{1.5}
\end{equation*}
$$

Moreover, Dubickas [6] proved

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\{\xi \alpha^{n}\right\}-\liminf _{n \rightarrow \infty}\left\{\xi \alpha^{n}\right\} \geq \frac{1}{l(\alpha)} \tag{1.6}
\end{equation*}
$$

In this paper, we calculate the range of the sequence $\left\{\xi \alpha^{n}\right\}(n=0,1, \ldots)$ in the case where $\alpha>1$ is an algebraic number. The main results are stated in Section 2 and proved in Section 6. First, we construct a nonzero $\xi=\xi(\alpha)$ and improve (1.3), (1.4) by giving an interval in \mathbb{R} / \mathbb{Z} which includes all limit points of the sequence $\xi \alpha^{n} \bmod \mathbb{Z}(n \geq 0)$. Next, we give new estimation of the maximal and minimal limit points of the sequence $\left\{\xi \alpha^{n}\right\}(n=0,1, \ldots)$. The auxiliary results are given in Sections 3,4, and 5 . Moreover, in Section 7 we introduce Mahler's Z-numbers (cf. [3, 8, 9, 12]) and discuss their generalization.

2 Main results

At first, we sharpen the inequality (1.3) in the case where $\alpha>1$ is an algebraic number whose conjugates different from itself have absolute values less than 1. For $t, m \geq 1$, put

$$
\rho_{m}\left(X_{1}, \ldots, X_{t}\right)=\left\{\begin{array}{cc}
1 & t=m=0 \tag{2.1}\\
0 & t=0, m \geq 1 \\
\sum_{\substack{i_{1}, \ldots, i_{t} \geq 0 \\
i_{1}+\cdots+i_{t}=m}} X_{1}^{i_{1}} \cdots X_{t}^{i_{t}} & t \geq 1
\end{array}\right.
$$

THEOREM 2.1. Let $\alpha>1$ be an algebraic number of degree d and let $a_{d}(>$ $0)$ be the leading coefficient of the minimal polynomial of α. We denote the conjugates of α by $\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{d}$. Assume that $\left|\alpha_{j}\right|<1$ for $2 \leq j \leq d$. Let

$$
\begin{equation*}
\nu=\sum_{h=0}^{\infty}\left|\rho_{h}\left(\alpha_{2}, \ldots, \alpha_{d}\right)\right| . \tag{2.2}
\end{equation*}
$$

Then there exists a nonzero $\xi=\xi(\alpha)$ such that

$$
\begin{equation*}
\mu(\alpha, \xi) \leq \frac{\left(a_{d}-1\right) \nu}{a_{d}(\alpha-1)} \tag{2.3}
\end{equation*}
$$

Note that if α is a rational number, then (2.3) coincides with (1.1). Next, we consider the case where α is a quadratic irrational number. We give an interval in \mathbb{R} / \mathbb{Z} which includes $J(\alpha, \xi)$.

COROLLARY 2.2. Let $\alpha>1$ be an quadratic irrational number and $P_{\alpha}(X)$ be its minimal polynomial. We denote the leading coefficient of $P_{\alpha}(X)$ by $a_{2}(>0)$. Assume that the conjugate α_{2} of α has the absolute value less than 1 and that $a_{2} \geq 2$.
(1) If $0<\alpha_{2}<1$, then there exists a nonzero $\xi=\xi(\alpha)$ such that, for any $n \geq 0$

$$
\left\{\xi \alpha^{n}\right\}<\frac{a_{2}-1}{\left|P_{\alpha}(1)\right|}
$$

In particular,

$$
J(\xi, \alpha) \subset \tau\left(\left[0, \frac{a_{2}-1}{\left|P_{\alpha}(1)\right|}\right]\right)
$$

(2) If $-1<\alpha_{2}<0$, then there exists a nonzero $\xi=\xi(\alpha)$ such that

$$
J(\xi, \alpha) \subset \tau\left(\left[\frac{\left(a_{2}-1\right) \alpha_{2}}{a_{2}(\alpha-1)\left(1-\alpha_{2}^{2}\right)}, \frac{a_{2}-1}{a_{2}(\alpha-1)\left(1-\alpha_{2}^{2}\right)}\right]\right) .
$$

Example 2.1. Let $\theta_{1}(=24.97 \ldots)$ be the unique zero of the polynomial $2 X^{2}-$ $50 X+1$ with $X>1$. Then by Tijdeman's result (1.2) there exists a nonzero $\xi=\xi\left(\theta_{1}\right)$ with

$$
\left\{\xi \theta_{1}^{n}\right\} \leq \frac{1}{\theta_{1}-1}=0.04170 \ldots
$$

for each $n \geq 0$. Since the conjugate of θ_{1} is on the interval $(0,1)$, by Corollary 2.2 there exists a nonzero $\xi=\xi\left(\theta_{1}\right)$ such that for each $n \geq 0$

$$
\left\{\xi \theta_{1}^{n}\right\}<\frac{1}{47}=0.02127 \ldots
$$

We now compare these estimations with the Dubickas's lower bound (1.5) of the maximal limit point. For any nonzero ξ we have

$$
\limsup _{n \rightarrow \infty}\left\{\xi \theta_{1}^{n}\right\} \geq \min \left\{\frac{1}{L_{+}\left(\theta_{1}\right)}, \frac{1}{L_{-}\left(\theta_{1}\right)}\right\}=\frac{1}{50}=0.02
$$

Note that the first statement of Corollary 2.2 gives an upper bound of the maximal limit point of the sequence $\left\{\xi \alpha^{n}\right\}(n=0,1, \ldots)$. We generalize this estimation in the case where $\alpha>1$ is an algebraic number with arbitrary degree whose conjugates different from itself are on the interval $(0,1)$. Next, we give also an upper bound of the difference between the maximal and minimal limit points in the case where the absolute values of the conjugates of α different from itself are sufficiently small.

THEOREM 2.3. Let $\alpha>1$ be an algebraic number of degree d. We denote the conjugates of α by $\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{d}$. Moreover, let $P_{\alpha}(X)$ be the minimal polynomial of α and $a_{d}(>0)$ its leading coefficient. Suppose that $a_{d} \geq 2$.
(1) Assume that

$$
0<\alpha_{j}<1(2 \leq j \leq d)
$$

Then there exists a nonzero $\xi=\xi(\alpha)$ satisfying

$$
\left\{\xi \alpha^{n}\right\}<\frac{a_{d}-1}{\left|P_{\alpha}(1)\right|}
$$

for all $n \geq 0$.
(2) Let ν be defined by (2.2). Assume that, for any j with $2 \leq j \leq d$,

$$
\left|\alpha_{j}\right|<1
$$

and that

$$
\frac{a_{d}-1}{a_{d}(\alpha-1)} \nu<\frac{1}{2},\left|P_{\alpha}(1)\right| \geq 2
$$

Then there is a nonzero $\xi=\xi(\alpha)$ satisfying

$$
\limsup _{n \rightarrow \infty}\left\{\xi \alpha^{n}\right\}-\liminf _{n \rightarrow \infty}\left\{\xi \alpha^{n}\right\} \leq \frac{a_{d}-1}{a_{d}(\alpha-1)} \nu
$$

REMARK 2.1. If the absolute values of the conjugates of α different from itself are sufficiently small, then the assumptions of the second statement of Theorem 2.3 follow. In fact, they are rewritten by

$$
\nu=\sum_{h=0}^{\infty}\left|\rho_{h}\left(\alpha_{2}, \ldots, \alpha_{d}\right)\right|<\frac{a_{d}(\alpha-1)}{2\left(a_{d}-1\right)}
$$

and

$$
\prod_{i=2}^{d}\left|1-\alpha_{i}\right| \geq \frac{2}{a_{d}(\alpha-1)}
$$

Example 2.2. We give an example of the first statement. Let $\theta_{2}(=24.69 \ldots)$ be the unique solution of $2 X^{3}-50 X^{2}+15 X-1=0$ with $X>1$. Then Tijdeman's result (1.2) implies that there exists a nonzero $\xi=\xi\left(\theta_{2}\right)$ with

$$
\left\{\xi \theta_{2}^{n}\right\} \leq \frac{1}{\theta_{2}-1}=0.04219 \ldots
$$

for all $n \geq 0$. Since θ_{2} is an algebraic number of degree 3 whose conjugates different from itself are on the interval $(0,1)$, the first statement of Theorem 2.3 means that there is a nonzero $\xi=\xi\left(\theta_{2}\right)$ satisfying

$$
\left\{\xi \theta_{2}^{n}\right\}<\frac{1}{34}=0.02941 \ldots
$$

for any n.
On the other hand, Dubickas's lower bound (1.5) implies that if $\xi \neq 0$, then

$$
\limsup _{n \rightarrow \infty}\left\{\xi \theta_{2}^{n}\right\} \geq \min \left\{\frac{1}{L_{+}\left(\theta_{2}\right)}, \frac{1}{L_{-}\left(\theta_{2}\right)}\right\}=\frac{1}{51}=0.01960 \ldots
$$

Example 2.3. We introduce an example of the second statement of Theorem 2.3. Let $\theta_{3}(=25.01 \ldots)$ be the unique positive zero of the polynomial $2 X^{2}-$ $50 X-1$. Then, by Tijdeman's result (1.2) there exists a nonzero $\xi=\xi\left(\theta_{3}\right)$ fulfilling

$$
\limsup _{n \rightarrow \infty}\left\{\xi \theta_{3}^{n}\right\}-\liminf _{n \rightarrow \infty}\left\{\xi \theta_{3}^{n}\right\} \leq \frac{1}{\theta_{3}-1}=0.04163 \ldots
$$

Theorem 2.3 means there is a nonzero $\xi=\xi\left(\theta_{3}\right)$ with

$$
\limsup _{n \rightarrow \infty}\left\{\xi \theta_{3}^{n}\right\}-\liminf _{n \rightarrow \infty}\left\{\xi \theta_{3}^{n}\right\} \leq \frac{a_{d}-1}{a_{d}\left(\theta_{3}-1\right)} \nu=0.02124 \ldots
$$

We next compare with Dubickas's lower bound (1.6). Dubickas [5] verified that if $\alpha>1$ is a quadratic irrational number whose conjugate has absolute value less than 1 , then

$$
l(\alpha)=a_{2} \alpha+\min \left\{a_{2},\left|a_{0}\right|\right\}
$$

Therefore, for any nonzero ξ

$$
\limsup _{n \rightarrow \infty}\left\{\xi \theta_{3}^{n}\right\}-\liminf _{n \rightarrow \infty}\left\{\xi \theta_{3}^{n}\right\} \geq \frac{1}{l\left(\theta_{3}\right)}=0.01959 \ldots
$$

Finally, we improve Dubickas's lower bound (1.5) of the maximal limit point $\lim \sup _{n \rightarrow \infty}\left\{\xi \alpha^{n}\right\}$ in the case where $\alpha>1$ whose conjugates are all positive.

