Distribution of geometric sequences modulo 1

Hajime Kaneko

Abstract

Let $\left\|\xi \alpha^{n}\right\|$ denote the distance from $\xi \alpha^{n}$ to the nearest integer. In this paper we obtain a new lower bound for $\lim \sup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\|$ if α is an algebraic irrational number whose conjugates have moduli greater than 1.

1. Introduction

Weyl [13] proved that an arithmetic progression is uniformly distributed modulo 1 if and only if its common difference is irrational. Moreover, it is known that a sequence $(P(n))_{n=0}^{\infty}$, where $P(X) \in \mathbb{R}[X]$, is uniformly distributed modulo 1 if and only if $P(X)-P(0) \notin \mathbb{Q}[X]$. On the other hand, for geometric progressions no criteria of uniform distribution modulo 1 have been known so far.

In this paper we estimate the maximal limit points of the sequence $\left(\left\|\xi \alpha^{n}\right\|\right)_{n=0}^{\infty}$, where ξ is a nonzero real number, α is an algebraic number with $\alpha>1$, and $\|x\|$ denotes the distance from the real number x to the nearest integer.

Maximal limit points are known if α is an algebraic integer whose conjugates different from α have absolute values not greater than 1. For such an α, if its conjugates different from α have absolute values strictly less than $1, \alpha$ is called a Pisot number. Otherwise α is called a Salem number. Hardy [9] proved for algebraic $\alpha>1$ that $\lim _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\|=0$ for some nonzero ξ if and only if α is a Pisot number. Dubickas [6] proved for algebraic $\alpha>1$ that

$$
\inf _{\xi \neq 0} \limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\|=0
$$

if and only if α is a Pisot or Salem number. It is a natural problem to determine the value

$$
\mathcal{E}(\alpha)=\inf _{\xi \neq 0} \limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\|
$$

in the case where α is neither a Pisot nor Salem number. We denote the length of a polynomial $C(X)=\sum_{i=0}^{m} c_{i} X^{i} \in \mathbb{R}[X]$ by $L(C(X))=\sum_{i=0}^{m}\left|c_{i}\right|$. Let $P(X)$ be
the minimal polynomial of α. We denote the reduced length of α by

$$
l(\alpha)=\inf _{B(X) \in \Gamma} L(P(X) B(X))
$$

where

$$
\Gamma=\left\{B(X)=b_{0}+b_{1} X+\cdots+b_{m} X^{m} \in \mathbb{R}[X] \mid b_{0}=1 \text { or } b_{m}=1\right\}
$$

Dubickas [6] proved that

$$
\begin{equation*}
\mathcal{E}(\alpha) \geq \max \left\{\frac{1}{L(P(X))}, \frac{1}{2 l(\alpha)}\right\} \tag{1.1}
\end{equation*}
$$

if α is neither a Pisot nor Salem number. If $\alpha=p / q$, where p and q are integers with $p>q \geq 2$ and $\operatorname{gcd}(p, q)=1$, the inequality (1.1) implies

$$
\begin{equation*}
\mathcal{E}\left(\frac{p}{q}\right) \geq \frac{1}{p+q} . \tag{1.2}
\end{equation*}
$$

Dubickas [6] further obtained

$$
\begin{equation*}
\mathcal{E}\left(\frac{p}{q}\right) \geq \frac{1}{p} E_{1}\left(\frac{q}{p}\right) \tag{1.3}
\end{equation*}
$$

where E_{1} is defined by Mahler function as follows:

$$
\begin{equation*}
E_{1}(X)=\frac{1-(1-X) \prod_{i=0}^{\infty}\left(1-X^{2^{i}}\right)}{2 X} \tag{1.4}
\end{equation*}
$$

The inequality (1.3) is sharper than (1.2) since

$$
\begin{aligned}
\frac{1}{p} E_{1}\left(\frac{q}{p}\right) & -\frac{1}{p+q} \\
& =\frac{p-q}{2 q(p+q)}\left\{1-\left(1-\frac{q^{2}}{p^{2}}\right) \prod_{i=1}^{\infty}\left(1-\frac{q^{2^{i}}}{p^{2^{i}}}\right)\right\}>0
\end{aligned}
$$

The main purpose of this paper is to generalize the inequality (1.3) to the case of irrational α whose conjugates have absolute values greater than 1 .

2. Main results

First we give a lower bound for $\mathcal{E}(\alpha)$ in the case where α is a quadratic irrational number. The theorems in this section give improvements of the inequality (1.1).

THEOREM 2.1. Let $\alpha>1$ be a quadratic irrational number with the minimal polynomial $a_{2} X^{2}+a_{1} X+a_{0} \in \mathbb{Z}[X]$, where $a_{2}>0$ and $\operatorname{gcd}\left(a_{2}, a_{1}, a_{0}\right)=1$. Let α_{2} be the conjugate of α. Assume that $\alpha_{2}>1$ and that

$$
\begin{equation*}
\alpha^{-1}+\alpha_{2}^{-1} \leq \frac{\sqrt{5}-1}{2} \tag{2.1}
\end{equation*}
$$

Then

$$
\mathcal{E}(\alpha) \geq \frac{1}{a_{0}} E_{2}\left(\alpha^{-1}, \alpha_{2}^{-1}\right)
$$

where

$$
E_{2}(X, Y)=\frac{X E_{1}(X)-Y E_{1}(Y)}{X-Y}
$$

REMARK 2.2. Let α be a quadratic irrational number satisfying the assumptions of Theorem 2.1. By Dubickas's formula of reduced length in [5], we get

$$
\begin{aligned}
\mathcal{E}(\alpha) & \geq \max \left\{\frac{1}{L(P(X))}, \frac{1}{2\left|a_{0}\right|}\right\}=\frac{1}{L(P(X))} \\
& =\frac{1}{\left|a_{0}\right|} \frac{1}{1+\alpha^{-1}+\alpha_{2}^{-1}+\alpha^{-1} \alpha_{2}^{-1}}
\end{aligned}
$$

By using Lemma 2.1 at the end of this section, we can rewrite $E_{2}\left(\alpha^{-1}, \alpha_{2}^{-1}\right)$ as an alternative series. Thus we get

$$
E_{2}\left(\alpha^{-1}, \alpha_{2}^{-1}\right)>1-\alpha^{-2}-\alpha^{-1} \alpha_{2}^{-1}-\alpha_{2}^{-2}
$$

and so

$$
\frac{1}{\left|a_{0}\right|} E_{2}\left(\alpha^{-1}, \alpha_{2}^{-1}\right)>\max \left\{\frac{1}{L(P(X))}, \frac{1}{2\left|a_{0}\right|}\right\}
$$

Now we give an example. Put $\alpha=4+\sqrt{2}$ and $\alpha_{2}=4-\sqrt{2}$. By the inequality (1.1) we get

$$
\mathcal{E}(4+\sqrt{2}) \geq 0.0434 \ldots
$$

Since α and α_{2} satisfy the conditions in Theorem 2.1, we have

$$
\mathcal{E}(4+\sqrt{2}) \geq 0.0581 \ldots
$$

We note that we calculate the value $E_{2}\left(\alpha^{-1}, \alpha_{2}^{-1}\right)$ by using Lemma 2.1.
On the other hand, for any $\alpha>1$ we have

$$
\begin{equation*}
\mathcal{E}(\alpha) \leq \frac{1}{2 \alpha-2} \tag{2.2}
\end{equation*}
$$

