Distribution of geometric sequences modulo 1

Hajime Kaneko

Abstract. Let $||\xi\alpha^n||$ denote the distance from $\xi\alpha^n$ to the nearest integer. In this paper we obtain a new lower bound for $\limsup_{n\to\infty} ||\xi\alpha^n||$ if α is an algebraic irrational number whose conjugates have moduli greater than 1.

1. Introduction

Weyl [13] proved that an arithmetic progression is uniformly distributed modulo 1 if and only if its common difference is irrational. Moreover, it is known that a sequence $(P(n))_{n=0}^{\infty}$, where $P(X) \in \mathbb{R}[X]$, is uniformly distributed modulo 1 if and only if $P(X) - P(0) \notin \mathbb{Q}[X]$. On the other hand, for geometric progressions no criteria of uniform distribution modulo 1 have been known so far.

In this paper we estimate the maximal limit points of the sequence $(||\xi\alpha^n||)_{n=0}^{\infty}$, where ξ is a nonzero real number, α is an algebraic number with $\alpha > 1$, and ||x|| denotes the distance from the real number x to the nearest integer.

Maximal limit points are known if α is an algebraic integer whose conjugates different from α have absolute values not greater than 1. For such an α , if its conjugates different from α have absolute values strictly less than 1, α is called a Pisot number. Otherwise α is called a Salem number. Hardy [9] proved for algebraic $\alpha > 1$ that $\lim_{n\to\infty} ||\xi\alpha^n|| = 0$ for some nonzero ξ if and only if α is a Pisot number. Dubickas [6] proved for algebraic $\alpha > 1$ that

$$\inf_{\xi \neq 0} \limsup_{n \to \infty} ||\xi \alpha^n|| = 0$$

if and only if α is a Pisot or Salem number. It is a natural problem to determine the value

$$\mathcal{E}(\alpha) = \inf_{\xi \neq 0} \limsup_{n \to \infty} ||\xi \alpha^n||$$

in the case where α is neither a Pisot nor Salem number. We denote the length of a polynomial $C(X) = \sum_{i=0}^{m} c_i X^i \in \mathbb{R}[X]$ by $L(C(X)) = \sum_{i=0}^{m} |c_i|$. Let P(X) be

the minimal polynomial of α . We denote the reduced length of α by

$$l(\alpha) = \inf_{B(X) \in \Gamma} L(P(X)B(X))$$

where

$$\Gamma = \{ B(X) = b_0 + b_1 X + \dots + b_m X^m \in \mathbb{R}[X] \mid b_0 = 1 \text{ or } b_m = 1 \}.$$

Dubickas [6] proved that

$$\mathcal{E}(\alpha) \ge \max\left\{\frac{1}{L(P(X))}, \frac{1}{2l(\alpha)}\right\}$$
(1.1)

if α is neither a Pisot nor Salem number. If $\alpha = p/q$, where p and q are integers with $p > q \ge 2$ and gcd(p,q) = 1, the inequality (1.1) implies

$$\mathcal{E}\left(\frac{p}{q}\right) \ge \frac{1}{p+q}.$$
(1.2)

Dubickas [6] further obtained

$$\mathcal{E}\left(\frac{p}{q}\right) \ge \frac{1}{p}E_1\left(\frac{q}{p}\right),$$
(1.3)

where E_1 is defined by Mahler function as follows:

$$E_1(X) = \frac{1 - (1 - X) \prod_{i=0}^{\infty} \left(1 - X^{2^i}\right)}{2X}.$$
(1.4)

The inequality (1.3) is sharper than (1.2) since

$$\frac{1}{p}E_1\left(\frac{q}{p}\right) - \frac{1}{p+q} = \frac{p-q}{2q(p+q)}\left\{1 - \left(1 - \frac{q^2}{p^2}\right)\prod_{i=1}^{\infty}\left(1 - \frac{q^{2^i}}{p^{2^i}}\right)\right\} > 0.$$

The main purpose of this paper is to generalize the inequality (1.3) to the case of irrational α whose conjugates have absolute values greater than 1.