THEOREM 2.4. Let ξ be a nonzero real number and $\alpha>1$ an algebraic number of degree d. We denote the leading coefficient of the minimal polynomial of α by $a_{d}(>0)$. Suppose that the conjugates of α are all positive. If α is a Pisot number, then assume further $\xi \notin \mathbb{Q}(\alpha)$. We denote the conjugates of α by $\alpha_{1}=\alpha, \ldots, \alpha_{p}, \alpha_{1+p}, \ldots, \alpha_{d}$, where $\alpha_{i}>1(1 \leq i \leq p)$ and $0<\alpha_{j}<1(1+p \leq$ $j \leq d)$. Put

$$
\eta_{l}=\sum_{\substack{i, j \geq 0 \\ j-i=l}} \rho_{i}\left(\alpha_{1}^{-1}, \ldots, \alpha_{p}^{-1}\right) \rho_{j}\left(\alpha_{1+p}, \ldots, \alpha_{d}\right)
$$

Let

$$
\delta_{1}=\max \left\{\frac{1}{L_{+}(\alpha)}, \frac{1}{L_{-}(\alpha)}\right\}
$$

and

$$
\delta_{2}=\frac{1}{a_{d} \alpha_{1} \cdots \alpha_{p}} \sup _{l \in \mathbb{Z}} \eta_{l}
$$

respectively. Then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\{\xi \alpha^{n}\right\} \geq \min \left\{\delta_{1}, \delta_{2}\right\} \tag{2.4}
\end{equation*}
$$

Example 2.4. We consider the case of $\alpha=\theta_{1}, \theta_{2}$ which are defined in Examples 2.1 and 2.2, respectively. Tijdeman's result (1.2) and Dubickas's lower bound (1.5) imply

$$
0.02 \leq \inf _{\xi \neq 0} \limsup _{n \rightarrow \infty}\left\{\xi \theta_{1}^{n}\right\} \leq 0.04170 \ldots
$$

and

$$
0.01960 \ldots \leq \inf _{\xi \neq 0} \limsup _{n \rightarrow \infty}\left\{\xi \theta_{2}^{n}\right\} \leq 0.04219 \ldots
$$

By using Theorems 2.3 and 2.4, we obtain

$$
0.02003 \ldots \leq \inf _{\xi \neq 0} \limsup _{n \rightarrow \infty}\left\{\xi \theta_{1}^{n}\right\} \leq 0.02127 \ldots
$$

and

$$
0.02049 \ldots \leq \inf _{\xi \neq 0} \limsup _{n \rightarrow \infty}\left\{\xi \theta_{2}^{n}\right\} \leq 0.02941 \ldots
$$

respectively. In particular, Theorem 2.4 gives improvements of (1.5) in these cases.
In the case of $\alpha=\theta_{2}$, we calculate δ_{2} in the following way. If $l \leq 0$, then

$$
\eta_{l}=\frac{\alpha^{l}}{\left(1-\alpha^{-1} \alpha_{2}\right)\left(1-\alpha^{-1} \alpha_{3}\right)}
$$

otherwise,

$$
\begin{aligned}
\eta_{l} & \leq \sum_{i=0}^{\infty} \alpha^{-i} \rho_{i}\left(\alpha_{2}, \alpha_{3}\right) \rho_{l}\left(\alpha_{2}, \alpha_{3}\right) \\
& =\frac{\rho_{l}\left(\alpha_{2}, \alpha_{3}\right)}{\left(1-\alpha^{-1} \alpha_{2}\right)\left(1-\alpha^{-1} \alpha_{3}\right)}
\end{aligned}
$$

Thus, we obtain

$$
\delta_{2}=\frac{1}{2 \alpha\left(1-\alpha^{-1} \alpha_{2}\right)\left(1-\alpha^{-1} \alpha_{3}\right)}
$$

Let us show that Theorem 2.4 gives the best result in the case where α is a Pisot number satisfying $\delta_{1} \geq \delta_{2}$.

THEOREM 2.5. Let α be a Pisot number. We denote the conjugates of α by $\alpha_{1}=\alpha, \alpha_{2}, \ldots, \alpha_{d}$. Suppose that all α_{j} are positive. Let δ_{1}, δ_{2} be defined as in Theorem 2.4. Assume further $\delta_{1} \geq \delta_{2}$. Then

$$
\inf _{\xi \notin \mathbb{Q}(\alpha)} \limsup _{n \rightarrow \infty}\left\{\xi \alpha^{n}\right\}=\delta_{2} .
$$

Moreover, the infimum is attained by the transcendental number

$$
\xi_{0}(\alpha)=\frac{1}{\alpha \prod_{j=2}^{d}\left(1-\alpha^{-1} \alpha_{j}\right)} \sum_{m=1}^{\infty} \alpha^{-m!}
$$

By applying Theorem 2.5 in the case where α is a quadratic Pisot number, we obtain the following:

COROLLARY 2.6. Let α be a quadratic Pisot number with the conjugate α_{2}. Assume that $0<\alpha_{2}<2-\sqrt{2}(=0.5857 \ldots)$. Then

$$
\inf _{\xi \notin \mathbb{Q}(\alpha)} \limsup _{n \rightarrow \infty}\left\{\xi \alpha^{n}\right\}=\frac{1}{\alpha-\alpha_{2}}
$$

Moreover, the infimum is attained by the transcendental number

$$
\xi_{0}(\alpha)=\frac{1}{\alpha-\alpha_{2}} \sum_{m=1}^{\infty} \alpha^{-m!}
$$

Example 2.5. Let $\theta_{4}=2+\sqrt{3}(=3.732 \cdots)$. Then the conjugate θ_{4}^{\prime} satisfies $0<\theta_{4}^{\prime}<2-\sqrt{2}$. Thus Corollary 2.6 implies

$$
\inf _{\xi \notin \mathbb{Q}\left(\theta_{4}\right)} \limsup _{n \rightarrow \infty}\left\{\xi \theta_{4}^{n}\right\}=\frac{1}{2 \sqrt{3}}=0.2886 \ldots
$$

3 Symmetric homogeneous polynomials

Let us introduce basic results of the symmetric polynomials $\rho_{m}\left(X_{1}, \ldots, X_{t}\right)$ with $t, m \geq 0$ defined by (2.1). In this section we fix $t \geq 1$. The generating function of these polynomials is given by

$$
\begin{align*}
\sum_{m=0}^{\infty} \rho_{m}\left(X_{1}, \ldots, X_{t}\right) Y^{m} & =\sum_{m=0}^{\infty} \sum_{\substack{i_{1}, i_{2}, \ldots, i_{t} \geq 0 \\
i_{1}+i_{2}+\ldots+i_{t}=m}}\left(X_{1} Y\right)^{i_{1}}\left(X_{2} Y\right)^{i_{2}} \cdots\left(X_{t} Y\right)^{i_{t}} \\
& =\sum_{i_{1}, i_{2}, \ldots, i_{t} \geq 0}\left(X_{1} Y\right)^{i_{1}}\left(X_{2} Y\right)^{i_{2}} \cdots\left(X_{t} Y\right)^{i_{t}} \\
& =\frac{1}{\prod_{i=1}^{t}\left(1-X_{i} Y\right)} \tag{3.1}
\end{align*}
$$

Therefore

$$
\left(\sum_{m=0}^{\infty} \rho_{m}\left(X_{1}, \ldots, X_{t}\right) Y^{m}\right) \prod_{i=1}^{t}\left(1-X_{i} Y\right)=1
$$

and so, for $m \geq 1$,

$$
\begin{equation*}
\sum_{h=0}^{\min \{m, t\}}(-1)^{h} \rho_{m-h}\left(X_{1}, \ldots, X_{t}\right) e_{h}\left(X_{1}, \ldots, X_{t}\right)=0 \tag{3.2}
\end{equation*}
$$

where $e_{h}\left(X_{1}, \ldots, X_{t}\right)$ is the elementary symmetric polynomial of degree h, namely,

$$
e_{h}\left(X_{1}, \ldots, X_{t}\right)=\left\{\begin{array}{cc}
1 & (h=0) \tag{3.3}\\
\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{h} \leq t} X_{i_{1}} X_{i_{2}} \cdots X_{i_{h}} & (h \geq 1) .
\end{array}\right.
$$

The following result is Lemma 3.1 of [10]:
LEMMA 3.1. If $t \geq 1$, then

$$
\begin{equation*}
\rho_{m}\left(X_{1}, \ldots, X_{t}\right)=\sum_{i=1}^{t}\left(\prod_{\substack{1 \leq j \leq t \\ j \neq i}} \frac{1}{X_{i}-X_{j}}\right) X_{i}^{m+t-1} \tag{3.4}
\end{equation*}
$$

for any $m \geq 0$.
Let us define $\rho_{m}\left(X_{1}, \ldots, X_{t}\right)$ also for a negative integer m by (3.4). Then we have the following:

LEMMA 3.2. If $t \geq 1$ and if $-t+1 \leq l \leq-1$, then

$$
\rho_{l}\left(X_{1}, \ldots, X_{t}\right)=0
$$

Proof. Put

$$
g_{m}\left(X_{1}, \ldots, X_{t}\right)=\sum_{h=0}^{t}(-1)^{h} \rho_{m-h}\left(X_{1}, \ldots, X_{t}\right) e_{h}\left(X_{1}, \ldots, X_{t}\right)
$$

for $m \in \mathbb{Z}$. Then, by Lemma 3.1, there exist rational functions $b_{i}\left(X_{1}, \ldots, X_{t}\right) \in$ $\mathbb{Q}\left(X_{1}, \ldots, X_{t}\right)$ with $1 \leq i \leq t$ such that

$$
g_{m}\left(X_{1}, \ldots, X_{t}\right)=\sum_{i=1}^{t} b_{i}\left(X_{1}, \ldots, X_{t}\right) X_{i}^{m}
$$

If $m \geq t$, then $g_{m}\left(X_{1}, \ldots, X_{t}\right)=0$ by (3.2). Thus $b_{i}\left(X_{1}, \ldots, X_{t}\right)=0$ for any i with $1 \leq i \leq t$ and so

$$
\begin{equation*}
g_{m}\left(X_{1}, \ldots, X_{t}\right)=0 \tag{3.5}
\end{equation*}
$$

for every $m \in \mathbb{Z}$.
In the case of $1 \leq m \leq t-1$, by combining (3.2) and (3.5), we get

$$
\begin{align*}
0 & =\sum_{h=m+1}^{t}(-1)^{h} \rho_{m-h}\left(X_{1}, \ldots, X_{t}\right) e_{h}\left(X_{1}, \ldots, X_{t}\right) \\
& =\sum_{h=m-t}^{-1}(-1)^{m-h} e_{m-h}\left(X_{1}, \ldots, X_{t}\right) \rho_{h}\left(X_{1}, \ldots, X_{t}\right) \tag{3.6}
\end{align*}
$$

We now show Lemma 3.2 by induction on l. In the case of $l=-1$, we can deduce $\rho_{-1}\left(X_{1}, \ldots, X_{t}\right)=0$ by substituting $m=t-1$ into (3.6). Next, assume for l with $-t+1 \leq l \leq-2$ that

$$
\rho_{-1}\left(X_{1}, \ldots, X_{t}\right)=\cdots=\rho_{l+1}\left(X_{1}, \ldots, X_{t}\right)=0
$$

Then, by substituting $m=t+l$ into (3.6), we obtain

$$
\rho_{l}\left(X_{1}, \ldots, X_{t}\right)=0
$$

4 Representation of fractional parts

Let us recall the relation of the decimal expansion of a real number ξ to the fractional parts of the geometric sequence $\xi 10^{n}(n=0,1, \ldots)$. For simplicity, assume $0<\xi<1$. We now write the decimal expansion of ξ by $\sum_{i=1}^{\infty} s_{-i}(10 ; \xi) 10^{-i}$ with $0 \leq s_{-i}(10 ; \xi) \leq 9$. Then

$$
\begin{equation*}
\left\{\xi 10^{n}\right\}=\sum_{i=1}^{\infty} s_{-i-n}(10 ; \xi) 10^{-i}(n=0,1, \ldots) \tag{4.1}
\end{equation*}
$$

Note that the right-hand side of (4.1) is expressed by the iteration of the shift operator to the sequence $\left(s_{-i}(10 ; \xi)\right)_{i=1}^{\infty}$.