(see Section 5). By (2.2) we have

$$
\mathcal{E}(4+\sqrt{2}) \leq 0.113 \ldots
$$

Next we consider the case where α is an algebraic number with arbitrary degree. In what follows, we write the symmetric homogeneous polynomial of degree m as

$$
\begin{equation*}
\rho_{m}\left(X_{1}, X_{2}, \ldots, X_{r}\right)=\sum_{\substack{i_{1}, i_{2}, \ldots, i_{r} \geq 0 \\ i_{1}+i_{2}+\cdots+i_{r}=m}} X_{1}^{i_{1}} X_{2}^{i_{2}} \cdots X_{r}^{i_{r}} \tag{2.3}
\end{equation*}
$$

We note that (2.1) is equivalent to

$$
\begin{equation*}
0<\rho_{m+1}\left(\alpha^{-1}, \alpha_{2}^{-1}\right) \leq \frac{\sqrt{5}-1}{2} \rho_{m}\left(\alpha^{-1}, \alpha_{2}^{-1}\right) \tag{2.4}
\end{equation*}
$$

for all $m \geq 0$.
In order to estimate $\mathcal{E}(\alpha)$ in this case we need a stronger assumption than that of Theorem 2.1.

THEOREM 2.3. Let α be an algebraic irrational number with $|\alpha|>1$ and let $\alpha_{1}(=\alpha), \alpha_{2}, \ldots, \alpha_{d}$ be the conjugates of α. Denote the minimal polynomial of α by $P(X)=a_{d} X^{d}+a_{d-1} X^{d-1}+\cdots+a_{0} \in \mathbb{Z}[X]$, where $a_{d}>0$ and $\operatorname{gcd}\left(a_{d}, a_{d-1}, \ldots, a_{0}\right)=1$. Assume

$$
\left|\alpha_{i}\right|>1(i=1,2, \ldots, d)
$$

and

$$
\begin{equation*}
0<\rho_{m+1}\left(\alpha^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{d}^{-1}\right) \leq \frac{1}{2} \rho_{m}\left(\alpha^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{d}^{-1}\right)(m=0,1, \ldots) \tag{2.5}
\end{equation*}
$$

Then

$$
\mathcal{E}(\alpha) \geq \frac{1}{\left|a_{0}\right|} E_{d}\left(\alpha^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{d}^{-1}\right)
$$

where

$$
E_{d}\left(X_{1}, X_{2}, \ldots, X_{d}\right)=\sum_{i=1}^{d}\left(\prod_{\substack{1 \leq j \leq d \\ j \neq i}} \frac{1}{X_{i}-X_{j}}\right) X_{i}^{d-1} E_{1}\left(X_{i}\right)
$$

and E_{1} is defined by (1.4).
REMARK 2.4. Let α be an algebraic number satisfying the assumptions of Theorem 2.3. By the same way as in Remark 2.3, we have

$$
\begin{aligned}
\max \left\{\frac{1}{L(P(X))}, \frac{1}{2 l(\alpha)}\right\} & =\max \left\{\frac{1}{L(P(X))}, \frac{1}{2\left|a_{0}\right|}\right\} \\
& \leq \frac{1}{\left|a_{0}\right|} \frac{1}{1+\rho_{1}\left(\alpha^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{d}^{-1}\right)}
\end{aligned}
$$

and

$$
E_{d}\left(\alpha^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{d}^{-1}\right)>1-\rho_{2}\left(\alpha^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{d}^{-1}\right)
$$

Thus we get

$$
\frac{1}{\left|a_{0}\right|} E_{d}\left(\alpha^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{d}^{-1}\right)>\max \left\{\frac{1}{L(P(X))}, \frac{1}{2 l(\alpha)}\right\}
$$

We now set

$$
\begin{equation*}
\rho_{m}\left(X_{1}, X_{2}, \ldots, X_{d}\right)=0(-d+1 \leq m \leq-1) . \tag{2.6}
\end{equation*}
$$

By the equality

$$
\sum_{n=-d+1}^{\infty} \rho_{n}\left(\alpha^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{d}^{-1}\right) X^{n} \sum_{i=0}^{d} a_{i} X^{i}=a_{0}
$$

we get

$$
\begin{align*}
& a_{0} \rho_{m}\left(\alpha^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{d}^{-1}\right)+a_{1} \rho_{m-1}\left(\alpha^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{d}^{-1}\right) \\
& \quad+\cdots+a_{d} \rho_{m-d}\left(\alpha^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{d}^{-1}\right)=0(m=1,2, \ldots) \tag{2.7}
\end{align*}
$$

By using (2.7) to check the inequality (2.5), we obtain the following:
COROLLARY 2.5. Let α be an algebraic irrational number with $|\alpha|>1$. Denote the minimal polynomial of α by $P(X)=a_{d} X^{d}+a_{d-1} X^{d-1}+\cdots+a_{0} \in \mathbb{Z}[X]$, where $a_{d}>0$ and $\operatorname{gcd}\left(a_{d}, a_{d-1}, \ldots, a_{0}\right)=1$. Assume

$$
a_{i} \geq 0(1 \leq i \leq d)
$$

and

$$
a_{0} \leq-2 a_{1}-2 a_{2}-\cdots-2 a_{d}
$$

Then

$$
\mathcal{E}(\alpha) \geq \frac{1}{\left|a_{0}\right|} E_{d}\left(\alpha^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{d}^{-1}\right)
$$

We estimate $\mathcal{E}(\alpha)$ in the case where $\alpha=7 \sqrt[3]{2}-7$. The minimal polynomial of α is $X^{3}+21 X^{2}+147 X-343$. The inequality (1.1) implies

$$
\mathcal{E}(7 \sqrt[3]{2}-7) \geq 0.00195 \ldots
$$

Since α satisfies the conditions in Corollary 2.5, we have

$$
\mathcal{E}(7 \sqrt[3]{2}-7) \geq 0.00242 \ldots
$$

We note that we calculate the value $E_{d}\left(\alpha^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{d}^{-1}\right)$ by using Lemma 2.1.
We can apply Theorem 2.3 to the case where $\alpha>1$ is a quadratic irrational number whose Galois conjugate is less than -1 .

COROLLARY 2.6. Let $\alpha>1$ be a quadratic irrational number with the minimal polynomial $a_{2} X^{2}+a_{1} X+a_{0} \in \mathbb{Z}[X]$, where $a_{2}>0$ and $\operatorname{gcd}\left(a_{2}, a_{1}, a_{0}\right)=1$. Let α_{2} be the conjugate of α. Put $\zeta=1$ if $\alpha<\left|\alpha_{2}\right|$, otherwise put $\zeta=-1$.