2. Main results

First we give a lower bound for $\mathcal{E}(\alpha)$ in the case where α is a quadratic irrational number. The theorems in this section give improvements of the inequality (1.1).

THEOREM 2.1. Let $\alpha > 1$ be a quadratic irrational number with the minimal polynomial $a_2X^2 + a_1X + a_0 \in \mathbb{Z}[X]$, where $a_2 > 0$ and $gcd(a_2, a_1, a_0) = 1$. Let α_2 be the conjugate of α . Assume that $\alpha_2 > 1$ and that

$$\alpha^{-1} + \alpha_2^{-1} \le \frac{\sqrt{5} - 1}{2}.$$
(2.1)

Then

$$\mathcal{E}(\alpha) \ge \frac{1}{a_0} E_2(\alpha^{-1}, \alpha_2^{-1}),$$

where

$$E_2(X,Y) = \frac{XE_1(X) - YE_1(Y)}{X - Y}.$$

REMARK 2.2. Let α be a quadratic irrational number satisfying the assumptions of Theorem 2.1. By Dubickas's formula of reduced length in [5], we get

$$\mathcal{E}(\alpha) \geq \max\left\{\frac{1}{L(P(X))}, \frac{1}{2|a_0|}\right\} = \frac{1}{L(P(X))}$$
$$= \frac{1}{|a_0|} \frac{1}{1 + \alpha^{-1} + \alpha_2^{-1} + \alpha^{-1}\alpha_2^{-1}}.$$

By using Lemma 2.1 at the end of this section, we can rewrite $E_2(\alpha^{-1}, \alpha_2^{-1})$ as an alternative series. Thus we get

$$E_2(\alpha^{-1}, \alpha_2^{-1}) > 1 - \alpha^{-2} - \alpha^{-1}\alpha_2^{-1} - \alpha_2^{-2},$$

and so

$$\frac{1}{|a_0|} E_2(\alpha^{-1}, \alpha_2^{-1}) > \max\left\{\frac{1}{L(P(X))}, \frac{1}{2|a_0|}\right\}.$$

Now we give an example. Put $\alpha = 4 + \sqrt{2}$ and $\alpha_2 = 4 - \sqrt{2}$. By the inequality (1.1) we get

$$\mathcal{E}(4+\sqrt{2}) \ge 0.0434\dots$$

Since α and α_2 satisfy the conditions in Theorem 2.1, we have

$$\mathcal{E}(4+\sqrt{2}) \ge 0.0581\dots$$

We note that we calculate the value $E_2(\alpha^{-1}, \alpha_2^{-1})$ by using Lemma 2.1.

On the other hand, for any $\alpha > 1$ we have

$$\mathcal{E}(\alpha) \le \frac{1}{2\alpha - 2} \tag{2.2}$$

(see Section 5). By (2.2) we have

$$\mathcal{E}(4+\sqrt{2}) \le 0.113\dots$$

Next we consider the case where α is an algebraic number with arbitrary degree. In what follows, we write the symmetric homogeneous polynomial of degree m as

$$\rho_m(X_1, X_2, \dots, X_r) = \sum_{\substack{i_1, i_2, \dots, i_r \ge 0\\i_1 + i_2 + \dots + i_r = m}} X_1^{i_1} X_2^{i_2} \cdots X_r^{i_r}.$$
(2.3)

We note that (2.1) is equivalent to

$$0 < \rho_{m+1}(\alpha^{-1}, \alpha_2^{-1}) \le \frac{\sqrt{5} - 1}{2} \rho_m(\alpha^{-1}, \alpha_2^{-1})$$
(2.4)

for all $m \ge 0$.

In order to estimate $\mathcal{E}(\alpha)$ in this case we need a stronger assumption than that of Theorem 2.1.