In this section, we give an analogue of the decimal numeral system to calculate powers of algebraic numbers; we represent the integral and fractional parts
by using the symmetric polynomials ρ_{m} defined in the previous section. Let $\alpha>1$ be an algebraic number with minimal polynomial $a_{d} X^{d}+\cdots+a_{0} \in$ $\mathbb{Z}[X]\left(a_{d}>0\right)$. In what follows, we assume that α has no conjugate with absolute value 1 . Let p be the number of the conjugates of α whose absolute values are greater than 1. Moreover, we write the conjugates of α by $\alpha_{1}=\alpha, \ldots, \alpha_{p}, \alpha_{1+p}, \ldots, \alpha_{d}$, where

$$
\left|\alpha_{i}\right|>1(i=1, \ldots, p)
$$

and

$$
\left|\alpha_{j}\right|<1(j=1+p, \ldots, d)
$$

We define the m-th digit of a real number ξ by

$$
s_{m}(\alpha ; \xi)=a_{d}\left[\xi \alpha^{-m}\right]+a_{d-1}\left[\xi \alpha^{-m-1}\right]+\cdots+a_{0}\left[\xi \alpha^{-m-d}\right] .
$$

For instance, if $\alpha=10$ and if $\xi \geq 0$, then the m-th digit is

$$
s_{m}(10 ; \xi)=\left[\xi 10^{-m}\right]-10\left[\xi 10^{-m-1}\right]
$$

which coincides with the usual decimal digit. Let us call $\left(s_{m}(\alpha ; \xi)\right)_{m=-\infty}^{\infty}$ the digital sequence of ξ. We now introduce some easy consequences from the definition.
LEMMA 4.1. (1) If $\xi \geq 0$, then $s_{m}(\alpha ; \xi)=0$ for sufficiently large m.
(2) For any integer m,

$$
-L_{+}(\alpha)<s_{m}(\alpha ; \xi)<L_{-}(\alpha)
$$

Proof. The first statement is obvious. Note that $a_{d}>0$ and $\min \left\{a_{d}, \ldots, a_{0}\right\}<$ 0 . The second statement is obtained by

$$
s_{m}(\alpha ; \xi)+\sum_{i=0}^{d} a_{d-i}\left\{\xi \alpha^{-m-i}\right\}=\xi \alpha^{-m-d} \sum_{i=0}^{d} a_{d-i} \alpha^{d-i}=0
$$

and $0 \leq\left\{\xi \alpha^{-m-i}\right\}<1$ for any i with $0 \leq i \leq d$.
PROPOSITION 4.1. (1) If $\xi \geq 0$, then the integral part $\left[\xi \alpha^{n}\right]$ and fractional part $\left\{\xi \alpha^{n}\right\}$ are given by

$$
\begin{equation*}
\left[\xi \alpha^{n}\right]=\frac{1}{a_{d}} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \rho_{i}\left(\alpha_{1}, \ldots, \alpha_{p}\right) \rho_{j}\left(\alpha_{1+p}, \ldots, \alpha_{d}\right) s_{i+j-n}(\alpha ; \xi) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\xi \alpha^{n}\right\}=\frac{1}{a_{d}} \sum_{i=-\infty}^{-1} \sum_{j=0}^{\infty} \rho_{i}\left(\alpha_{1}, \ldots, \alpha_{p}\right) \rho_{j}\left(\alpha_{1+p}, \ldots, \alpha_{d}\right) s_{i+j-n}(\alpha ; \xi) \tag{4.3}
\end{equation*}
$$

respectively. In particular,

$$
\begin{equation*}
\xi \alpha^{n}=\frac{1}{a_{d}} \sum_{i=-\infty}^{\infty} \sum_{j=0}^{\infty} \rho_{i}\left(\alpha_{1}, \ldots, \alpha_{p}\right) \rho_{j}\left(\alpha_{1+p}, \ldots, \alpha_{d}\right) s_{i+j-n}(\alpha ; \xi) \tag{4.4}
\end{equation*}
$$

(2) If $\xi<0$, then the representation of fractional part (4.3) holds.

REMARK 4.1. Let $\xi \geq 0$. Then, by the first statement of Lemma 4.1, the right-hand side of (4.2) is a finite sum.

Now note that the sequence $\left(s_{m}(\alpha ; \xi)\right)_{m=-\infty}^{\infty}$ is bounded by the second statement of Lemma 4.1 and that the series

$$
\sum_{i=-\infty}^{-1} \sum_{j=0}^{\infty} \alpha_{h}^{i} \alpha_{l}^{j}
$$

converges for every h, l with $1 \leq h \leq p, 1+p \leq l \leq d$. Thus, by using Lemma 3.1, we conclude that the right-hand side of (4.3) converges.

REMARK 4.2. Let $M(\alpha)=a_{d}\left|\alpha_{1} \cdots \alpha_{p}\right|$ be the Mahler measure of α and put

$$
\sigma(\alpha)=(-1)^{p-1} \frac{a_{d} \alpha_{1} \cdots \alpha_{p}}{M(\alpha)} \in\{1,-1\} .
$$

Then by Lemma 3.2 and

$$
\begin{aligned}
\rho_{i}\left(\alpha_{1}, \ldots, \alpha_{p}\right) & =\sum_{l=1}^{p}\left(\prod_{\substack{1 \leq h \leq p \\
h \neq l}} \frac{-\alpha_{l}^{-1} \alpha_{h}^{-1}}{\alpha_{l}^{-1}-\alpha_{h}^{-1}}\right) \alpha_{l}^{i+p-1} \\
& =(-1)^{p-1}\left(\prod_{h=1}^{p} \alpha_{h}^{-1}\right) \rho_{-i-p}\left(\alpha_{1}^{-1}, \ldots, \alpha_{p}^{-1}\right)
\end{aligned}
$$

the representation (4.3) is rewritten by

$$
\begin{equation*}
\left\{\xi \alpha^{n}\right\}=\frac{\sigma(\alpha)}{M(\alpha)} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \rho_{i}\left(\alpha_{1}^{-1}, \ldots, \alpha_{p}^{-1}\right) \rho_{j}\left(\alpha_{1+p}, \ldots, \alpha_{d}\right) s_{j-i-n-p}(\alpha ; \xi) \tag{4.5}
\end{equation*}
$$

Moreover, if $\xi \geq 0$, then

$$
\begin{equation*}
\left[\xi \alpha^{n}\right]=\frac{1}{a_{d}} \sum_{i=0}^{\infty} \rho_{i}\left(\alpha_{1}, \ldots, \alpha_{d}\right) s_{i-n}(\alpha ; \xi) \tag{4.6}
\end{equation*}
$$

by using (2.1).
Proof of Proposition 4.1. It suffices to check (4.5) and (4.6). We put

$$
q=d-p, \boldsymbol{a}=\left(\alpha_{1}, \ldots, \alpha_{p}\right), \text { and } \boldsymbol{b}=\left(\alpha_{1+p}, \ldots, \alpha_{d}\right)
$$

Moreover, write

$$
\begin{aligned}
\boldsymbol{a} \cdot \boldsymbol{b} & =\left(\alpha_{1}, \ldots, \alpha_{p}, \alpha_{1+p}, \ldots, \alpha_{d}\right) \\
\boldsymbol{a}^{-1} & =\left(\alpha_{1}^{-1}, \ldots, \alpha_{p}^{-1}\right)
\end{aligned}
$$

For $h \geq 0$ and $t \geq 1$, let $e_{h}\left(X_{1}, \ldots, X_{t}\right)$ be defined by (3.3). By relations between coefficients and roots of a polynomial, we get

$$
\frac{1}{a_{d}} s_{m}(\alpha ; \xi)=\sum_{h=0}^{d}(-1)^{h} e_{h}(\boldsymbol{a} \cdot \boldsymbol{b})\left[\xi \alpha^{-m-h}\right]
$$

Thus, if $\xi \geq 0$, then

$$
\begin{aligned}
\frac{1}{a_{d}} \sum_{i=0}^{\infty} \rho_{i}(\boldsymbol{a} \cdot \boldsymbol{b}) s_{i-n}(\alpha ; \xi) & =\sum_{i=0}^{\infty} \sum_{h=0}^{d}(-1)^{h} e_{h}(\boldsymbol{a} \cdot \boldsymbol{b}) \rho_{i}(\boldsymbol{a} \cdot \boldsymbol{b})\left[\xi \alpha^{n-i-h}\right] \\
& =\sum_{l=0}^{\infty}\left[\xi \alpha^{n-l}\right] \sum_{h=0}^{\min \{l, d\}}(-1)^{h} \rho_{l-h}(\boldsymbol{a} \cdot \boldsymbol{b}) e_{h}(\boldsymbol{a} \cdot \boldsymbol{b}) \\
& =\left[\xi \alpha^{n}\right]
\end{aligned}
$$

where the last equality follows from (3.2).
Similarly, by

$$
s_{m}(\alpha ; \xi)=-\sum_{i=0}^{d} a_{d-i}\left\{\xi \alpha^{-m-i}\right\}
$$

and

$$
e_{m}(\boldsymbol{a})=\alpha_{1} \cdots \alpha_{p} e_{p-m}\left(\boldsymbol{a}^{-1}\right)(0 \leq m \leq p)
$$

we get

$$
\frac{1}{a_{d}} s_{m}(\alpha ; \xi)=-\sum_{h=0}^{d}(-1)^{h} e_{h}(\boldsymbol{a} \cdot \boldsymbol{b})\left\{\xi \alpha^{-m-h}\right\}
$$

If $q=0$, then $p=d$. Thus

$$
\frac{1}{a_{d}} s_{m}(\alpha ; \xi)=(-1)^{d-1} \alpha_{1} \alpha_{2} \cdots \alpha_{d} \sum_{h=0}^{d}(-1)^{h} e_{h}\left(\boldsymbol{a}^{-1}\right)\left\{\xi \alpha^{h-d-m}\right\}
$$

and so by (3.2)

$$
\begin{aligned}
\frac{\sigma(\alpha)}{M(\alpha)} & \sum_{i=0}^{\infty} \rho_{i}\left(\boldsymbol{a}^{-1}\right) s_{-i-n-d}(\alpha ; \xi) \\
& =\sum_{i=0}^{\infty} \sum_{h=0}^{d}(-1)^{h} e_{h}\left(\boldsymbol{a}^{-1}\right) \rho_{i}\left(\boldsymbol{a}^{-1}\right)\left\{\xi \alpha^{h+i+n}\right\}=\left\{\xi \alpha^{n}\right\}
\end{aligned}
$$

which implies (4.5).
In the case of $q \geq 1$, we have

$$
\begin{aligned}
\frac{1}{a_{d}} s_{m}(\alpha ; \xi) & =-\sum_{h=0}^{p} \sum_{l=0}^{q}(-1)^{h+l} e_{h}(\boldsymbol{a}) e_{l}(\boldsymbol{b})\left\{\xi \alpha^{-m-h-l}\right\} \\
& =(-1)^{p-1} \alpha_{1} \cdots \alpha_{p} \sum_{h=0}^{p} \sum_{l=0}^{q}(-1)^{h+l} e_{h}\left(\boldsymbol{a}^{-1}\right) e_{l}(\boldsymbol{b})\left\{\xi \alpha^{h-p-l-m}\right\} .
\end{aligned}
$$

Thus by using (3.2) we obtain

$$
\begin{aligned}
\frac{\sigma(\alpha)}{M(\alpha)} & \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \rho_{i}\left(\boldsymbol{a}^{-1}\right) \rho_{j}(\boldsymbol{b}) s_{j-i-n-p}(\alpha ; \xi) \\
& =\sum_{i=0}^{\infty} \sum_{h=0}^{p} \sum_{j=0}^{\infty} \sum_{l=0}^{q}(-1)^{h} e_{h}\left(\boldsymbol{a}^{-1}\right) \rho_{i}\left(\boldsymbol{a}^{-1}\right)(-1)^{l} e_{l}(\boldsymbol{b}) \rho_{j}(\boldsymbol{b})\left\{\xi \alpha^{h+i+n-j-l}\right\} \\
& =\sum_{i=0}^{\infty} \sum_{h=0}^{p}(-1)^{h} e_{h}\left(\boldsymbol{a}^{-1}\right) \rho_{i}\left(\boldsymbol{a}^{-1}\right)\left\{\xi \alpha^{h+i+n}\right\}=\left\{\xi \alpha^{n}\right\} .
\end{aligned}
$$