Assume $\alpha_{2}<-1$ and

$$
0<\rho_{m+1}\left(\zeta \alpha^{-1}, \zeta \alpha_{2}^{-1}\right) \leq \frac{1}{2} \rho_{m}\left(\zeta \alpha^{-1}, \zeta \alpha_{2}^{-1}\right)(i=0,1)
$$

Then

$$
\mathcal{E}(\alpha) \geq \frac{1}{\left|a_{0}\right|} E_{2}\left(\zeta \alpha^{-1}, \zeta \alpha_{2}^{-1}\right)
$$

In the rest of this section we determine the Taylor expansion of the function $E_{d}\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ at the origin. The calculation was obtained by Dubickas [6] if $d=1$. Let $A_{n}(n=0,1, \ldots)$ be finite words given by $A_{0}=2, A_{1}=211$ and

$$
A_{n}=A_{n-1} A_{n-2} A_{n-2}
$$

Let $\mathbf{w}=\left(w_{n}\right)_{n=0}^{\infty}$ be a sequence defined by

$$
\begin{aligned}
\mathbf{w} & =A_{1} A_{0} A_{0} A_{1} A_{1} A_{2} A_{2} \ldots A_{n} A_{n} \ldots \\
& =2,1,1,2,2,2,1,1,2,1,1, \ldots .
\end{aligned}
$$

Then we define the finite words $\gamma_{n}(n=0,1, \ldots)$ and the sequence $\mathbf{e}=\left(e_{n}\right)_{n=0}^{\infty}$ as follows:

$$
\begin{gathered}
\quad \gamma_{n}= \begin{cases}\emptyset & \text { if } w_{n}=1 \\
0 & \text { if } w_{n}=2\end{cases} \\
\mathbf{e}= \\
=1, \gamma_{0},-1, \gamma_{1}, 1, \gamma_{2},-1, \gamma_{3}, 1, \gamma_{4},-1, \ldots \\
= \\
1,0,-1,1,-1,0,1,0,-1, \ldots
\end{gathered}
$$

LEMMA 2.1. The function $E_{d}\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ is represented as

$$
\begin{equation*}
E_{d}\left(X_{1}, X_{2}, \ldots, X_{d}\right)=\sum_{i=0}^{\infty} \rho_{i}\left(X_{1}, X_{2}, \ldots, X_{d}\right) e_{i} \tag{2.8}
\end{equation*}
$$

Proof. Since

$$
E_{1}(X)=\sum_{i=0}^{\infty}(-1)^{i} X^{w_{0}+w_{1}+\cdots+w_{i-1}}
$$

we have

$$
\begin{aligned}
E_{d}\left(X_{1}, X_{2}, \ldots, X_{d}\right) & =\sum_{i=0}^{\infty}(-1)^{i} \sum_{j=1}^{d} \prod_{\substack{1 \leq k \leq d \\
k \neq j}} \frac{1}{X_{j}-X_{k}} X_{j}^{w_{0}+w_{1}+\cdots+w_{i-1}+d-1} \\
& =\sum_{i=0}^{\infty}(-1)^{i} \rho_{w_{0}+w_{1}+\cdots+w_{i-1}}\left(X_{1}, X_{2}, \ldots, X_{d}\right) \\
& =\sum_{i=0}^{\infty} \rho_{i}\left(X_{1}, X_{2}, \ldots, X_{d}\right) e_{i}
\end{aligned}
$$

Note that we use Lemma 3.1 to check the second equation.

3. Preliminaries

We define the integral part and the fractional part of a real number.
DEFINITION 3.1. Let x be a real number. Then the integer $u(x)$ and the real number $\varepsilon(x)$ are uniquely determined by $x=u(x)+\varepsilon(x)$ with $-1 / 2 \leq \varepsilon(x)<1 / 2$. We call $u(x)$ the integral part of x and $\varepsilon(x)$ the fractional part of x.

We note that $u(x)$ is one of the nearest integers to x and that $\|x\|$ is given by $\|x\|=|\varepsilon(x)|$.

If $\alpha \geq 2$ is a rational integer, the fractional part $\varepsilon\left(\xi \alpha^{n}\right)$ can be denoted by the α-ary expansion of ξ. Mahler [11] considered the " $3 / 2$-ary" expansion of real numbers to study the distribution of the geometric progressions whose common ratios are $3 / 2$. In this section we construct the " α-ary" expansion for an algebraic number α.

At first, we check the following:
LEMMA 3.1. Let the symmetric homogeneous polynomial $\rho_{m}\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ be defined by (2.3). Then

$$
\begin{equation*}
\rho_{m}\left(X_{1}, X_{2}, \ldots, X_{r}\right)=\sum_{i=1}^{r}\left(\prod_{\substack{1 \leq j \leq r \\ j \neq i}} \frac{1}{X_{i}-X_{j}}\right) X_{i}^{m+r-1} . \tag{3.1}
\end{equation*}
$$

Proof. We denote the right-hand side of (3.1) by ρ_{m}^{\prime}. We consider the polynomial of Y defined by

$$
g(Y)=\prod_{i=1}^{r}\left(1-X_{i} Y\right) \sum_{m=0}^{\infty} \rho_{m}^{\prime} Y^{m}=\sum_{i=1}^{r} \prod_{\substack{1 \leq j \leq r \\ j \neq i}} \frac{1-X_{j} Y}{1-X_{i}^{-1} X_{j}} .
$$

Since

$$
g\left(X_{l}^{-1}\right)=1(1 \leq l \leq r)
$$

and the degree of $g(Y)$ is at most $r-1$, we have $g(Y)=1$. Thus we conclude that

$$
\sum_{i=0}^{\infty} \rho_{i}^{\prime} Y^{i}=\prod_{i=1}^{r}\left(1-X_{i} Y\right)^{-1}=\sum_{i=0}^{\infty} \rho_{i}\left(X_{1}, X_{2}, \ldots, X_{r}\right) Y^{i}
$$

We define $\rho_{m}\left(X_{1}, X_{2}, \ldots, X_{r}\right)$ also for a negative integer m by using (3.1). We note this definition coincides with (2.6) for $-r+1 \leq m \leq-1$.

Let α be an algebraic number and let $P(X)=a_{d} X^{d}+a_{d-1} X^{d-1}+\cdots+$ $a_{0} \in \mathbb{Z}[X]$ be its minimal polynomial. We denote the conjugates of α by $\alpha_{1}(=$ $\alpha), \alpha_{2}, \ldots, \alpha_{d}$. In the rest of this section we assume that $\left|\alpha_{i}\right|>1(i=1,2, \ldots, d)$. Let ξ be a nonzero real number. We define the sequence $\left(s_{n}(\xi)\right)_{n=-\infty}^{\infty}$ by

$$
s_{n}(\xi)=a_{d} u\left(\xi \alpha^{-n}\right)+a_{d-1} u\left(\xi \alpha^{-n-1}\right)+\cdots+a_{0} u\left(\xi \alpha^{-n-d}\right)
$$

It is easily checked that

$$
\left|s_{n}(\xi)\right|<\frac{1}{2} L(P(X))=\frac{1}{2} \sum_{i=0}^{d}\left|a_{i}\right| .
$$

In fact, $s_{n}(\xi)$ can be rewritten as

$$
s_{n}(\xi)=-a_{d} \varepsilon\left(\xi \alpha^{-n}\right)-a_{d-1} \varepsilon\left(\xi \alpha^{-n-1}\right)-\cdots-a_{0} \varepsilon\left(\xi \alpha^{-n-d}\right)
$$