THEOREM 2.3. Let α be an algebraic irrational number with $|\alpha| > 1$ and let $\alpha_1(=\alpha), \alpha_2, \ldots, \alpha_d$ be the conjugates of α . Denote the minimal polynomial of α by $P(X) = a_d X^d + a_{d-1} X^{d-1} + \cdots + a_0 \in \mathbb{Z}[X]$, where $a_d > 0$ and $gcd(a_d, a_{d-1}, \ldots, a_0) = 1$. Assume

$$|\alpha_i| > 1 \ (i = 1, 2, \dots, d)$$

and

$$0 < \rho_{m+1}(\alpha^{-1}, \alpha_2^{-1}, \dots, \alpha_d^{-1}) \le \frac{1}{2}\rho_m(\alpha^{-1}, \alpha_2^{-1}, \dots, \alpha_d^{-1}) \ (m = 0, 1, \dots).$$
 (2.5)

Then

$$\mathcal{E}(\alpha) \ge \frac{1}{|a_0|} E_d(\alpha^{-1}, \alpha_2^{-1}, \dots, \alpha_d^{-1}),$$

where

$$E_d(X_1, X_2, \dots, X_d) = \sum_{i=1}^d \left(\prod_{\substack{1 \le j \le d \\ j \ne i}} \frac{1}{X_i - X_j}\right) X_i^{d-1} E_1(X_i)$$

and E_1 is defined by (1.4).

REMARK 2.4. Let α be an algebraic number satisfying the assumptions of Theorem 2.3. By the same way as in Remark 2.3, we have

$$\max\left\{\frac{1}{L(P(X))}, \frac{1}{2l(\alpha)}\right\} = \max\left\{\frac{1}{L(P(X))}, \frac{1}{2|a_0|}\right\}$$
$$\leq \frac{1}{|a_0|} \frac{1}{1 + \rho_1(\alpha^{-1}, \alpha_2^{-1}, \dots, \alpha_d^{-1})}$$

and

$$E_d(\alpha^{-1}, \alpha_2^{-1}, \dots, \alpha_d^{-1}) > 1 - \rho_2(\alpha^{-1}, \alpha_2^{-1}, \dots, \alpha_d^{-1}).$$

Thus we get

$$\frac{1}{|a_0|} E_d(\alpha^{-1}, \alpha_2^{-1}, \dots, \alpha_d^{-1}) > \max\left\{\frac{1}{L(P(X))}, \frac{1}{2l(\alpha)}\right\}.$$

We now set

$$\rho_m(X_1, X_2, \dots, X_d) = 0 \ (-d+1 \le m \le -1).$$
(2.6)

By the equality

$$\sum_{n=-d+1}^{\infty} \rho_n(\alpha^{-1}, \alpha_2^{-1}, \dots, \alpha_d^{-1}) X^n \sum_{i=0}^d a_i X^i = a_0$$

we get

$$a_{0}\rho_{m}(\alpha^{-1}, \alpha_{2}^{-1}, \dots, \alpha_{d}^{-1}) + a_{1}\rho_{m-1}(\alpha^{-1}, \alpha_{2}^{-1}, \dots, \alpha_{d}^{-1}) + \dots + a_{d}\rho_{m-d}(\alpha^{-1}, \alpha_{2}^{-1}, \dots, \alpha_{d}^{-1}) = 0 \ (m = 1, 2, \dots).$$
(2.7)

By using (2.7) to check the inequality (2.5), we obtain the following:

COROLLARY 2.5. Let α be an algebraic irrational number with $|\alpha| > 1$. Denote the minimal polynomial of α by $P(X) = a_d X^d + a_{d-1} X^{d-1} + \cdots + a_0 \in \mathbb{Z}[X]$, where $a_d > 0$ and $gcd(a_d, a_{d-1}, \ldots, a_0) = 1$. Assume

$$a_i \ge 0 \ (1 \le i \le d)$$

and

$$a_0 \le -2a_1 - 2a_2 - \dots - 2a_d$$

Then

$$\mathcal{E}(\alpha) \ge \frac{1}{|a_0|} E_d(\alpha^{-1}, \alpha_2^{-1}, \dots, \alpha_d^{-1}).$$