Example 4.1. Let α be a rational number a / b, where $a>b>0$ and $\operatorname{gcd}(a, b)=$ 1. Then Proposition 4.1 implies

$$
\begin{aligned}
{\left[\xi\left(\frac{a}{b}\right)^{n}\right] } & =\frac{1}{b} \sum_{i=0}^{\infty}\left(\frac{a}{b}\right)^{i} s_{i-n}\left(\frac{a}{b} ; \xi\right) \\
\left\{\xi\left(\frac{a}{b}\right)^{n}\right\} & =\frac{1}{b} \sum_{i=-\infty}^{-1}\left(\frac{a}{b}\right)^{i} s_{i-n}\left(\frac{a}{b} ; \xi\right)
\end{aligned}
$$

for $\xi \geq 0$. This is the companion representation of ξ, which is written in [1].
Example 4.2. Let $\alpha>1$ be a quadratic irrational number. We assume $p=1$. Then by Proposition 4.1

$$
\begin{aligned}
{\left[\xi \alpha^{n}\right] } & =\frac{1}{a_{2}} \sum_{i=0}^{\infty} \rho_{i}\left(\alpha, \alpha_{2}\right) s_{i-n}(\alpha ; \xi) \\
\left\{\xi \alpha^{n}\right\} & =\frac{1}{a_{2} \alpha} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \alpha^{-i} \alpha_{2}^{j} s_{j-i-n-1}(\alpha ; \xi) \\
& =\frac{1}{a_{2}\left(\alpha-\alpha_{2}\right)} \sum_{h=-\infty}^{\infty} \alpha^{\min \{0, h\}} \alpha_{2}^{\max \{0, h\}} s_{h-n-1}(\alpha ; \xi)
\end{aligned}
$$

5 Digital sequences

Let $\alpha>1$ be an algebraic number with no conjugate whose absolute value is 1 . We use the same notation as in the previous section. We observed for a nonnegative ξ that the integral part $\left[\xi \alpha^{n}\right]$ and the fractional part $\left\{\xi \alpha^{n}\right\}$ are written by the digital sequence $\left(s_{m}(\alpha ; \xi)\right)_{m=-\infty}^{\infty}$. We now characterize this sequence by considering the generating function of $\left[\xi \alpha^{n}\right]$ and $\left\{\xi \alpha^{n}\right\}(n=0,1, \ldots)$. Recall that if $\xi \geq 0$, then $s_{m}(\alpha ; \xi)=0$ for any sufficiently large m.

PROPOSITION 5.1. Let ξ be a nonnegative number.
(1) For any integer n, the finite sum

$$
\frac{1}{a_{d}} \sum_{i=0}^{\infty} \rho_{i}\left(\alpha_{1}, \ldots, \alpha_{d}\right) s_{i-n}(\alpha ; \xi)
$$

is a rational integer.
(2) If $2 \leq k \leq p$, then

$$
\sum_{i=-\infty}^{\infty} \alpha_{k}^{i} s_{i}(\alpha ; \xi)=0
$$

Proof. The first statement is obvious by Proposition 4.1. Now we prove the second one. Since $s_{m}\left(\alpha ; \alpha^{-1} \xi\right)=s_{m+1}(\alpha ; \xi)$, we may assume $\left[\xi \alpha^{m}\right]=0$ for any $m<0$. Put

$$
f(z)=\sum_{n=0}^{\infty}\left[\xi \alpha^{n}\right] z^{n}, g(z)=\sum_{n=0}^{\infty}\left\{\xi \alpha^{n}\right\} z^{n} .
$$

Then we have

$$
\frac{\xi}{1-\alpha z}-g(z)=f(z)
$$

Let $P_{\alpha}^{*}(z)=a_{0} z^{d}+a_{1} z^{d-1}+\cdots+a_{d}$. Thus we get

$$
\begin{aligned}
\left(\frac{\xi}{1-\alpha z}-g(z)\right) P_{\alpha}^{*}(z) & =f(z) P_{\alpha}^{*}(z) \\
& =\sum_{h=0}^{\infty} \sum_{\substack{i, j \geq 0 \\
i+j=h}}\left[\xi \alpha^{i}\right] a_{d-j} z^{h} \\
& =\sum_{h=0}^{\infty} \sum_{i=h-d}^{h}\left[\xi \alpha^{i}\right] a_{d-h+i} z^{h}=\sum_{h=0}^{\infty} s_{-h}(\alpha ; \xi) z^{h}
\end{aligned}
$$

Consider the region of $z \in \mathbb{C}$ satisfying

$$
\begin{equation*}
\left(\frac{\xi}{1-\alpha z}-g(z)\right) P_{\alpha}^{*}(z)=\sum_{h=0}^{\infty} s_{-h}(\alpha ; \xi) z^{h} \tag{5.1}
\end{equation*}
$$

Since $0 \leq\left\{\xi \alpha^{n}\right\}<1$ for any n, the left-hand side of (5.1) is a meromorphic function on $\left\{z \in \mathbb{C}||z|<1\}\right.$. Moreover, because the sequence $s_{-h}(\alpha ; \xi)$ ($h=$ $0,1, \ldots$) is bounded, the right-hand side of (5.1) converges for $|z|<1$. Hence (5.1) holds for $|z|<1$. In particular, since the left-hand side of (5.1) has a zero at $z=\alpha_{k}^{-1}$ with $2 \leq k \leq p$, we obtain

$$
0=\sum_{i=0}^{\infty} \alpha_{k}^{-i} s_{-i}(\alpha ; \xi)=\sum_{i=-\infty}^{\infty} \alpha_{k}^{i} s_{i}(\alpha ; \xi)
$$

The decimal numeral system gives the correspondence between nonnegative numbers and sequences of digits $0,1, \ldots, 9$. In what follows, we show that sequences satisfying the assumptions of Proposition 5.1 represents the fractional parts of certain geometric progressions.

PROPOSITION 5.2. Let $\boldsymbol{x}=\left(x_{m}\right)_{m=-\infty}^{\infty}$ be a bounded sequence of integers. Assume that $x_{m}=0$ for all sufficiently large m. Suppose further that

$$
\begin{equation*}
\sum_{i=-\infty}^{\infty} \alpha_{k}^{i} x_{i}=0 \tag{5.2}
\end{equation*}
$$

for any k with $2 \leq k \leq p$ and that the finite sum

$$
\begin{equation*}
\frac{1}{a_{d}} \sum_{i=0}^{\infty} \rho_{i}\left(\alpha_{1}, \ldots, \alpha_{d}\right) x_{i-n} \tag{5.3}
\end{equation*}
$$

is a rational integer for any n. Let

$$
\begin{equation*}
\xi=\xi(\boldsymbol{x})=\frac{1}{a_{d}} \sum_{i=-\infty}^{\infty} \sum_{j=0}^{\infty} \rho_{i}\left(\alpha_{1}, \ldots, \alpha_{p}\right) \rho_{j}\left(\alpha_{1+p}, \ldots, \alpha_{d}\right) x_{i+j} \tag{5.4}
\end{equation*}
$$

Then for any n

$$
\begin{equation*}
\xi \alpha^{n}=\frac{1}{a_{d}} \sum_{i=-\infty}^{\infty} \sum_{j=0}^{\infty} \rho_{i}\left(\alpha_{1}, \ldots, \alpha_{p}\right) \rho_{j}\left(\alpha_{1+p}, \ldots, \alpha_{d}\right) x_{i+j-n} \tag{5.5}
\end{equation*}
$$

In particular,

$$
\xi \alpha^{n} \equiv \frac{1}{a_{d}} \sum_{i=-\infty}^{-1} \sum_{j=0}^{\infty} \rho_{i}\left(\alpha_{1}, \ldots, \alpha_{p}\right) \rho_{j}\left(\alpha_{1+p}, \ldots, \alpha_{d}\right) x_{i+j-n} \quad \bmod \mathbb{Z}
$$

REMARK 5.1. Let n be an integer. Then, since $x_{m}=0$ for all sufficiently large m, the series

$$
\begin{aligned}
& \frac{1}{a_{d}} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \rho_{i}\left(\alpha_{1}, \ldots, \alpha_{p}\right) \rho_{j}\left(\alpha_{1+p}, \ldots, \alpha_{d}\right) x_{i+j-n} \\
& \quad=\frac{1}{a_{d}} \sum_{i=0}^{\infty} \rho_{i}\left(\alpha_{1}, \ldots, \alpha_{d}\right) x_{i-n}
\end{aligned}
$$

is a finite sum. By using Lemma 3.1, we also deduce that the series

$$
\frac{1}{a_{d}} \sum_{i=-\infty}^{-1} \sum_{j=0}^{\infty} \rho_{i}\left(\alpha_{1}, \ldots, \alpha_{p}\right) \rho_{j}\left(\alpha_{1+p}, \ldots, \alpha_{d}\right) x_{i+j-n}
$$

converges.
Proof. Since (5.3) is a rational integer, it suffices to check (5.5). By using (3.4) and (5.2), we get

$$
\begin{aligned}
\xi & =\frac{1}{a_{d}} \sum_{j=0}^{\infty} \rho_{j}\left(\alpha_{1+p}, \ldots, \alpha_{d}\right) \sum_{h=-\infty}^{\infty} \rho_{h-j}\left(\alpha_{1}, \ldots, \alpha_{p}\right) x_{h} \\
& =\frac{1}{a_{d}} \sum_{j=0}^{\infty} \rho_{j}\left(\alpha_{1+p}, \ldots, \alpha_{d}\right) \sum_{h=-\infty}^{\infty}\left(\prod_{l=2}^{p} \frac{1}{\alpha-\alpha_{l}}\right) \alpha^{h-j+p-1} x_{h}
\end{aligned}
$$

Thus we get

$$
\begin{aligned}
\xi \alpha^{n} & =\frac{1}{a_{d}} \sum_{j=0}^{\infty} \rho_{j}\left(\alpha_{1+p}, \ldots, \alpha_{d}\right) \sum_{h=-\infty}^{\infty}\left(\prod_{l=2}^{p} \frac{1}{\alpha-\alpha_{l}}\right) \alpha^{n+h-j+p-1} x_{h} \\
& =\frac{1}{a_{d}} \sum_{j=0}^{\infty} \rho_{j}\left(\alpha_{1+p}, \ldots, \alpha_{d}\right) \sum_{h=-\infty}^{\infty} \rho_{h-j}\left(\alpha_{1}, \ldots, \alpha_{p}\right) x_{h-n} \\
& =\frac{1}{a_{d}} \sum_{i=-\infty}^{\infty} \sum_{j=0}^{\infty} \rho_{i}\left(\alpha_{1}, \ldots, \alpha_{p}\right) \rho_{j}\left(\alpha_{1+p}, \ldots, \alpha_{d}\right) x_{i+j-n}
\end{aligned}
$$

REMARK 5.2. $\xi(\boldsymbol{x})$ defined by Proposition 5.2 is not necessarily a nonnegative number.

In the end of this section, we introduce a lemma which we use to prove Corollary 2.2 and the first statement of Theorem 2.3.