Moreover, Dubickas [6] proved that the sequence $\left(s_{n}(\xi)\right)_{n=-\infty}^{M}$ is not periodic for any integer M.
PROPOSITION 3.1. The integral part $u\left(\xi \alpha^{n}\right)$ and the fractional part $\varepsilon\left(\xi \alpha^{n}\right)$ are given by

$$
u\left(\xi \alpha^{n}\right)=\frac{1}{a_{d}} \sum_{i=0}^{\infty} \rho_{i}\left(\alpha, \alpha_{2}, \ldots, \alpha_{d}\right) s_{i-n}(\xi)
$$

and

$$
\varepsilon\left(\xi \alpha^{n}\right)=\frac{1}{a_{d}} \sum_{i=-\infty}^{-1} \rho_{i}\left(\alpha, \alpha_{2}, \ldots, \alpha_{d}\right) s_{i-n}(\xi)
$$

respectively. In particular

$$
\xi \alpha^{n}=\frac{1}{a_{d}} \sum_{i=-\infty}^{\infty} \rho_{i}\left(\alpha, \alpha_{2}, \ldots, \alpha_{d}\right) s_{i-n}(\xi)
$$

Proof. We get

$$
\begin{aligned}
& \frac{1}{a_{d}} \sum_{i=-\infty}^{-1} \rho_{i}\left(\alpha, \alpha_{2}, \ldots, \alpha_{d}\right) s_{i-n}(\xi) \\
= & -\frac{1}{a_{d}} \sum_{i=-\infty}^{-d} \rho_{i}\left(\alpha, \alpha_{2}, \ldots, \alpha_{d}\right) \sum_{j=0}^{d} a_{d-j} \varepsilon\left(\xi \alpha^{n-i-j}\right) \\
= & -\frac{1}{a_{d}} \sum_{i=-\infty}^{0} \varepsilon\left(\xi \alpha^{n-i}\right) \sum_{j=0}^{\min \{d,-i\}} \rho_{i+j-d}\left(\alpha, \alpha_{2}, \ldots, \alpha_{d}\right) a_{j} .
\end{aligned}
$$

Since

$$
\rho_{-d}\left(\alpha, \alpha_{2}, \ldots, \alpha_{d}\right)=(-1)^{1+d} \alpha^{-1} \alpha_{2}^{-1} \ldots \alpha_{d}^{-1}
$$

and since

$$
\begin{aligned}
& \sum_{j=0}^{\min \{d,-i\}} \rho_{i+j-d}\left(\alpha, \alpha_{2}, \ldots, \alpha_{d}\right) a_{j} \\
= & \sum_{j=-d+\min \{d,-i\}}^{\min \{d,-i\}} \rho_{i+j-d}\left(\alpha, \alpha_{2}, \ldots, \alpha_{d}\right) a_{j}=0
\end{aligned}
$$

for $i \leq-1$, we conclude that

$$
\frac{1}{a_{d}} \sum_{i=-\infty}^{-1} \rho_{i}\left(\alpha, \alpha_{2}, \ldots, \alpha_{d}\right) s_{i-n}(\xi)=\varepsilon\left(\xi \alpha^{n}\right)
$$

By the same way as above we can check the representation of $u\left(\xi \alpha^{n}\right)$.

COROLLARY 3.2. Let ξ be arbitrary real number. Then

$$
\varepsilon\left(\xi \alpha^{n}\right)=-\frac{1}{a_{0}} \sum_{i=0}^{\infty} \rho_{i}\left(\alpha^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{d}^{-1}\right) s_{-i-n-d}(\xi)
$$

Proof. Since

$$
\begin{aligned}
\frac{1}{a_{d}} \rho_{i}\left(\alpha, \alpha_{2}, \ldots, \alpha_{d}\right) & =\frac{1}{a_{d}} \prod_{l=1}^{d}\left(\prod_{\substack{1 \leq h \leq d \\
h \neq l}} \frac{-\alpha_{l}^{-1} \alpha_{h}^{-1}}{\alpha_{l}^{-1}-\alpha_{h}^{-1}}\right) \alpha_{l}^{i+d-1} \\
& =-\frac{1}{a_{0}} \rho_{-i-d}\left(\alpha^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{d}^{-1}\right)
\end{aligned}
$$

we obtain

$$
\begin{aligned}
\varepsilon\left(\xi \alpha^{n}\right) & =\frac{1}{a_{d}} \sum_{i=-\infty}^{-d} \rho_{i}\left(\alpha, \alpha_{2}, \ldots, \alpha_{d}\right) s_{i-n}(\xi) \\
& =-\frac{1}{a_{0}} \sum_{i=-\infty}^{-d} \rho_{-i-d}\left(\alpha^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{d}^{-1}\right) s_{i-n}(\xi) \\
& =-\frac{1}{a_{0}} \sum_{i=0}^{\infty} \rho_{i}\left(\alpha^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{d}^{-1}\right) s_{-i-n-d}(\xi)
\end{aligned}
$$

We end this section by introducing a property of the sequence $\mathbf{w}=\left(w_{n}\right)_{n=0}^{\infty}$ defined in Section 2.

PROPOSITION 3.3 (Dubickas [6]). Let $\mathbf{b}=\left(b_{n}\right)_{n=0}^{\infty}$ be a sequence with $b_{n} \in\{1,2\}$ which is not ultimately periodic. Then \mathbf{b} satisfies at least one of the following:

1. For any $N \geq 0$, there exists an $m \geq 0$ such that

$$
b_{m+i}=w_{i}(i=0,1, \ldots, N)
$$

2. There exist $N \geq 2$ and infinitely many $m \geq 0$ such that

$$
b_{m+i}=w_{i}(i=0,1, \ldots, N-1)
$$

and

$$
\left\{\begin{array}{l}
b_{m+N}=2, w_{N}=1 \quad \text { if } N \text { is even }, \\
b_{m+N}=1, w_{N}=2 \quad \text { if } N \text { is odd. }
\end{array}\right.
$$

4. Proof of the main results

Proof of Theorem 2.3. For simplicity we set

$$
\mu_{m}=\frac{1}{\left|a_{0}\right|} \rho_{m}\left(\alpha^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{d}^{-1}\right)(m=0,1, \ldots)
$$

and

$$
\psi=\frac{1}{\left|a_{0}\right|} E_{d}\left(\alpha^{-1}, \alpha_{2}^{-1}, \ldots, \alpha_{d}^{-1}\right)
$$

Take an arbitrary nonzero real number ξ. We put

$$
t_{n}=s_{-n-d}(\xi)(n=0,1, \ldots)
$$

By Lemma 2.1 and Corollary 3.2

$$
\left\|\xi \alpha^{n}\right\|=\left|\sum_{i=0}^{\infty} \mu_{i} t_{i+n}\right|, \psi=\sum_{i=0}^{\infty} \mu_{i} e_{i}
$$

Let

$$
t=\limsup _{n \rightarrow \infty}\left|t_{n}\right| .
$$

We first consider the case where $t \geq 2$. Since the sequence $\mathbf{t}=\left(t_{n}\right)_{n=0}^{\infty}$ is not ultimately periodic, at least one of the words $W_{m}=t, m(-t+1 \leq m \leq t)$ or $\overline{W_{m}}=-t, m(-t \leq m \leq t-1)$ appears infinitely many times in \mathbf{t}. If \mathbf{t} contains infinitely many W_{m} for some m with $-t+2 \leq m \leq t$ or infinitely many $\overline{W_{m}}$ for some m with $-t \leq m \leq t-2$, then by (2.5)

$$
\limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\| \geq t \mu_{0}+(2-t) \mu_{1}-\sum_{i=2}^{\infty} t \mu_{i} \geq \mu_{0} \geq \psi
$$

Thus we may assume that W_{m} with $-t+2 \leq m \leq t$ and $\overline{W_{m}}$ with $-t \leq m \leq t-2$ appear in \mathbf{t} only finitely many times.