We estimate $\mathcal{E}(\alpha)$ in the case where $\alpha = 7\sqrt[3]{2} - 7$. The minimal polynomial of α is $X^3 + 21X^2 + 147X - 343$. The inequality (1.1) implies

$$\mathcal{E}(7\sqrt[3]{2}-7) \ge 0.00195\dots$$

Since α satisfies the conditions in Corollary 2.5, we have

$$\mathcal{E}(7\sqrt[3]{2}-7) \ge 0.00242\dots$$

We note that we calculate the value $E_d(\alpha^{-1}, \alpha_2^{-1}, \ldots, \alpha_d^{-1})$ by using Lemma 2.1.

We can apply Theorem 2.3 to the case where $\alpha > 1$ is a quadratic irrational number whose Galois conjugate is less than -1.

COROLLARY 2.6. Let $\alpha > 1$ be a quadratic irrational number with the minimal polynomial $a_2X^2 + a_1X + a_0 \in \mathbb{Z}[X]$, where $a_2 > 0$ and $gcd(a_2, a_1, a_0) = 1$. Let α_2 be the conjugate of α . Put $\zeta = 1$ if $\alpha < |\alpha_2|$, otherwise put $\zeta = -1$.

Assume $\alpha_2 < -1$ and

$$0 < \rho_{m+1}(\zeta \alpha^{-1}, \zeta \alpha_2^{-1}) \le \frac{1}{2} \rho_m(\zeta \alpha^{-1}, \zeta \alpha_2^{-1}) \ (i = 0, 1).$$

Then

$$\mathcal{E}(\alpha) \ge \frac{1}{|a_0|} E_2(\zeta \alpha^{-1}, \zeta \alpha_2^{-1}).$$

In the rest of this section we determine the Taylor expansion of the function $E_d(X_1, X_2, \ldots, X_d)$ at the origin. The calculation was obtained by Dubickas [6] if d = 1. Let A_n $(n = 0, 1, \ldots)$ be finite words given by $A_0 = 2$, $A_1 = 2 \ 1 \ 1$ and

$$A_n = A_{n-1}A_{n-2}A_{n-2}.$$

Let $\mathbf{w} = (w_n)_{n=0}^{\infty}$ be a sequence defined by

$$\mathbf{w} = A_1 A_0 A_0 A_1 A_1 A_2 A_2 \dots A_n A_n \dots$$

= 2,1,1,2,2,2,1,1,2,1,1,...

Then we define the finite words γ_n (n = 0, 1, ...) and the sequence $\mathbf{e} = (e_n)_{n=0}^{\infty}$ as follows:

$$\gamma_n = \begin{cases} \emptyset & \text{if } w_n = 1, \\ 0 & \text{if } w_n = 2; \end{cases}$$

$$\mathbf{e} = 1, \gamma_0, -1, \gamma_1, 1, \gamma_2, -1, \gamma_3, 1, \gamma_4, -1, \dots$$

$$= 1, 0, -1, 1, -1, 0, 1, 0, -1, \dots$$

LEMMA 2.1. The function $E_d(X_1, X_2, \ldots, X_d)$ is represented as

$$E_d(X_1, X_2, \dots, X_d) = \sum_{i=0}^{\infty} \rho_i(X_1, X_2, \dots, X_d) e_i.$$
 (2.8)

Proof. Since

$$E_1(X) = \sum_{i=0}^{\infty} (-1)^i X^{w_0 + w_1 + \dots + w_{i-1}},$$

we have

$$E_d(X_1, X_2, \dots, X_d) = \sum_{i=0}^{\infty} (-1)^i \sum_{\substack{j=1\\k \neq j}}^d \prod_{\substack{1 \le k \le d\\k \neq j}} \frac{1}{X_j - X_k} X_j^{w_0 + w_1 + \dots + w_{i-1} + d-1}$$
$$= \sum_{i=0}^{\infty} (-1)^i \rho_{w_0 + w_1 + \dots + w_{i-1}} (X_1, X_2, \dots, X_d)$$
$$= \sum_{i=0}^{\infty} \rho_i (X_1, X_2, \dots, X_d) e_i.$$

Note that we use Lemma 3.1 to check the second equation.