LEMMA 5.1. Let $\left(u_{m}\right)_{m=-d}^{\infty}$ and $\left(y_{m}\right)_{m=0}^{\infty}$ be sequences of integers. Assume that $\left(u_{m}\right)_{m=-d}^{\infty}$ is not ultimately periodic and that $\left(y_{m}\right)_{m=0}^{\infty}$ is ultimately periodic. Suppose further

$$
y_{m}=a_{d} u_{m}+a_{d-1} u_{m-1}+\cdots+a_{0} u_{m-d}
$$

for any $m \geq 0$. Then $a_{d}=1$, namely, α is an algebraic integer.
For the proof of Lemma 5.1, we begin with Lemma 1 of [5] which is rewritten from [4]:

LEMMA 5.2. If $P(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots+a_{0}=a_{d}\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in$ $\mathbb{C}[x]$ has distinct roots and

$$
X_{1} \alpha_{1}^{j}+\cdots+X_{d} \alpha_{d}^{j}=Z_{j}, j=0,1, \ldots, d-1
$$

then, for $j=1,2, \ldots, d$,

$$
X_{j}=\frac{1}{P^{\prime}\left(\alpha_{j}\right)} \sum_{k=0}^{d-1} \beta_{j, k} Z_{k}
$$

where

$$
\beta_{j, k}=\sum_{l=k+1}^{d} a_{l} \alpha_{j}^{l-k-1} .
$$

Proof of Lemma 5.1. Assume that $a_{d} \geq 2$. Write the period of the sequence $\left(y_{m}\right)_{m=0}^{\infty}$ by T. Put $w_{n}=u_{n+T}-u_{n}$. If n is sufficiently large, then $y_{n+T}=y_{n}$ and so

$$
a_{d} w_{n}+a_{d-1} w_{n-1}+\cdots+a_{0} w_{n-d}=0
$$

Hence, there are a natural number n_{0} and complex numbers ξ_{1}, \ldots, ξ_{d} such that, for any $n \geq n_{0}$,

$$
\begin{equation*}
w_{n}=\xi_{1} \alpha_{1}^{n}+\cdots+\xi_{d} \alpha_{d}^{n} \tag{5.6}
\end{equation*}
$$

Let $m \geq n_{0}$. Apply Lemma 5.2 to the linear system

$$
X_{1} \alpha_{1}^{n-m}+\cdots+X_{d} \alpha_{d}^{n-m}=w_{n}, n=m, m+1, \ldots, m+d-1
$$

with variables $X_{j}=\xi_{j} \alpha_{j}^{m}, j=1,2, \ldots, d$. Thus we get

$$
\begin{equation*}
P_{\alpha}^{\prime}\left(\alpha_{j}\right) \xi_{j} \alpha_{j}^{m}=G_{m}\left(\alpha_{j}\right) \tag{5.7}
\end{equation*}
$$

for each $j=1,2, \ldots, d$, where G_{m} is an integer polynomial of degree at most $d-1$.

Now suppose that $\xi_{1}=0$. By (5.7), ξ_{1}, \ldots, ξ_{d} are algebraic numbers and conjugate over \mathbb{Q}. Therefore, $\xi_{1}=\cdots=\xi_{d}=0$. By (5.6) we have $w_{n}=$ $u_{n+T}-u_{n}=0$ for $n \geq n_{0}$. This is impossible since $\left(u_{m}\right)_{m=-d}^{\infty}$ is not ultimately periodic. Finally we obtain $\xi_{1} \neq 0$.

Take a nonzero integer R for which

$$
\frac{R}{P_{\alpha}^{\prime}(\alpha) \xi_{1}}, \frac{R \alpha}{P_{\alpha}^{\prime}(\alpha) \xi_{1}}, \ldots, \frac{R \alpha^{d-1}}{P_{\alpha}^{\prime}(\alpha) \xi_{1}}
$$

are algebraic integers. Then $R \alpha^{m}=\left(R G_{m}(\alpha)\right) /\left(P_{\alpha}^{\prime}(\alpha) \xi_{1}\right)$ is an algebraic integer for every sufficiently large m. However, by considering the factorization of $R \alpha^{m}$ into prime ideals, we see that this is impossible since α is not an algebraic integer.

6 Proof of the main results

Proof of Theorem 2.1. Let $a_{d} X^{d}+\cdots+a_{0} \in \mathbb{Z}[X]$ be the minimal polynomial of α. Define the sequences $\left(u_{m}\right)_{m=-d}^{\infty}$ and $\left(y_{m}\right)_{m=0}^{\infty}$ by

$$
\begin{aligned}
u_{-d} & =u_{-d+1}=\cdots=u_{-1}=0 \\
u_{0} & =1, y_{0}=a_{d}
\end{aligned}
$$

and, for $m \geq 1$,

$$
\begin{aligned}
& u_{m}=-\left[\frac{a_{d-1} u_{m-1}+\cdots+a_{0} u_{m-d}}{a_{d}}\right] \\
& y_{m}=a_{d}\left\{\frac{a_{d-1} u_{m-1}+\cdots+a_{0} u_{m-d}}{a_{d}}\right\} .
\end{aligned}
$$

Then we have

$$
y_{m}=a_{d} u_{m}+a_{d-1} u_{m-1}+\cdots+a_{0} u_{m-d}
$$

for any $m \geq 0$. Moreover, $y_{m} \in\left\{0,1, \ldots, a_{d}-1\right\}$ for $m \geq 1$.
Put

$$
f(z)=\sum_{n=0}^{\infty} y_{n} z^{n}, g(z)=\sum_{n=0}^{\infty} u_{n} z^{n}
$$

and so

$$
\begin{aligned}
f(z) & =\left(a_{d}+a_{d-1} z+\cdots+a_{0} z^{d}\right) g(z) \\
& =a_{d}(1-\alpha z) \prod_{i=2}^{d}\left(1-\alpha_{i} z\right) g(z) .
\end{aligned}
$$

Therefore, by using (3.1) we get

$$
\begin{aligned}
g(z) & =\frac{1}{a_{d}} \sum_{i=0}^{\infty} y_{i} z^{i} \sum_{j=0}^{\infty} \rho_{j}\left(\alpha, \alpha_{2}, \ldots, \alpha_{d}\right) z^{j} \\
& =\frac{1}{a_{d}} \sum_{n=0}^{\infty} \sum_{\substack{i+j \geq 0 \\
i+j=n}} y_{i} \rho_{j}\left(\alpha, \alpha_{2}, \ldots, \alpha_{d}\right) z^{n} .
\end{aligned}
$$

We now define the two-sided sequence $\boldsymbol{x}=\left(x_{m}\right)_{m=-\infty}^{\infty}$ as follows:

$$
x_{m}=\left\{\begin{array}{cc}
0 & (m>0) \\
y_{-m} & (m \leq 0) .
\end{array}\right.
$$

Then \boldsymbol{x} satisfies the assumptions of Proposition 5.2. In fact, if $n<0$, then (5.3) is zero. In the case where $n \geq 0$,

$$
\frac{1}{a_{d}} \sum_{i=0}^{\infty} \rho_{i}\left(\alpha, \alpha_{2}, \ldots, \alpha_{d}\right) x_{i-n}=u_{n}
$$

is a rational integer. Moreover, (5.2) clearly holds since $p=1$. Put

$$
v_{n}=\frac{1}{a_{d}} \sum_{i=-\infty}^{-1} \sum_{j=0}^{\infty} \alpha^{i} \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right) x_{i+j-n}
$$

for integer n. Then Proposition 5.2 implies

$$
\begin{equation*}
\xi(\boldsymbol{x}) \alpha^{n}=u_{n}+v_{n} \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi(\boldsymbol{x}) \alpha^{n} \equiv v_{n} \bmod \mathbb{Z} \tag{6.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\xi(\boldsymbol{x}) & =\frac{1}{a_{d}} \sum_{i=-\infty}^{\infty} \sum_{j=0}^{\infty} \alpha^{i} \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right) x_{i+j} \\
& =\frac{1}{a_{d}} \sum_{j=0}^{\infty} \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right) \alpha^{-j} \sum_{h=-\infty}^{\infty} x_{h} \alpha^{h} \\
& =\frac{1}{a_{d}} \sum_{j=0}^{\infty} \rho_{j}\left(\alpha^{-1} \alpha_{2}, \ldots, \alpha^{-1} \alpha_{d}\right) \sum_{h=-\infty}^{0} x_{h} \alpha^{h} \\
& =\frac{1}{a_{d} \prod_{i=2}^{d}\left(1-\alpha^{-1} \alpha_{i}\right)} \sum_{h=-\infty}^{0} x_{h} \alpha^{h}
\end{aligned}
$$

Thus $\xi(\boldsymbol{x}) \neq 0$ since $x_{0}=a_{d}$ and $x_{m} \geq 0$ for $m \leq-1$. Since $0 \leq x_{m} \leq a_{d}-1$ for $m \leq-1$ and since

$$
\lim _{n \rightarrow \infty} \frac{1}{a_{d}} \sum_{\substack{i<0, j \geq 0 \\ i+j=n}} \alpha^{i} \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right) x_{0}=0
$$

every limit point of the sequence $\left(v_{m}\right)_{m=0}^{\infty}$ is denoted by

$$
v^{\prime}=\frac{1}{a_{d}} \sum_{i=-\infty}^{-1} \sum_{j=0}^{\infty} \alpha^{i} \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right) \theta_{i, j}
$$

where $\theta_{i, j} \in\left\{0,1, \ldots, a_{d}-1\right\}$. Putting

$$
\begin{equation*}
\nu_{+}=\sum_{j=0}^{\infty} \max \left\{0, \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right)\right\} \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\nu_{-}=\sum_{j=0}^{\infty} \max \left\{0,-\rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right)\right\}, \tag{6.4}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
-\frac{a_{d}-1}{a_{d}(\alpha-1)} \nu_{-} \leq v^{\prime} \leq \frac{a_{d}-1}{a_{d}(\alpha-1)} \nu_{+} . \tag{6.5}
\end{equation*}
$$

By (6.2), (6.5) and $\nu=\nu_{+}+\nu_{-}$, we verified the theorem.
Proof of Corollary 2.2. We use the same notation as the proof of Theorem 2.1. In the case of $-1<\alpha_{2}<0$, the corollary follows from (6.5) and

$$
\nu_{+}=\frac{1}{1-\alpha_{2}^{2}}, \nu_{-}=-\frac{\alpha_{2}}{1-\alpha_{2}^{2}} .
$$

We now assume $0<\alpha_{2}<1$. Then v_{n} is rewritten by

$$
v_{n}=\frac{1}{a_{2}\left(\alpha-\alpha_{2}\right)} \sum_{h=-\infty}^{n+1} \alpha^{\min \{0, h\}} \alpha_{2}^{\max \{0, h\}} x_{h-n-1} .
$$

(6.5) implies that the sequence $\left(v_{m}\right)_{m=0}^{\infty}$ is bounded. On the other hand, by using (6.1) and $\xi(\boldsymbol{x}) \neq 0$, we deduce that the sequence $\left(u_{m}\right)_{m=-d}^{\infty}$ is not ultimately periodic. Thus, since $a_{2} \geq 2$, Lemma 5.1 means that the sequence $\left(x_{-m}\right)_{m=0}^{\infty}$ is not ultimately periodic. In particular, by $x_{m} \in\left\{0,1, \ldots, a_{2}-1\right\}(m \leq-1)$, there exists an $M>0$ with

$$
\begin{equation*}
x_{-M} \leq a_{2}-2 \tag{6.6}
\end{equation*}
$$

By (6.6) and $x_{0}=a_{2}$, if $n \geq M$, then

$$
\begin{aligned}
v_{n} \leq & \frac{1}{a_{2}\left(\alpha-\alpha_{2}\right)}\left(\sum_{\substack{h=-\infty \\
h \neq n+1, n+1-M}}^{\infty} \alpha^{\min \{0, h\}} \alpha_{2}^{\max \{0, h\}}\left(a_{2}-1\right)\right. \\
& \left.\quad+\alpha_{2}^{n+1} a_{2}+\alpha_{2}^{n+1-M}\left(a_{2}-2\right)\right) \\
= & \frac{1}{a_{2}\left(\alpha-\alpha_{2}\right)}\left(\left(a_{2}-1\right) \sum_{h=-\infty}^{\infty} \alpha^{\min \{0, h\}} \alpha_{2}^{\max \{0, h\}}+\alpha_{2}^{n+1}-\alpha_{2}^{n+1-M}\right) \\
& <\frac{a_{2}-1}{a_{2}(\alpha-1)\left(1-\alpha_{2}\right)}=\frac{a_{2}-1}{\left|P_{\alpha}(1)\right|}
\end{aligned}
$$

for $n \geq M$. By putting

$$
\xi^{\prime}=\xi(\boldsymbol{x}) \alpha^{M},
$$

we obtain

$$
\left\{\xi^{\prime} \alpha^{n}\right\}<\frac{a_{2}-1}{\left|P_{\alpha}(1)\right|}
$$

for any $n \geq 0$.
Proof of Theorem 2.3. For the proof of the first statement, we use the same notation as the proof of Theorem 2.1. If $d \geq 2$, then we may assume that $1>\alpha_{2}>\ldots>\alpha_{d}>0$. Then by using Lemma 3.1 we get

$$
\lim _{m \rightarrow \infty} \rho_{m}\left(\alpha_{2}, \ldots, \alpha_{d}\right) \alpha_{2}^{-m}=\prod_{j=3}^{d} \frac{\alpha_{2}}{\alpha_{2}-\alpha_{j}}
$$