Suppose that W_{-t+1} appears infinitely many times in \mathbf{t}. Then for every sufficiently large n and for each $m \geq 0$,

$$
\mu_{i} t_{n+i}+\mu_{i+1} t_{n+i+1} \geq-t \mu_{i}-(t-2) \mu_{i+1}
$$

consequently

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\| \geq t \mu_{0}-(t-1) \mu_{1}-\sum_{i=1}^{\infty}\left(t \mu_{2 i}+(t-2) \mu_{2 i+1}\right) \tag{4.1}
\end{equation*}
$$

The inequality (4.1) is true also in the case where $\overline{W_{t-1}}$ appears infinitely many times in \mathbf{t}. Using (2.5), (4.1) and

$$
\psi \leq \mu_{0}-\mu_{2}+\mu_{3}-\mu_{4}+\mu_{6}
$$

we obtain

$$
\limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\| \geq \psi
$$

In what follows, we assume that $t=1$. By the same way as above $\lim \sup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\| \geq \psi$ if at least one of the following words appears infinitely many times in \mathbf{t} :

$$
U_{1}=1,1 ; \quad U_{2}=-1,-1 ; \quad U_{3}=1,0,1 ; \quad U_{4}=-1,0,-1, \quad V=0,0
$$

It suffices to prove the theorem in the case where these words appear in \mathbf{t} only finitely many times. As a result, there exists an $M \geq 0$ such that

$$
t_{M}, t_{M+1}, t_{M+2}, \ldots=1, \underbrace{0, \ldots, 0}_{x_{0}},-1, \underbrace{0, \ldots, 0}_{x_{1}}, 1, \underbrace{0, \ldots, 0}_{x_{2}},-1, \ldots,
$$

where

$$
x_{n} \in\{0,1\} \quad(n=0,1, \ldots)
$$

Put $y_{n}=1+x_{n}$. Note that the sequence $\mathbf{y}=\left(y_{n}\right)_{n=0}^{\infty}$ is not ultimately periodic and

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\| & \geq \sum_{i=0}^{\infty}(-1)^{i} \mu_{y_{m}+y_{m+1}+\cdots+y_{m+i-1}}(m=0,1, \ldots) \\
\psi & =\sum_{i=0}^{\infty}(-1)^{i} \mu_{w_{0}+w_{1}+\cdots+w_{i-1}}
\end{aligned}
$$

We apply Proposition 3.3 to \mathbf{y}. If \mathbf{y} satisfies the statement 1 , then $\lim \sup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\| \geq \psi$. Otherwise, we choose N and m satisfying the statement 2 of Proposition 3.3. Put

$$
w=w_{0}+w_{1}+\cdots+w_{N-1}
$$

Then by (2.5) we have

$$
\limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\|-\psi \geq \mu_{1+w}-\mu_{2+w}-\mu_{1+w+v} \geq 0
$$

where

$$
v=\left\{\begin{array}{cc}
w_{N+1} & \text { if } N \text { is even } \\
y_{m+N+1} & \text { if } N \text { is odd }
\end{array}\right.
$$

Proof of Corollary 2.6. Since $\zeta \alpha$ and its conjugate $\zeta \alpha_{2}$ satisfy the assumptions of Theorem 2.3, we have

$$
\mathcal{E}(\alpha)=\mathcal{E}(\zeta \alpha) \geq \frac{1}{\left|a_{0}\right|} E_{2}\left(\zeta \alpha^{-1}, \zeta \alpha_{2}^{-1}\right)
$$

Proof of Theorem 2.1. We use the same notation as in the proof of Theorem 2.3.
First we assume $t \geq 2$. Since

$$
\left|t_{n}\right|=\left|a_{2} \varepsilon\left(\xi \alpha^{-n}\right)+a_{1} \varepsilon\left(\xi \alpha^{-n-1}\right)+a_{0} \varepsilon\left(\xi \alpha^{-n-2}\right)\right| \geq 2
$$

for infinitely many n, we have

$$
\limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\| \geq \frac{2}{\left|a_{0}\right|+\left|a_{1}\right|+\left|a_{2}\right|}>\frac{1}{\left|a_{0}\right|}>\psi
$$

In what follows, we suppose that $t=1$. By the same way as in the proof of Theorem 2.3, it suffices to check the case where the following words appear in $\mathbf{t}=\left(t_{n}\right)_{n=0}^{\infty}$ only finitely many times:

$$
\begin{gathered}
U_{1}=1,1 ; \quad U_{2}=-1,-1 ; \quad U_{3}=1,0,1 ; \quad U_{4}=-1,0,-1 \\
U_{5}=1,0,0,1 ; \quad U_{6}=-1,0,0,-1 ; \quad U_{7}=0,0,0
\end{gathered}
$$

Consequently, there exists an $M \geq 0$ such that

$$
t_{M}, t_{M+1}, t_{M+2}, \ldots=1, \underbrace{0, \ldots, 0}_{x_{0}},-1, \underbrace{0, \ldots, 0}_{x_{1}}, 1, \underbrace{0, \ldots, 0}_{x_{2}},-1, \ldots,
$$

where

$$
x_{n} \in\{0,1,2\} \quad(n=0,1,2, \ldots) .
$$

Suppose that $x_{n}=2$ for infinitely many n. Then we may assume that

$$
\mu_{2}<2 \mu_{3}
$$

since by (2.4)

$$
\limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\|-\psi \geq\left(\mu_{0}-\mu_{3}\right)-\left(\mu_{0}-\mu_{2}+\mu_{3}\right)=\mu_{2}-2 \mu_{3}
$$

Let $\left(\tau_{n}\right)_{n=0}^{\infty}$ be defined by the recurrence

$$
\tau_{0}=1, \tau_{n+1}=(\sqrt{5}-1) \frac{1+\tau_{n}+\tau_{n}^{2}+\tau_{n}^{3}}{1+\tau_{n}+\tau_{n}^{2}}-1
$$

Then $\left(\tau_{n}\right)_{n=0}^{\infty}$ is a positive decreasing sequence, which converges to $\tau=0.25093 \ldots$ as n tends to infinity. Put

$$
p=\max \left\{\alpha^{-1}, \alpha_{2}^{-1}\right\}, q=\min \left\{\alpha^{-1}, \alpha_{2}^{-1}\right\} .
$$

Now we verify that

$$
\begin{equation*}
q \leq \tau p \tag{4.2}
\end{equation*}
$$

checking that

$$
\begin{equation*}
q \leq \tau_{n} p(n=0,1, \ldots) \tag{4.3}
\end{equation*}
$$

by induction on n. The inequality (4.3) is clear if $n=0$. Suppose $n \geq 1$. By the induction hypothesis we have

$$
\begin{aligned}
0<2 \mu_{3}-\mu_{2} & =\mu_{2}(2 p-1)+\frac{2}{\left|a_{0}\right|} q^{3} \\
& \leq \mu_{2}\left(2 p \frac{1+\tau_{n}+\tau_{n}^{2}+\tau_{n}^{3}}{1+\tau_{n}+\tau_{n}^{2}}-1\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
p & \geq \frac{1+\tau_{n}+\tau_{n}^{2}}{2\left(1+\tau_{n}+\tau_{n}^{2}+\tau_{n}^{3}\right)} \\
q & \leq \frac{\sqrt{5}-1}{2}-\frac{1+\tau_{n}+\tau_{n}^{2}}{2\left(1+\tau_{n}+\tau_{n}^{2}+\tau_{n}^{3}\right)}
\end{aligned}
$$