3. Preliminaries

We define the integral part and the fractional part of a real number.

DEFINITION 3.1. Let x be a real number. Then the integer u(x) and the real number $\varepsilon(x)$ are uniquely determined by $x = u(x) + \varepsilon(x)$ with $-1/2 \le \varepsilon(x) < 1/2$. We call u(x) the integral part of x and $\varepsilon(x)$ the fractional part of x.

We note that u(x) is one of the nearest integers to x and that ||x|| is given by $||x|| = |\varepsilon(x)|$.

If $\alpha \geq 2$ is a rational integer, the fractional part $\varepsilon(\xi \alpha^n)$ can be denoted by the α -ary expansion of ξ . Mahler [11] considered the "3/2-ary" expansion of real numbers to study the distribution of the geometric progressions whose common ratios are 3/2. In this section we construct the " α -ary" expansion for an algebraic number α .

At first, we check the following:

LEMMA 3.1. Let the symmetric homogeneous polynomial $\rho_m(X_1, X_2, \ldots, X_r)$ be defined by (2.3). Then

$$\rho_m(X_1, X_2, \dots, X_r) = \sum_{i=1}^r \left(\prod_{\substack{1 \le j \le r \\ j \ne i}} \frac{1}{X_i - X_j}\right) X_i^{m+r-1}.$$
 (3.1)

Proof. We denote the right-hand side of (3.1) by ρ'_m . We consider the polynomial of Y defined by

$$g(Y) = \prod_{i=1}^{r} (1 - X_i Y) \sum_{m=0}^{\infty} \rho'_m Y^m = \sum_{i=1}^{r} \prod_{\substack{1 \le j \le r \\ j \ne i}} \frac{1 - X_j Y}{1 - X_i^{-1} X_j}.$$

Since

$$g(X_l^{-1}) = 1(1 \le l \le r)$$

and the degree of g(Y) is at most r-1, we have g(Y) = 1. Thus we conclude that

$$\sum_{i=0}^{\infty} \rho_i' Y^i = \prod_{i=1}^r (1 - X_i Y)^{-1} = \sum_{i=0}^{\infty} \rho_i (X_1, X_2, \dots, X_r) Y^i.$$

We define $\rho_m(X_1, X_2, \dots, X_r)$ also for a negative integer m by using (3.1). We note this definition coincides with (2.6) for $-r+1 \le m \le -1$.

Let α be an algebraic number and let $P(X) = a_d X^d + a_{d-1} X^{d-1} + \dots + a_0 \in \mathbb{Z}[X]$ be its minimal polynomial. We denote the conjugates of α by $\alpha_1(=\alpha), \alpha_2, \dots, \alpha_d$. In the rest of this section we assume that $|\alpha_i| > 1$ $(i = 1, 2, \dots, d)$. Let ξ be a nonzero real number. We define the sequence $(s_n(\xi))_{n=-\infty}^{\infty}$ by

$$s_n(\xi) = a_d u(\xi \alpha^{-n}) + a_{d-1} u(\xi \alpha^{-n-1}) + \dots + a_0 u(\xi \alpha^{-n-d}).$$

It is easily checked that

$$|s_n(\xi)| < \frac{1}{2}L(P(X)) = \frac{1}{2}\sum_{i=0}^d |a_i|.$$

In fact, $s_n(\xi)$ can be rewritten as

$$s_n(\xi) = -a_d \varepsilon(\xi \alpha^{-n}) - a_{d-1} \varepsilon(\xi \alpha^{-n-1}) - \dots - a_0 \varepsilon(\xi \alpha^{-n-d})$$

Moreover, Dubickas [6] proved that the sequence $(s_n(\xi))_{n=-\infty}^M$ is not periodic for any integer M.