Hence, there is an $M>0$ such that, for any $m_{1}, m_{2} \geq 0$ with $m_{1} \geq m_{2}+M$,

$$
\rho_{m_{1}}\left(\alpha_{2}, \ldots, \alpha_{d}\right)<\rho_{m_{2}}\left(\alpha_{2}, \ldots, \alpha_{d}\right)
$$

On the other hand, we can deduce that the sequence $\left(x_{-m}\right)_{m=0}^{\infty}$ is not ultimately periodic in the same way as the proof of Corollary 2.2. Therefore, there exists an $\widetilde{M}>0$ satisfying $\widetilde{M}>M$ and $x_{-\widetilde{M}} \leq a_{d}-2$. Thus by using $x_{0}=a_{d}$ we get, for $n \geq \widetilde{M}$,

$$
\begin{aligned}
0 \leq v_{n} \leq & \frac{1}{a_{d}} \sum_{\substack{i<0, j \geq 0 \\
i+j \neq n, n-\widetilde{M}}} \alpha^{i} \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right)\left(a_{d}-1\right) \\
& +\frac{1}{a_{d}} \sum_{\substack{i<0, j \geq 0 \\
i+j=n}} \alpha^{i} \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right) a_{d}+\frac{1}{a_{d}} \sum_{\substack{i<0, j \geq 0 \\
i+j=n-\widetilde{M}}} \alpha^{i} \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right)\left(a_{d}-2\right) \\
= & \frac{1}{a_{d}} \sum_{i<0, j \geq 0} \alpha^{i} \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right)\left(a_{d}-1\right) \\
& +\frac{1}{a_{d}} \sum_{\substack{i<0, j \geq 0 \\
i+j=n}} \alpha^{i} \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right)-\frac{1}{a_{d}} \sum_{\substack{i<0, j \geq 0 \\
i+j=n-\bar{M}}} \alpha^{i} \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right)
\end{aligned}
$$

Since $\widetilde{M}>M$, we obtain

$$
\begin{aligned}
& \frac{1}{a_{d}} \sum_{\substack{i<0, j \geq 0 \\
i+j=n}} \alpha^{i} \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right)-\frac{1}{a_{d}} \sum_{\substack{i<0, j \geq 0 \\
i+j=n-\bar{M}}} \alpha^{i} \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right) \\
& =\frac{1}{a_{d}} \sum_{i=-\infty}^{-1} \alpha^{i}\left(\rho_{n-i}\left(\alpha_{2}, \ldots, \alpha_{d}\right)-\rho_{n-i-\widetilde{M}}\left(\alpha_{2}, \ldots, \alpha_{d}\right)\right)<0,
\end{aligned}
$$

so

$$
0 \leq v_{n}<\frac{a_{d}-1}{a_{d}} \sum_{i=-\infty}^{-1} \alpha^{i} \sum_{j=0}^{\infty} \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right)=\frac{a_{d}-1}{\left|P_{\alpha}(1)\right|}
$$

By combining this inequality with (6.2), we proved the first statement.
We now verify the second statement. We define ν_{+}and ν_{-}by (6.3) and (6.4), respectively. Let us choose a positive integer A with

$$
\begin{equation*}
\left\{-\frac{a_{d}-1}{a_{d}(\alpha-1)} \nu_{-}+\frac{A}{\left|P_{\alpha}(1)\right|}\right\} \in\left(0, \frac{1}{\left|P_{\alpha}(1)\right|}\right] \tag{6.7}
\end{equation*}
$$

Write the left-hand side of (6.7) by η. Put $P_{\alpha}(X)=a_{d} X^{d}+\cdots+a_{0}$. We define the sequences $\left(u_{m}^{\prime}\right)_{m=-d}^{\infty}$ and $\left(y_{m}^{\prime}\right)_{m=0}^{\infty}$ by

$$
u_{-d}^{\prime}=u_{-d+1}^{\prime}=\cdots=u_{-1}^{\prime}=0
$$

and, for $m \geq 0$,

$$
\begin{aligned}
u_{m}^{\prime} & =-\left[\frac{-A+a_{d-1} u_{m-1}^{\prime}+\cdots+a_{0} u_{m-d}^{\prime}}{a_{d}}\right] \\
y_{m}^{\prime} & =A+a_{d}\left\{\frac{-A+a_{d-1} u_{m-1}^{\prime}+\cdots+a_{0} u_{m-d}^{\prime}}{a_{d}}\right\} .
\end{aligned}
$$

Thus we get, for any $m \geq 0$,

$$
y_{m}^{\prime}=a_{d} u_{m}^{\prime}+a_{d-1} u_{m-1}^{\prime}+\cdots+a_{0} u_{m-d}^{\prime}
$$

and

$$
y_{m}^{\prime} \in\left\{A, A+1, \ldots, A+a_{d}-1\right\}
$$

Since the rest of proof is same as that of Theorem 2.1 we give only its sketch. Define $\boldsymbol{x}^{\prime}=\left(x_{m}^{\prime}\right)_{m=-\infty}^{\infty}$ and $\xi\left(\boldsymbol{x}^{\prime}\right)$ by

$$
x_{m}^{\prime}=\left\{\begin{array}{cc}
0 & (m>0) \\
y_{-m}^{\prime} & (m \leq 0)
\end{array}\right.
$$

and by (5.4), respectively. Then, because $x_{m}^{\prime}>0$ for $m \leq 0$, we get $\xi\left(\boldsymbol{x}^{\prime}\right) \neq 0$. Moreover, every limit point of the sequence $\xi \alpha^{n} \bmod \mathbb{Z}(n=0,1, \ldots)$ is written by

$$
\frac{1}{a_{d}} \sum_{i=-\infty}^{-1} \sum_{j=0}^{\infty} \alpha^{i} \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right) \theta_{i, j}^{\prime} \bmod \mathbb{Z}
$$

where $\theta_{i, j} \in\left\{A, A+1, \ldots, A+a_{d}-1\right\}$. By putting

$$
w^{\prime}=\frac{1}{a_{d}} \sum_{i=-\infty}^{-1} \sum_{j=0}^{\infty} \alpha^{i} \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right) \theta_{i, j}^{\prime}
$$

we get

$$
-\frac{a_{d}-1}{a_{d}(\alpha-1)} \nu_{-}+\frac{A}{\left|P_{\alpha}(1)\right|} \leq w^{\prime} \leq \frac{a_{d}-1}{a_{d}(\alpha-1)} \nu_{+}+\frac{A}{\left|P_{\alpha}(1)\right|}
$$

Therefore,

$$
\begin{aligned}
0<\eta & \leq w^{\prime}-\left[-\frac{a_{d}-1}{a_{d}(\alpha-1)} \nu_{-}+\frac{A}{\left|P_{\alpha}(1)\right|}\right] \\
& \leq \eta+\frac{a_{d}-1}{a_{d}(\alpha-1)} \nu<\frac{1}{\left|P_{\alpha}(1)\right|}+\frac{1}{2} \leq 1
\end{aligned}
$$

Consequently, we get

$$
w^{\prime} \bmod \mathbb{Z} \in \tau\left(\left[\eta, \eta+\frac{a_{d}-1}{a_{d}(\alpha-1)} \nu\right]\right)
$$

Since

$$
\left[\eta, \eta+\frac{a_{d}-1}{a_{d}(\alpha-1)} \nu\right] \subset(0,1),
$$

we obtain

$$
\eta \leq \liminf _{n \rightarrow \infty}\left\{\xi \alpha^{n}\right\} \leq \limsup _{n \rightarrow \infty}\left\{\xi \alpha^{n}\right\} \leq \eta+\frac{a_{d}-1}{a_{d}(\alpha-1)} \nu
$$

Proof of Theorem 2.4. Let $a_{d} X^{d}+\cdots+a_{0} \in \mathbb{Z}[X]$ be the minimal polynomial of α. It suffices to prove the theorem in the case of

$$
\limsup _{n \rightarrow \infty}\left\{\xi \alpha^{n}\right\}<\delta_{1} .
$$

Moreover, we may assume

$$
\left\{\xi \alpha^{n}\right\}<\delta_{1}
$$

for any $n \geq-d$. Let $\sigma(\alpha)$ be defined as in Remark 4.2. We verify that if $m \leq 0$, then $\sigma(\alpha) s_{m}(\alpha ; \xi)$ is a nonnegative integer. Suppose $\sigma(\alpha)=(-1)^{p-1}=1$. Then, since $P_{\alpha}(X)$ has exactly p zeros on the interval $(1, \infty)$,

$$
0>P_{\alpha}(1)=L_{+}(\alpha)-L_{-}(\alpha),
$$

namely,

$$
\delta_{1}=\frac{1}{L_{+}(\alpha)}
$$

Thus we get

$$
s_{m}(\alpha ; \xi)=-\sum_{i=0}^{d} a_{d-i}\left\{\xi \alpha^{-m-i}\right\}>-L_{+}(\alpha) \delta_{1}=-1
$$

In the case of $\sigma(\alpha)=-1$, we have

$$
0<P_{\alpha}(1)=L_{+}(\alpha)-L_{-}(\alpha),
$$

namely,

$$
\delta_{1}=\frac{1}{L_{-}(\alpha)} .
$$

Hence,

$$
s_{m}(\alpha ; \xi)=-\sum_{i=0}^{d} a_{d-i}\left\{\xi \alpha^{-m-i}\right\}<L_{-}(\alpha) \delta_{1}=1
$$

Since $\lim _{|l| \rightarrow \infty} \eta_{l}=0$, there exists an $N \in \mathbb{Z}$ such that $\eta_{N}=\sup _{l \in \mathbb{Z}} \eta_{l}$. By (4.5) we get

$$
\left\{\xi \alpha^{n}\right\}=\frac{1}{M(\alpha)} \sum_{l=-\infty}^{\infty} \eta_{l} \sigma(\alpha) s_{l-n-p}(\alpha ; \xi)
$$

Lemma 1 of [6] implies that $\sigma(\alpha) s_{m}(\alpha ; \xi) \geq 1$ for infinitely many $m \leq 0$. Thus, since $\eta_{l} \geq 0$ for any integer l and

$$
\lim _{n \rightarrow \infty} \frac{1}{M(\alpha)} \sum_{l=n+p+1}^{\infty} \eta_{l} \sigma(\alpha) s_{l-n-p}(\alpha ; \xi)=0
$$

we obtain

$$
\limsup _{n \rightarrow \infty}\left\{\xi \alpha^{n}\right\} \geq \frac{1}{M(\alpha)} \eta_{N}=\delta_{2}
$$

Proof of Theorem 2.5. Theorem 2.4 means

$$
\inf _{\xi \notin \mathbb{Q}(\alpha)} \limsup _{n \rightarrow \infty}\left\{\xi \alpha^{n}\right\} \geq \delta_{2} .
$$

It suffices to show that there exists a $\xi \notin \mathbb{Q}(\alpha)$ with

$$
\limsup _{n \rightarrow \infty}\left\{\xi \alpha^{n}\right\}=\delta_{2}
$$

Let the sequence $\boldsymbol{x}=\left(x_{m}\right)_{m=-\infty}^{\infty}$ be defined as follows:

$$
x_{m}=\left\{\begin{array}{cc}
1 & (n=-m!\text { for some } m \geq 1) \\
0 & \text { (otherwise) }
\end{array}\right.
$$

Then \boldsymbol{x} satisfies the assumptions of Propositions 5.2. We have

$$
\begin{aligned}
\xi(\boldsymbol{x}) & =\frac{1}{\alpha} \sum_{i=-\infty}^{\infty} \sum_{j=0}^{\infty} \alpha^{i} \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right) x_{i+j} \\
& =\frac{1}{\alpha} \sum_{j=0}^{\infty} \alpha^{-j} \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right) \sum_{h=-\infty}^{\infty} \alpha^{h} x_{h} .
\end{aligned}
$$