Hence we obtain $q \leq \tau_{n+1} p$. Moreover, we have the following:

$$
\begin{align*}
\frac{\sqrt{5}-1}{2} \geq p & \geq \frac{1+\tau+\tau^{2}}{2\left(1+\tau+\tau^{2}+\tau^{3}\right)}=0.49405 \ldots \tag{4.4}\\
q & \leq 0.12397 \ldots \tag{4.5}
\end{align*}
$$

Since $\left(x_{n}\right)_{n=0}^{\infty}$ is not ultimately periodic, there exist infinitely many $n \geq 0$ such that $x_{n}=2$ and $x_{n+1} \leq 1$. Thus by (2.4)

$$
\limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\| \geq \mu_{0}-\mu_{3}+\min \left\{\mu_{4}-\mu_{5}, \mu_{5}-\mu_{6}\right\}
$$

Since

$$
\begin{aligned}
\mu_{4}-2 \mu_{5}+\mu_{6} & \geq\left(1-2 p+p^{2}\right) \mu_{4}-\frac{2}{\left|a_{0}\right|} q^{5} \\
& \geq\left(\frac{7-3 \sqrt{5}}{2}-\frac{2 q}{1+\tau^{-1}+\tau^{-2}+\tau^{-3}+\tau^{-4}}\right) \mu_{4} \\
& >0
\end{aligned}
$$

we get

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\|-\psi & \geq \mu_{2}-2 \mu_{3}+\mu_{4}+\mu_{5}-2 \mu_{6} \\
& \geq\left(1-2 p+p^{2}+p^{3}-2 p^{4}\right) \mu_{2}-\frac{3}{\left|a_{0}\right|} q^{3} \\
& >0 .
\end{aligned}
$$

In what follows, we suppose that $x_{n} \in\{0,1\}$ for all n. We may assume that the sequence $\mathbf{y}=\left(y_{n}\right)_{n=0}^{\infty}$, where $y_{n}=1+x_{n}$, satisfies the second statement of Proposition 3.3. Let N, m, w and v be as in the proof of Theorem 2.3. Then by (2.4)

$$
\limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\|-\psi \geq \mu_{1+w}-\mu_{2+w}-\mu_{1+w+v}
$$

and so we may assume that $v=1$ and that $2 \mu_{2+w} \geq \mu_{1+w}$. Since $\left(\mu_{n+1} / \mu_{n}\right)_{n=0}^{\infty}$ is a decreasing sequence, we see that $2 \mu_{3}>\mu_{2}$. Therefore the inequalities (4.2), (4.4) and (4.5) hold.

Assume that N is odd. Then by (2.4)

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\|-\psi \geq \mu(1+w)-2 \mu(2+w) & +\sum_{i=0}^{3}(-1)^{i} \mu\left(2+w+\sum_{k=0}^{i} w_{N+1+k}\right) \\
& +\sum_{i=0}^{3}(-1)^{i} \mu\left(2+w+\sum_{k=0}^{i} y_{m+N+2+k}\right)
\end{aligned}
$$

where

$$
\mu(h)=\mu_{h}
$$

for $h \geq 0$. Since $y_{n} \in\{1,2\}$ for each n, it is easy to check

$$
\begin{aligned}
\sum_{i=0}^{3}(-1)^{i} & \mu\left(2+w+\sum_{k=0}^{i} y_{m+N+2+k}\right) \\
& \geq \mu(4+w)-\mu(5+w)+\mu(7+w)-\mu(8+w)
\end{aligned}
$$

Since $w_{N}=2$ and since \mathbf{w} is a concatenation of the words $A_{2}=2,1,1$ and $A_{3}=2,1,1,2,2$, we have

$$
\left(w_{N+1}, w_{N+2}, w_{N+3}, w_{N+4}\right) \in\{(1,1,2,1),(1,1,2,2),(2,1,1,2),(2,2,1,1)\} .
$$

Thus we get

$$
\begin{aligned}
\sum_{i=0}^{3}(-1)^{i} & \mu\left(2+w+\sum_{k=0}^{i} w_{N+1+k}\right) \\
& \geq \mu(4+w)-\mu(5+w)+\mu(6+w)-\mu(8+w)
\end{aligned}
$$

Using (4.4), (4.5), and $w \geq 3$, we obtain

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} & \left\|\xi \alpha^{n}\right\|-\psi \\
& \geq\left(1-2 p+2 p^{3}-2 p^{4}+p^{5}+p^{6}-2 p^{7}\right) \mu(1+w)-\frac{4 q^{2+w}}{\left|a_{0}\right|} \\
& \geq\left(\frac{\sqrt{5}-1}{2}\right)^{8} \mu(1+w)-\frac{4 q^{2+w}}{\left|a_{0}\right|}>0
\end{aligned}
$$

Next, we consider the case where N is even. Then by (2.4) we have

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\|-\psi \geq \mu(1+w)-2 \mu(2+w) & +\sum_{i=0}^{3}(-1)^{i} \mu\left(2+w+\sum_{k=0}^{i} w_{N+2+k}\right) \\
& +\sum_{i=0}^{3}(-1)^{i} \mu\left(2+w+\sum_{k=0}^{i} y_{m+N+1+k}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{i=0}^{3}(-1)^{i} \mu\left(2+w+\sum_{k=0}^{i} y_{m+N+1+k}\right) \\
& \quad \geq \mu(4+w)-\mu(5+w)+\mu(7+w)-\mu(8+w)
\end{aligned}
$$

Since $w_{N}=w_{N+1}=1$, we get

$$
\left(w_{N+2}, w_{N+3}, w_{N+4}, w_{N+5}\right) \in\{(2,1,1,2),(2,2,2,1)\}
$$

and so

$$
\begin{aligned}
\sum_{i=0}^{3}(-1)^{i} & \mu\left(2+w+\sum_{k=0}^{i} w_{N+2+k}\right) \\
& \geq \mu(4+w)-\mu(5+w)+\mu(6+w)-\mu(8+w)
\end{aligned}
$$

Hence we obtain

$$
\limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\|>\psi
$$

5. Geometric sequences with small fractional parts

Koksma [10] proved that, if any real number $\alpha>1$ is given, the sequence $\left(\xi \alpha^{n}\right)_{n=0}^{\infty}$ is uniformly distributed modulo 1 for almost all ξ. Similarly, if any nonzero real number ξ is given, the sequence $\left(\xi \alpha^{n}\right)_{n=0}^{\infty}$ is uniformly distributed modulo 1 for almost all $\alpha>1$. In this section we study the exceptional set of Koksma's Theorem. Boyd proved the following:

THEOREM 5.1 (Boyd [3]). Let δ, M be arbitrary positive numbers. Then the set of real numbers $\alpha \geq M$ such that

$$
\sup _{n \geq 0}\left\|\xi \alpha^{n}\right\| \leq \frac{1}{(\alpha-1)(\alpha-3)}
$$

for some ξ with $|\xi-2| \leq \delta$ is uncountable.
It is known that there exist only countable pairs (ξ, α), where $\xi \neq 0$ and $\alpha>1$, satisfying

$$
\limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\|<\frac{1}{2(1+\alpha)^{2}}
$$

(see for instance [2, p.95]).
We now consider the exceptional set of Koksma's Theorem for a fixed $\alpha>1$. Tijdeman [12] proved for any $\alpha>1$ that there exists a nonzero ξ such that $\left\{\xi \alpha^{n}\right\}=\xi \alpha^{n}-\left[\xi \alpha^{n}\right]$ and $\left[\xi \alpha^{n}\right] \leq 1 /(\alpha-1)(n=0,1, \ldots)$ is the largest integer not greater than $\xi \alpha^{n}$. By the same way as Tijdeman we can prove the existence of ξ such that $\left\|\xi \alpha^{n}\right\| \leq 1 /(2 \alpha-2)(n=0,1, \ldots)$. We note that Dubickas $[4,7]$ obtained sharper estimation.

Next, we consider the exceptional set for a fixed nonzero ξ.
THEOREM 5.2. (1) Let ξ be a nonzero real number. Then for arbitrary positive numbers δ and M, the set of real numbers α with $\alpha>M$ satisfying

$$
\limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\| \leq \frac{1+\delta}{2 \alpha}
$$

is at least countable.
(2) Let ξ be a nonzero real number. Then for arbitrary positive numbers δ and M, the set of real numbers α with $\alpha>M$ satisfying

$$
\limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\| \leq \frac{1+\delta}{\alpha}
$$

is uncountable.
Proof. We may assume $\xi>0$. First we prove the statement (1) of the theorem. Take any positive integer R with $R \geq \max \left\{12, \xi, \xi^{-1 / 2}\right\}$. We define the sequence $\left(z_{n}\right)_{n=0}^{\infty}$ by

$$
z_{1}=R^{2}, \quad z_{n+1}=u\left(\xi^{-1 / n} z_{n}^{(n+1) / n}\right)(n=1,2, \ldots)
$$

Since $R \geq \xi$, we can easily check by induction on n that

$$
z_{n} \geq R^{n+1}
$$

We put

$$
\beta_{n}=\xi^{-1 / n} z_{n}^{1 / n}
$$

Since

$$
\left|z_{n+1}-\xi^{-1 / n} z_{n}^{(n+1) / n}\right| \leq \frac{1}{2}
$$

we have

$$
\begin{equation*}
\left|\beta_{n}-\beta_{n+1}\right| \leq \frac{1}{2} \xi^{-1}\left(\sum_{i=0}^{n} \beta_{n+1}^{i} \beta_{n}^{n-i}\right)^{-1} \tag{5.1}
\end{equation*}
$$

We denote the right-hand side of (5.1) by q_{n}. Since

$$
\begin{equation*}
q_{n} \leq \frac{1}{2} \xi^{-1}(n+1)^{-1} R^{-n} \tag{5.2}
\end{equation*}
$$

the sequence $\left(\beta_{n}\right)_{n=1}^{\infty}$ converges. Let $\alpha=\lim _{n \rightarrow \infty} \beta_{n}$. Using (5.2) and

$$
\beta_{n+1} \geq \beta_{n}\left(1-\beta_{n}^{-1} q_{n}\right) \geq \beta_{n}\left(1-R^{-1} q_{n}\right)
$$

we obtain

$$
\begin{aligned}
\beta_{n} & \geq \beta_{1} \prod_{i=1}^{n-1}\left(1-\frac{1}{2} \xi^{-1}(i+1)^{-1} R^{-i-1}\right) \\
& \geq \xi^{-1} R^{2} \prod_{i=2}^{\infty}\left(1-\frac{1}{2} \xi^{-1} i^{-1} R^{-i}\right) .
\end{aligned}
$$

In what follows, C_{1}, C_{2}, and C_{3} denote positive constants depending only on ξ. Then

$$
\beta_{n} \geq \xi^{-1} R^{2}\left(1-C_{1} R^{-2}\right)
$$

By considering only the case where R is sufficiently large, we may assume that

$$
C_{1} R^{-2} \leq \frac{1}{2}
$$

Thus

$$
\begin{aligned}
\frac{q_{n+1}}{q_{n}} & \leq \frac{\sum_{i=0}^{n} \beta_{n+1}^{i} \beta_{n}^{n-i}}{\beta_{n+1} \sum_{i=0}^{n} \beta_{n+2}^{i} \beta_{n+1}^{n-i}} \\
& \leq \xi R^{-2}\left(1-C_{1} R^{-2}\right)^{-1}\left(1-\frac{1}{2} \xi^{-1} R^{-2}(n+1)^{-1}\right)^{-n} \\
& \leq \xi R^{-2}\left(1+2 C_{1} R^{-2}\right)\left(1+\xi^{-1} R^{-2}(n+1)^{-1}\right)^{n} \\
& \leq \xi R^{-2}\left(1+2 C_{1} R^{-2}\right)\left(1+2 \xi^{-1} R^{-2}\right) \\
& \leq 6 \xi R^{-2}
\end{aligned}
$$

and so

$$
\left|\alpha-\beta_{n}\right| \leq \sum_{i=0}^{\infty} q_{n+i} \leq\left(1+12 \xi R^{-2}\right) q_{n}
$$

for any $n \geq 1$. Therefore

$$
\begin{aligned}
\left|\xi \alpha^{n}-z_{n}\right| & \leq \xi\left|\alpha-\beta_{n}\right| \sum_{i=0}^{n-1} \alpha^{i} \beta_{n}^{n-1-i} \\
& \leq \frac{1}{2}\left(1+12 \xi R^{-2}\right) \frac{\sum_{i=0}^{n-1} \alpha^{i} \beta_{n}^{n-1-i}}{\sum_{i=0}^{n} \beta_{n+1}^{i} \beta_{n}^{n-i}} \\
& \leq \frac{1}{2} \xi R^{-2}\left(1+12 \xi R^{-2}\right)\left(1-C_{1} R^{-2}\right)^{-1} \frac{\sum_{i=0}^{n-1} \alpha^{i} \beta_{n}^{n-1-i}}{\sum_{i=0}^{n-1} \beta_{n+1}^{i} \beta_{n}^{n-1-i}} \\
& \leq \frac{1}{2} \xi R^{-2}\left(1+C_{2} R^{-2}\right)
\end{aligned}
$$

for $n \geq 1$. We may assume that

$$
\frac{1}{2} \xi R^{-2}\left(1+C_{2} R^{-2}\right)<\frac{1}{2}
$$

Hence

$$
\left|\xi R^{-2}-\alpha^{-1}\right|=\frac{1}{\alpha R^{2}}\left|\xi \alpha-z_{1}\right|<\frac{1}{2 \alpha R^{2}}
$$

and so

$$
\left|\xi \alpha^{n}-z_{n}\right| \leq \frac{1+C_{3} R^{-2}}{2 \alpha}
$$

Since z_{n} is a rational integer, the statement (1) was proved.