PROPOSITION 3.1. The integral part $u(\xi \alpha^n)$ and the fractional part $\varepsilon(\xi \alpha^n)$ are given by

$$u(\xi\alpha^n) = \frac{1}{a_d} \sum_{i=0}^{\infty} \rho_i(\alpha, \alpha_2, \dots, \alpha_d) s_{i-n}(\xi)$$

and

$$\varepsilon(\xi\alpha^n) = \frac{1}{a_d} \sum_{i=-\infty}^{-1} \rho_i(\alpha, \alpha_2, \dots, \alpha_d) s_{i-n}(\xi),$$

respectively. In particular

$$\xi \alpha^n = \frac{1}{a_d} \sum_{i=-\infty}^{\infty} \rho_i(\alpha, \alpha_2, \dots, \alpha_d) s_{i-n}(\xi).$$

Proof. We get

$$\frac{1}{a_d} \sum_{i=-\infty}^{-1} \rho_i(\alpha, \alpha_2, \dots, \alpha_d) s_{i-n}(\xi)$$

$$= -\frac{1}{a_d} \sum_{i=-\infty}^{-d} \rho_i(\alpha, \alpha_2, \dots, \alpha_d) \sum_{j=0}^{d} a_{d-j} \varepsilon(\xi \alpha^{n-i-j})$$

$$= -\frac{1}{a_d} \sum_{i=-\infty}^{0} \varepsilon(\xi \alpha^{n-i}) \sum_{j=0}^{\min\{d,-i\}} \rho_{i+j-d}(\alpha, \alpha_2, \dots, \alpha_d) a_j.$$

Since

$$\rho_{-d}(\alpha, \alpha_2, \dots, \alpha_d) = (-1)^{1+d} \alpha^{-1} \alpha_2^{-1} \dots \alpha_d^{-1}$$

and since

$$=\sum_{j=0}^{\min\{d,-i\}} \rho_{i+j-d}(\alpha,\alpha_2,\ldots,\alpha_d)a_j$$
$$=\sum_{j=-d+\min\{d,-i\}}^{\min\{d,-i\}} \rho_{i+j-d}(\alpha,\alpha_2,\ldots,\alpha_d)a_j = 0$$

for $i \leq -1$, we conclude that

$$\frac{1}{a_d}\sum_{i=-\infty}^{-1}\rho_i(\alpha,\alpha_2,\ldots,\alpha_d)s_{i-n}(\xi)=\varepsilon(\xi\alpha^n).$$

By the same way as above we can check the representation of $u(\xi \alpha^n)$.

COROLLARY 3.2. Let ξ be arbitrary real number. Then

$$\varepsilon(\xi\alpha^{n}) = -\frac{1}{a_{0}}\sum_{i=0}^{\infty}\rho_{i}(\alpha^{-1}, \alpha_{2}^{-1}, \dots, \alpha_{d}^{-1})s_{-i-n-d}(\xi).$$

Proof. Since

$$\frac{1}{a_d}\rho_i(\alpha, \alpha_2, \dots, \alpha_d) = \frac{1}{a_d} \prod_{l=1}^d \left(\prod_{\substack{1 \le h \le d \\ h \ne l}} \frac{-\alpha_l^{-1} \alpha_h^{-1}}{\alpha_l^{-1} - \alpha_h^{-1}} \right) \alpha_l^{i+d-1} \\
= -\frac{1}{a_0} \rho_{-i-d} (\alpha^{-1}, \alpha_2^{-1}, \dots, \alpha_d^{-1}),$$

we obtain

$$\varepsilon(\xi\alpha^{n}) = \frac{1}{a_{d}} \sum_{i=-\infty}^{-d} \rho_{i}(\alpha, \alpha_{2}, \dots, \alpha_{d}) s_{i-n}(\xi)$$

$$= -\frac{1}{a_{0}} \sum_{i=-\infty}^{-d} \rho_{-i-d}(\alpha^{-1}, \alpha_{2}^{-1}, \dots, \alpha_{d}^{-1}) s_{i-n}(\xi)$$

$$= -\frac{1}{a_{0}} \sum_{i=0}^{\infty} \rho_{i}(\alpha^{-1}, \alpha_{2}^{-1}, \dots, \alpha_{d}^{-1}) s_{-i-n-d}(\xi).$$

We end this section by introducing a property of the sequence $\mathbf{w} = (w_n)_{n=0}^{\infty}$ defined in Section 2.