The transcendency of $\xi(\boldsymbol{x})$ has been proved for instance in [13]. By proposition 5.2 we get

$$
\xi(\boldsymbol{x}) \alpha^{n} \equiv \frac{1}{\alpha} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \alpha^{-i} \rho_{j}\left(\alpha_{2}, \ldots, \alpha_{d}\right) x_{j-i-n-1} \bmod \mathbb{Z}
$$

and so

$$
\xi(\boldsymbol{x}) \alpha^{n} \equiv \frac{1}{\alpha} \sum_{l=-\infty}^{\infty} \eta_{l} x_{l-n-1} \bmod \mathbb{Z}
$$

Note that there exists an N with $\eta_{N}=\sup _{l \in \mathbb{Z}} \eta_{l}$. Put $\Lambda=\{m!+N-1 \mid m \geq 1\}$. Then we get

$$
\lim _{n \rightarrow \infty, n \in \Lambda}\left\{\xi(\boldsymbol{x}) \alpha^{n}\right\}=\frac{\eta_{N}}{\alpha}=\delta_{2}
$$

and

$$
\limsup _{n \rightarrow \infty, n \notin \Lambda}\left\{\xi(\boldsymbol{x}) \alpha^{n}\right\}<\delta_{2} .
$$

Thus,

$$
\limsup _{n \rightarrow \infty}\left\{\xi(\boldsymbol{x}) \alpha^{n}\right\}=\delta_{2}
$$

Proof of Corollary 2.6. δ_{1}, δ_{2}, which are defined in Theorem 2.4, are rewritten by

$$
\delta_{1}=\frac{1}{a_{2}+a_{0}}=\frac{1}{1+\alpha \alpha_{2}}
$$

and

$$
\delta_{2}=\frac{1}{\alpha-\alpha_{2}} .
$$

It suffices to show that

$$
\begin{equation*}
\delta_{1}-\delta_{2}=\frac{\alpha-1-(\alpha+1) \alpha_{2}}{\left(1+\alpha \alpha_{2}\right)\left(\alpha-\alpha_{2}\right)} \geq 0 \tag{6.8}
\end{equation*}
$$

First, we assume $\alpha>1+2 \sqrt{2}$. Then

$$
\delta_{1}-\delta_{2}>\frac{\alpha-1+(-2+\sqrt{2})(\alpha+1)}{\left(1+\alpha \alpha_{2}\right)\left(\alpha-\alpha_{2}\right)}>0 .
$$

On the other hand, it is easily seen that if $\alpha \leq 1+2 \sqrt{2}$ and $\alpha_{2}<2-\sqrt{2}$, then $\alpha=2+\sqrt{3}$ or $\alpha=(3+\sqrt{5}) / 2$. (6.8) holds in each case.

7 Note on Mahler's Z-numbers

Mahler conjectured that there does not exist a positive number ξ satisfying

$$
\left\{\xi\left(\frac{3}{2}\right)^{n}\right\}<\frac{1}{2}
$$

for all integers $n \geq 0$. Such a ξ is called a Z-number. Mahler's First Theorem [8, 12] implies for any $u \geq 0$ that there exists at most one Z-number whose integral part coincides with u. Flatto [8] generalized the theorem above as follows.
Let $u \geq 0$ and $a>b \geq 1$ be integers. Assume that a and b are coprime. Then there exists at most one positive ξ satisfying

$$
[\xi]=u
$$

and, for any $n \geq 0$,

$$
\left\{\xi\left(\frac{a}{b}\right)^{n}\right\}<\min \left\{\frac{1}{b}, \frac{b}{a}\right\}
$$

In this section we introduce generalization of these results to the powers of algebraic numbers.
THEOREM 7.1. Let $\alpha>1$ be an algebraic number and let $a_{d}(>0)$ be the leading coefficient of the minimal polynomial of α. Suppose that α has no conjugate on the unit circle. Let y be a positive number. If $L_{-}(\alpha) \geq L_{+}(\alpha)$, then assume that

$$
\begin{equation*}
L_{+}(\alpha) y+\left[L_{-}(\alpha) y\right] \leq a_{d} . \tag{7.1}
\end{equation*}
$$

Otherwise, suppose that

$$
\begin{equation*}
L_{-}(\alpha) y+\left[L_{+}(\alpha) y\right] \leq a_{d} . \tag{7.2}
\end{equation*}
$$

Then there exist at most countably many nonzero ξ such that

$$
\left\{\xi \alpha^{n}\right\}<y
$$

for any n.
Example 7.1. Let us recall that $\theta_{1}(=24.97 \ldots)$ is the unique zero of the polynomial $2 X^{2}-50 X+1$ with $X>1$. We have

$$
L_{+}\left(\theta_{1}\right)=3, L_{-}\left(\theta_{1}\right)=50 .
$$

Put

$$
S_{y}=\left\{\xi \neq 0 \mid\left\{\xi \theta_{1}^{n}\right\}<y \text { for any } n \geq 0\right\}
$$

for positive y. If $y<1 / 25=0.04$, then (7.1) holds. Thus the cardinality of S_{y} is at most countable by Theorem 7.1. Assume further $y \geq 1 / 47=0.02127 \ldots$.. Then S_{y} is not empty by Example 2.1. Moreover, S_{y} is a countably infinite set. In fact, take an element $\xi=\xi\left(\theta_{1}\right) \in S_{y}$. So we have

$$
S_{y} \supset\left\{\xi \theta_{1}^{m} \mid m \geq 0\right\} .
$$

Proof of Theorem 7.1. Suppose

$$
\begin{equation*}
L_{-}(\alpha) \geq L_{+}(\alpha) \tag{7.3}
\end{equation*}
$$

First, note that the set S of ξ satisfying $\left\{\xi \alpha^{n}\right\}=0$ for some $n \geq 0$ is countable. In fact,

$$
S \subset\left\{k \alpha^{l} \mid k, l \in \mathbb{Z}\right\}
$$

Next, let S^{\prime} be the set of ξ such that

$$
\begin{equation*}
0<\left\{\xi \alpha^{n}\right\}<y \tag{7.4}
\end{equation*}
$$

for any $n \geq 0$. In what follows, we prove that the cardinality of S^{\prime} is at most countable. Put

$$
S_{+}=S^{\prime} \cap(0, \infty), S_{-}=S^{\prime} \cap(-\infty, 0)
$$

Take any $\xi \in S_{+}$and $n \geq d$. Let $a_{d} X^{d}+\cdots+a_{0} \in \mathbb{Z}[X]$ be the minimal polynomial of α. Since

$$
\sum_{i=0}^{d} a_{d-i} \xi \alpha^{n-i}=\sum_{i=0}^{d} a_{d-i}\left(\left[\xi \alpha^{n-i}\right]+\left\{\xi \alpha^{n-i}\right\}\right)=0
$$

we get

$$
\begin{equation*}
\left[\xi \alpha^{n}\right]=-\frac{1}{a_{d}} \sum_{i=1}^{d} a_{d-i}\left[\xi \alpha^{n-i}\right]-\frac{1}{a_{d}} \sum_{i=0}^{d} a_{d-i}\left\{\xi \alpha^{n-i}\right\} \tag{7.5}
\end{equation*}
$$

By putting

$$
I_{h}=I_{h}(y)=\left(\frac{h}{a_{d}}-\frac{L_{+}(\alpha)}{a_{d}} y, \frac{h}{a_{d}}+\frac{L_{-}(\alpha)}{a_{d}} y\right) \quad\left(0 \leq h \leq a_{d}-1\right)
$$

we have

$$
\begin{equation*}
-\frac{1}{a_{d}} \sum_{i=0}^{d} a_{d-i}\left\{\xi \alpha^{n-i}\right\} \in I_{0} \tag{7.6}
\end{equation*}
$$

We now verify for any integer h with $0 \leq h \leq a_{d}-1$ that I_{h} contains at most one integer. If such an integer exists, we denote it by w_{h}. By putting

$$
R=\left[\frac{h+L_{-}(\alpha) y}{a_{d}}\right]
$$

we get

$$
R a_{d}-L_{-}(\alpha) y \leq h<(R+1) a_{d}-L_{-}(\alpha) y
$$

Since h is a rational integer, by (7.1)

$$
h \geq R a_{d}-\left[L_{-}(\alpha) y\right] \geq(R-1) a_{d}+L_{+}(\alpha) y
$$

and so $I_{h} \subset(R-1, R+1)$.

By (7.5), (7.6), $\left[\xi \alpha^{n}\right]$ is calculated as follows:

$$
\left[\xi \alpha^{n}\right]=-\frac{1}{a_{d}} \sum_{i=1}^{d}\left[\xi \alpha^{n-i}\right]-\frac{h}{a_{d}}+w_{h}
$$

where

$$
-\sum_{i=1}^{d} a_{d-i}\left[\xi \alpha^{n-i}\right] \equiv h \bmod a_{d} \text { with } h \in\left\{0,1, \ldots,-1+a_{d}\right\}
$$

Thus, if $\xi \in S_{+}$and $n \geq d$, then $\left[\xi \alpha^{n}\right]$ depends only on $\left[\xi \alpha^{n-1}\right], \ldots,\left[\xi \alpha^{n-d}\right]$. Therefore, the two-sided sequences $\left(\left[\xi \alpha^{m}\right]\right)_{m=-\infty}^{\infty}$ and $\left(s_{m}(\alpha ; \xi)\right)_{m=-\infty}^{\infty}$ are obtained by $\left(\left[\xi \alpha^{m}\right]\right)_{m=-\infty}^{d-1}$. Note that the cardinality of the set

$$
\left\{\left(\left[\xi \alpha^{m}\right]\right)_{m=-\infty}^{d-1} \mid \xi \in S_{+}\right\}
$$

is at most countable because $\left[\xi \alpha^{-m}\right]=0$ for all sufficiently large m. By Proposition $4.1, \xi \in S_{+}$is uniquely determined by the sequence $\left(s_{m}(\alpha ; \xi)\right)_{m=-\infty}^{\infty}$, and so by $\left(\left[\xi \alpha^{m}\right]\right)_{m=-\infty}^{d-1}$. Consequently, the cardinality of S_{+}is at most countable.

Next, we verify that S_{-}is a countable set. Let $\xi \in S_{-}$. Note for $m \geq 0$ that

$$
1-\left\{-\xi \alpha^{m}\right\}=\left\{\xi \alpha^{m}\right\}
$$

since $\xi \alpha^{m} \notin \mathbb{Z}$. If $n \geq d$, then

$$
\left[-\xi \alpha^{n}\right]=-\frac{1}{a_{d}} \sum_{i=1}^{d} a_{d-i}\left[-\xi \alpha^{n-i}\right]-\frac{1}{a_{d}} \sum_{i=0}^{d} a_{i}+\frac{1}{a_{d}} \sum_{i=0}^{d} a_{d-i}\left\{\xi \alpha^{n-i}\right\}
$$

and

$$
\frac{1}{a_{d}} \sum_{i=0}^{d} a_{d-i}\left\{\xi \alpha^{n-i}\right\} \in I_{0}^{\prime}
$$

where

$$
I_{h}^{\prime}=I_{h}^{\prime}(y)=\left(\frac{h}{a_{d}}-\frac{L_{-}(\alpha)}{a_{d}} y, \frac{h}{a_{d}}+\frac{L_{+}(\alpha)}{a_{d}} y\right) \quad\left(0 \leq h \leq a_{d}-1\right)
$$

The interval I_{h}^{\prime} has at most one integer point. If such an integer exists, we denote it by w_{h}^{\prime}. In fact, by putting

$$
R^{\prime}=1+\left[\frac{h-L_{-}(\alpha) y}{a_{d}}\right],
$$

we get $I_{h}^{\prime} \subset\left(R^{\prime}-1, R^{\prime}+1\right)$. Thus, if $n \geq d$, we calculate the value $\left[-\xi \alpha^{n}\right]$ by using $\left[-\xi \alpha^{n-1}\right], \ldots,\left[-\xi \alpha^{n-d}\right]$ as follows:

$$
\left[-\xi \alpha^{n}\right]=-\frac{1}{a_{d}} \sum_{i=1}^{d} a_{d-i}\left[-\xi \alpha^{n-i}\right]-\frac{1}{a_{d}} \sum_{i=0}^{d} a_{i}-\frac{h}{a_{d}}+w_{h}^{\prime}
$$

where

$$
-\sum_{i=1}^{d} a_{d-i}\left[-\xi \alpha^{n-i}\right]-\sum_{i=0}^{d} a_{i} \equiv h \bmod a_{d} \text { with } h \in\left\{0,1, \ldots,-1+a_{d}\right\}
$$