Next we prove the statement (2). Take any sufficiently large integer R. Let $\mathbf{p}=\left(p_{n}\right)_{n=0}^{\infty}$ be a sequence with $p_{n} \in\{0,1\}$. We define the sequence $\left(z_{n}(\mathbf{p})\right)_{n=0}^{\infty}$ by

$$
\begin{aligned}
z_{1}(\mathbf{p}) & =R^{2} \\
z_{n+1}(\mathbf{p}) & =\left[\xi^{-1 / n} z_{n}(\mathbf{p})^{(n+1) / n}\right]+p_{n}(n=1,2, \ldots)
\end{aligned}
$$

Then we have

$$
\left|\xi^{-1 / n} z_{n}(\mathbf{p})^{(n+1) / n}-z_{n+1}(\mathbf{p})\right| \leq 1
$$

By the same way as in the proof of statement (1) we can check that the sequence $\left(\xi^{-1 / n} z_{n}(\mathbf{p})^{1 / n}\right)_{n=1}^{\infty}$ has a limit $\alpha(\mathbf{p})$ and that

$$
\left|\xi \alpha(\mathbf{p})^{n}-z_{n}(\mathbf{p})\right| \leq \frac{1+\delta}{\alpha}<\frac{1}{2}
$$

This implies the statement (2). In fact, if the sequences \mathbf{p} and \mathbf{p}^{\prime} are different, then $\alpha(\mathbf{p}) \neq \alpha\left(\mathbf{p}^{\prime}\right)$.

In contrast with Tijdeman's result and Theorem 5.2, the following theorem implies that, if $\alpha>1$ (resp. $\xi \neq 0$), then the set of nonzero ξ (resp. $\alpha>1$) satisfying a stronger inequality is at most countable.

THEOREM 5.3. (1) Let $\alpha>1$. Then the set of real numbers ξ satisfying

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\|<\frac{1}{2 \alpha+2} \tag{5.3}
\end{equation*}
$$

is at most countable.
(2) Let ξ be a nonzero real number. Then the set of real numbers α with $\alpha>1$ satisfying

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|\xi \alpha^{n}\right\|<\frac{1}{2 \alpha+2} \tag{5.4}
\end{equation*}
$$

is at most countable.
Proof. If ξ satisfies (5.3), we have

$$
\left|u\left(\xi \alpha^{n+1}\right)-\alpha u\left(\xi \alpha^{n}\right)\right|=\left|\varepsilon\left(\xi \alpha^{n+1}\right)-\alpha \varepsilon\left(\xi \alpha^{n}\right)\right|<\frac{1}{2}
$$

for all large n. Thus we get

$$
u\left(\xi \alpha^{n+1}\right)=u\left(\alpha u\left(\xi \alpha^{n}\right)\right)
$$

It is clear that the set of the sequences $\left(y_{n}\right)_{n=0}^{\infty}$ of rational integers satisfying $y_{n+1}=u\left(\alpha y_{n}\right)$ for all sufficiently large n is countable. Thus the statement (1) was proved. In fact, if $\xi \neq \xi^{\prime}$, then the sequences $\left(u\left(\xi \alpha^{n}\right)\right)_{n=0}^{\infty}$ and $\left(u\left(\xi^{\prime} \alpha^{n}\right)\right)_{n=0}^{\infty}$ are different.

Similarly, for the proof of the statement (2) it is sufficient to check the following: If α satisfies (5.4), then

$$
u\left(\xi \alpha^{n+1}\right)=u\left(\xi^{-1 / n} u\left(\xi \alpha^{n}\right)^{(n+1) / n}\right)
$$

for all large n. Putting

$$
u_{n}=u\left(\xi \alpha^{n}\right) \text { and } \varepsilon_{n}=\varepsilon\left(\xi \alpha^{n}\right)
$$

we have

$$
\begin{aligned}
\left|u_{n+1}-\xi^{-1 / n} u_{n}^{(n+1) / n}\right| & \leq\left|u_{n+1}-\xi \alpha^{n+1}\right|+\left|\xi^{-1 / n} u_{n}^{(n+1) / n}-\xi \alpha^{n+1}\right| \\
& \leq\left|\varepsilon_{n+1}\right|+\left|\xi \alpha^{n+1}\right|\left|\left(1-\varepsilon_{n} \xi^{-1} \alpha^{-n}\right)^{(n+1) / n}-1\right|
\end{aligned}
$$

Using the mean value theorem, we obtain

$$
\left(1-\varepsilon_{n} \xi^{-1} \alpha^{-n}\right)^{(n+1) / n}=1-\varepsilon_{n} \xi^{-1} \alpha^{-n} \frac{n+1}{n}\left(1-\delta \varepsilon_{n} \xi^{-1} \alpha^{-n}\right)^{1 / n}
$$

where $0<\delta<1$. Hence we conclude that

$$
\left|u_{n+1}-\xi^{-1 / n} u_{n}^{(n+1) / n}\right|<\frac{1}{2}
$$

for all large n.

Acknowledgements

I would like to thank Prof. Masayoshi Hata and Prof. Takaaki Tanaka for many suggestions and for improving the language of this paper. I am also grateful to Prof. Artūras Dubickas and Prof. Shigeki Akiyama for giving me helpful comments. The referee gave me fruitful information about the reference paper ([7, 12]).

References

[1] J.-P. Allouche, A. Arnold, J. Berstel, S. Brlek, W. Jockusch, S. Plouffe, and B. E. Sagan, A relative of the Thue-Morse sequence, Discrete Math. 139 (1995), 455-461.
[2] M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, and J. P. Schreiber, Pisot and Salem numbers, Birkhäuser Verlag, Basel, 1992.
[3] D. W. Boyd, Transcendental numbers with badly distributed powers, Proc. Amer. Soc. 23 (1969), 424-427.
[4] A. Dubickas, An approximation property of lacunary sequences, to appear in Israel Journal of Mathematics.
[5] A. Dubickas, Arithmetical properties of powers of algebraic numbers, Bull. London Math. Soc. 38 (2006), 70-80.
[6] A. Dubickas, On the distance from a rational power to the nearest integer, J. Number Theory 117 (2006), 222-239.
[7] A. Dubickas, On the fractional parts of lacunary sequences. Math. Scand. 99 (2006), 136-146.
[8] A. Dubickas, There are infinitely many limit points of the fractional parts of powers, Proc. Indian Acad. Sci. Math. Sci. 115 (2005), 391-397.
[9] D. H. Hardy, A problem of diophantine approximation, Collected papers of G. H. Hardy I, Clarendon Press, Oxford, 124-129.
[10] J. F. Koksma, Ein mengen-theoretischer Satz über Gleichverteilung modulo eins, Compositio Math. 2 (1935), 250-258.
[11] K. Mahler, An unsolved problems on the powers of 3/2, J. Austral. Math. Soc. 8 (1968), 313-321.
[12] R. Tijdeman, Note on Mahler's $\frac{3}{2}$-problem, K. Norske Vidensk. Selsk. Skr. 16 (1972), 1-4.
[13] H. Weyl, Über die Gleichverteilung von Zahlen mod Eins, Math. Ann. 77 (1916), 313-352.
Department of Mathematics, Kyoto University
Oiwake-tyou
Kitashirakawa
Kyoto-shi, Kyoto, Japan
e-mail: kanekoha@math.kyoto-u.ac.jp
Hajime Kaneko