PROPOSITION 3.3 (Dubickas [6]). Let $\mathbf{b} = (b_n)_{n=0}^{\infty}$ be a sequence with $b_n \in \{1, 2\}$ which is not ultimately periodic. Then \mathbf{b} satisfies at least one of the following:

1. For any $N \ge 0$, there exists an $m \ge 0$ such that

$$b_{m+i} = w_i \ (i = 0, 1, \dots, N);$$

2. There exist $N \ge 2$ and infinitely many $m \ge 0$ such that

$$b_{m+i} = w_i \ (i = 0, 1, \dots, N-1)$$

and

$$\begin{cases} b_{m+N} = 2, w_N = 1 & \text{if } N \text{ is even,} \\ b_{m+N} = 1, w_N = 2 & \text{if } N \text{ is odd.} \end{cases}$$

4. Proof of the main results

Proof of Theorem 2.3. For simplicity we set

$$\mu_m = \frac{1}{|a_0|} \rho_m(\alpha^{-1}, \alpha_2^{-1}, \dots, \alpha_d^{-1}) \ (m = 0, 1, \dots),$$

and

$$\psi = \frac{1}{|a_0|} E_d(\alpha^{-1}, \alpha_2^{-1}, \dots, \alpha_d^{-1}).$$

Take an arbitrary nonzero real number $\xi.$ We put

$$t_n = s_{-n-d}(\xi) \ (n = 0, 1, \ldots).$$

By Lemma 2.1 and Corollary 3.2

$$||\xi\alpha^{n}|| = \left|\sum_{i=0}^{\infty} \mu_{i}t_{i+n}\right|, \ \psi = \sum_{i=0}^{\infty} \mu_{i}e_{i}.$$

Let

$$t = \limsup_{n \to \infty} |t_n|.$$

We first consider the case where $t \ge 2$. Since the sequence $\mathbf{t} = (t_n)_{n=0}^{\infty}$ is not ultimately periodic, at least one of the words $W_m = t, m \ (-t+1 \le m \le t)$ or $\overline{W_m} = -t, m \ (-t \le m \le t-1)$ appears infinitely many times in \mathbf{t} . If \mathbf{t} contains infinitely many W_m for some m with $-t+2 \le m \le t$ or infinitely many $\overline{W_m}$ for some m with $-t \le m \le t-2$, then by (2.5)

$$\limsup_{n \to \infty} ||\xi \alpha^n|| \ge t\mu_0 + (2-t)\mu_1 - \sum_{i=2}^{\infty} t\mu_i \ge \mu_0 \ge \psi$$

Thus we may assume that W_m with $-t+2 \le m \le t$ and $\overline{W_m}$ with $-t \le m \le t-2$ appear in **t** only finitely many times.

Suppose that W_{-t+1} appears infinitely many times in **t**. Then for every sufficiently large n and for each $m \ge 0$,

$$\mu_i t_{n+i} + \mu_{i+1} t_{n+i+1} \ge -t\mu_i - (t-2)\mu_{i+1}$$

consequently

$$\limsup_{n \to \infty} ||\xi \alpha^n|| \ge t\mu_0 - (t-1)\mu_1 - \sum_{i=1}^{\infty} \left(t\mu_{2i} + (t-2)\mu_{2i+1}\right).$$
(4.1)