Finally, by Proposition $4.1-\xi$ depends only on $\left(\left[-\xi \alpha^{m}\right]\right)_{m=-\infty}^{d-1}$, which implies that the cardinality of S_{-}is at most countable. We can also verify the theorem in the case of $L_{-}(\alpha)<L_{+}(\alpha)$ in the same way as above by showing that $I_{h} \subset\left(R^{(2)}-1, R^{(2)}+1\right)$ for $0 \leq h \leq a_{d}-1$, where

$$
R^{(2)}=1+\left[\frac{h-L_{+}(\alpha) y}{a_{d}}\right]
$$

and that $I_{h}^{\prime} \subset\left(R^{(3)}-1, R^{(3)}+1\right)$ for $0 \leq h \leq a_{d}-1$, where

$$
R^{(3)}=\left[\frac{h+L_{+}(\alpha) y}{a_{d}}\right]
$$

Let $\alpha>1$ be an algebraic number and y a positive number. Suppose that y satisfies the assumption of Theorem 7.1. Then by Theorem 7.1 there exist at most countably many nonzero ξ such that all limit points of the sequence $\xi \alpha^{n} \bmod \mathbb{Z}(n=0,1, \ldots)$ lie in $\tau([0, y])$. We now consider the cardinality of the set of real ξ such that all limit points of $\xi \alpha^{n} \bmod \mathbb{Z}(n=0,1, \ldots)$ lie in a given interval in \mathbb{R} / \mathbb{Z}.

THEOREM 7.2. Let $\alpha>1$ be an algebraic number and $a_{d}(>0)$ the leading coefficient of the minimal polynomial of α. Suppose that α does not have a conjugate on the unit circle. Let J be any interval in \mathbb{R} / \mathbb{Z} such that its Haar measure satisfies

$$
\begin{equation*}
\mu(J)<\frac{a_{d}}{L(\alpha)} \tag{7.7}
\end{equation*}
$$

Then there exist at most countably many real ξ such that all limit points of $\xi \alpha^{n} \bmod \mathbb{Z}(n=0,1, \ldots)$ lie in J.

REMARK 7.1. Let $J=\tau([0, y])(y>0)$. Then (7.7) is rewritten by

$$
L(\alpha) y<a_{d}
$$

The assumption above is stronger than (7.1) and (7.2). In fact,

$$
L_{+}(\alpha) y+\left[L_{-}(\alpha) y\right] \leq L(\alpha) y
$$

and

$$
L_{+}(\alpha) y+\left[L_{-}(\alpha) y\right] \leq L(\alpha) y .
$$

Example 7.2. We consider the case of $\alpha=\theta_{1}$ again. For any interval J in \mathbb{R} / \mathbb{Z} with $\mu(J)<2 / 53=0.03773 \ldots(<1 / 25)$, there exist at most countably many real ξ such that all limit points of $\xi \alpha^{n} \bmod \mathbb{Z}(n=0,1, \ldots)$ lie in J.

Proof of Theorem 7.2. It suffices to prove the following:
LEMMA 7.1. Let J^{\prime} be any interval in \mathbb{R} / \mathbb{Z} with length

$$
\mu\left(J^{\prime}\right)<\frac{a_{d}}{L(\alpha)}
$$

Then there are at most countably many real ξ such that

$$
\xi \alpha^{n} \bmod \mathbb{Z} \in J^{\prime}
$$

for any $n \geq 0$.
We check that Lemma 7.1 implies Theorem 7.2. Without loss of generality, we may assume that J is closed. Write J by

$$
J=\tau\left(\left[y_{1}, y_{2}\right]\right)
$$

where $y_{1}<y_{2}$ are real numbers with $y_{2}-y_{1}<a_{d} / L(\alpha)$. Take a sufficiently small $\varepsilon>0$ such that

$$
y_{2}-y_{1}+2 \varepsilon<\frac{a_{d}}{L(\alpha)}
$$

Put

$$
J^{\prime}=\tau\left(\left[y_{1}-\varepsilon, y_{2}+\varepsilon\right]\right)
$$

Let S (resp. S^{\prime}) be the set of ξ satisfying the properties of Theorem 7.2 (resp. Lemma 7.1). Then, since

$$
S \subset\left\{\xi \alpha^{m} \mid m \in \mathbb{Z}, \xi \in S^{\prime}\right\}
$$

the cardinality of S is at most countable.
Let us verify Lemma 7.1. It suffices to prove the lemma in the case where J^{\prime} is denoted as

$$
J^{\prime}=\tau([y, y+\delta])
$$

where $\delta<a_{d} / L(\alpha)$ and $-1<y \leq 0$. We choose a real η with $-1<\eta<y$. Then, for any real x there exist a unique integer $\varphi(x)$ and a real number $\psi(x)$ with $\psi(x) \in[\eta, \eta+1)$ satisfying

$$
x=\varphi(x)+\psi(x)
$$

Note that 0 is an inner point of $[\eta, \eta+1)$ since $-1<\eta<0$. Thus, if ξ is a real number, then we have $\psi\left(\xi \alpha^{-n}\right)=\xi \alpha^{-n}$ and $\varphi\left(\xi \alpha^{-n}\right)=0$ for all sufficiently large n.

In the rest of the proof, we show that $\xi \in S^{\prime}$ is uniquely determined by a sequence $\left(\varphi\left(\xi \alpha^{m}\right)\right)_{m=-\infty}^{d-1}$. The cardinality of the set of such sequences is at most countable since $\varphi\left(\xi \alpha^{-n}\right)=0$ for all sufficiently large n. Hence the theorem follows.

Let $p, \alpha_{1}, \ldots, \alpha_{d}$, and $a_{d} X^{d}+\cdots+a_{0} \in \mathbb{Z}[X]$ be defined as Section 4. By putting

$$
s_{m}^{\prime}(\alpha ; \xi)=\sum_{i=0}^{d} a_{d-i} \varphi\left(\xi \alpha^{-m-i}\right)
$$

we obtain

$$
\begin{equation*}
\xi=\frac{1}{a_{d}} \sum_{i=-\infty}^{\infty} \sum_{j=0}^{\infty} \rho_{i}\left(\alpha_{1}, \ldots, \alpha_{p}\right) \rho_{j}\left(\alpha_{1+p}, \ldots, \alpha_{d}\right) s_{i+j}^{\prime}(\alpha ; \xi) \tag{7.8}
\end{equation*}
$$

The proof of (7.8) is the same as that of (4.4).
We prove for $\xi \in S^{\prime}$ that $\varphi\left(\xi \alpha^{n}\right)$ depends only on $\varphi\left(\xi \alpha^{n-1}\right), \ldots, \varphi\left(\xi \alpha^{n-d}\right)$ for $n \geq d$. By

$$
0=\frac{1}{a_{d}} \sum_{i=0}^{d} a_{d-i} \xi \alpha^{n-i}=\frac{1}{a_{d}} \sum_{i=0}^{d} a_{d-i}\left(\varphi\left(\xi \alpha^{n-i}\right)+\psi\left(\xi \alpha^{n-i}\right)\right)
$$

we get

$$
\begin{equation*}
\varphi\left(\xi \alpha^{n}\right)+\frac{1}{a_{d}} \sum_{i=0}^{d} a_{d-i} \psi\left(\xi \alpha^{n-i}\right)=-\frac{1}{a_{d}} \sum_{i=1}^{d} a_{d-i} \varphi\left(\xi \alpha^{n-i}\right) . \tag{7.9}
\end{equation*}
$$

Thus

$$
\frac{1}{a_{d}} \sum_{i=0}^{d} a_{d-i} \psi\left(\xi \alpha^{n-i}\right) \in K
$$

where the interval K is defined by

$$
K=\left[\frac{y}{a_{d}} \sum_{i=0}^{d} a_{i}-\frac{L_{-}(\alpha) \delta}{a_{d}}, \frac{y}{a_{d}} \sum_{i=0}^{d} a_{i}+\frac{L_{+}(\alpha) \delta}{a_{d}}\right] .
$$

Note that $[y, y+\delta] \subset[\eta, \eta+1)$. So $y \leq \psi\left(\xi \alpha^{n}\right) \leq y+\delta$ for any $n \geq 0$ by the definition of $\psi(x)$ for a real x. Thus the length of K is less than 1 by the assumption of Lemma 7.1. Hence, since $\varphi\left(\xi \alpha^{n}\right)$ is a rational integer, $\varphi\left(\xi \alpha^{n}\right)$ is calculated by (7.9).

Therefore, if $\xi \in S^{\prime}$, then the sequence $\left(\varphi\left(\xi \alpha^{m}\right)\right)_{m=-\infty}^{\infty}$ and the value ξ depend only on the sequence $\left(\varphi\left(\xi \alpha^{m}\right)\right)_{m=-\infty}^{d-1}$.

Acknowledgements

I am very grateful to Prof. Masayoshi Hata for careful reading and for improving the language of this paper. I would like to thank Prof. Shigeki Akiyama and Prof. Yann Bugeaud for useful suggestions. This work is supported by the JSPS fellowship.

References

[1] S. Akiyama, C. Frougny, J. Sakarovitch, Powers of rationals modulo 1 and rational base number systems, Israel J. Math. 168 (2008), 53-91.
[2] M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. PathiauxDelefosse, and J. P. Schreiber, Pisot and Salem numbers, Birkhäuser Verlag, Basel, 1992.
[3] Y. Bugeaud, Linear mod one transformations and the distribution of fractional parts $\left\{\xi(p / q)^{n}\right\}$, Acta Arith. 114 (2004), 301-311.
[4] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge University Press, 1957.
[5] A. Dubickas, Arithmetical properties of powers of algebraic numbers, Bull. London Math. Soc. 38 (2006), 70-80.
[6] A. Dubickas, On the distance from a rational power to the nearest integer, J. Number Theory. 117 (2006), 222-239.
[7] A. Dubickas, On the fractional parts of lacunary sequences. Math. Scand. 99 (2006), 136-146.
[8] L. Flatto, Z-numbers and β-transformations, in: P. Walters (Ed.), Symbolic Dynamics and its Applications, New Haven, 1991, Contemp. Math. 135 (1992), 181-201
[9] L. Flatto, J. C. Lagarias, A. D. Pollington, On the range of fractional parts $\left\{\xi(p / q)^{n}\right\}$, Acta Arith. 70 (1995), 125-147.
[10] H. Kaneko, Distribution of geometric sequences modulo 1, Result. Math. 52 (2008), 91-109.
[11] J. F. Koksma, Ein mengen-theoretischer Satz über Gleichverteilung modulo eins, Compositio Math. 2 (1935), 250-258.
[12] K. Mahler, An unsolved problems on the powers of $3 / 2$, J. Austral. Math. Soc. 8 (1968), 313-321.
[13] K. Nishioka, Mahler Functions and Transcendence, in: Lecture Notes in Mathematics, Vol. 1631, Springer, Berlin, 1996.
[14] Ch. Pisot, Répartition $(\bmod 1)$ des puissances successives des nombres réels, Comm. Math. Helv. 19 (1946), 153-160.
[15] R. Tijdeman, Note on Mahler's $\frac{3}{2}$-problem, K. Norske Vidensk. Selsk. Skr. 16 (1972), 1-4.

Department of Mathematics, Kyoto University
Oiwake-tyou
Kitashirakawa
Kyoto-shi, Kyoto, Japan
e-mail: kanekoha@math.kyoto-u.ac.jp

[^0]: *2000 Mathematics Subject Classification : 11J71, 11J54, 11J25, 11A63