The inequality (4.1) is true also in the case where $\overline{W_{t-1}}$ appears infinitely many times in **t**. Using (2.5), (4.1) and

$$\psi \le \mu_0 - \mu_2 + \mu_3 - \mu_4 + \mu_6,$$

we obtain

$$\limsup_{n \to \infty} ||\xi \alpha^n|| \ge \psi.$$

In what follows, we assume that t = 1. By the same way as above $\limsup_{n\to\infty} ||\xi\alpha^n|| \ge \psi$ if at least one of the following words appears infinitely many times in **t**:

$$U_1 = 1, 1; \ U_2 = -1, -1; \ U_3 = 1, 0, 1; \ U_4 = -1, 0, -1, \ V = 0, 0.$$

It suffices to prove the theorem in the case where these words appear in t only finitely many times. As a result, there exists an $M \ge 0$ such that

$$t_M, t_{M+1}, t_{M+2}, \ldots = 1, \underbrace{0, \ldots, 0}_{x_0}, -1, \underbrace{0, \ldots, 0}_{x_1}, 1, \underbrace{0, \ldots, 0}_{x_2}, -1, \ldots,$$

where

$$x_n \in \{0, 1\} \ (n = 0, 1, \ldots).$$

Put $y_n = 1 + x_n$. Note that the sequence $\mathbf{y} = (y_n)_{n=0}^{\infty}$ is not ultimately periodic and

$$\limsup_{n \to \infty} ||\xi \alpha^{n}|| \geq \sum_{i=0}^{\infty} (-1)^{i} \mu_{y_{m}+y_{m+1}+\dots+y_{m+i-1}} \ (m = 0, 1, \dots),$$
$$\psi = \sum_{i=0}^{\infty} (-1)^{i} \mu_{w_{0}+w_{1}+\dots+w_{i-1}}.$$

We apply Proposition 3.3 to **y**. If **y** satisfies the statement 1, then $\limsup_{n\to\infty} ||\xi\alpha^n|| \ge \psi$. Otherwise, we choose N and m satisfying the statement 2 of Proposition 3.3. Put

$$w = w_0 + w_1 + \dots + w_{N-1}.$$

Then by (2.5) we have

$$\limsup_{n \to \infty} ||\xi \alpha^n|| - \psi \ge \mu_{1+w} - \mu_{2+w} - \mu_{1+w+v} \ge 0,$$

where

$$v = \begin{cases} w_{N+1} & \text{if } N \text{ is even,} \\ y_{m+N+1} & \text{if } N \text{ is odd.} \end{cases}$$

Proof of Corollary 2.6. Since $\zeta \alpha$ and its conjugate $\zeta \alpha_2$ satisfy the assumptions of Theorem 2.3, we have

$$\mathcal{E}(\alpha) = \mathcal{E}(\zeta \alpha) \ge \frac{1}{|a_0|} E_2(\zeta \alpha^{-1}, \zeta \alpha_2^{-1}).$$

Proof of Theorem 2.1. We use the same notation as in the proof of Theorem 2.3.

First we assume $t \geq 2$. Since

$$|t_n| = |a_2\varepsilon(\xi\alpha^{-n}) + a_1\varepsilon(\xi\alpha^{-n-1}) + a_0\varepsilon(\xi\alpha^{-n-2})| \ge 2$$

for infinitely many n, we have

$$\limsup_{n \to \infty} ||\xi \alpha^n|| \ge \frac{2}{|a_0| + |a_1| + |a_2|} > \frac{1}{|a_0|} > \psi.$$

In what follows, we suppose that t = 1. By the same way as in the proof of Theorem 2.3, it suffices to check the case where the following words appear in $\mathbf{t} = (t_n)_{n=0}^{\infty}$ only finitely many times:

$$\begin{aligned} U_1 &= 1,1 \; ; \quad U_2 = -1,-1; \; U_3 = 1,0,1; \; U_4 = -1,0,-1; \\ U_5 &= 1,0,0,1; \; U_6 = -1,0,0,-1; \; U_7 = 0,0,0. \end{aligned}$$

Consequently, there exists an $M \geq 0$ such that

$$t_M, t_{M+1}, t_{M+2}, \ldots = 1, \underbrace{0, \ldots, 0}_{x_0}, -1, \underbrace{0, \ldots, 0}_{x_1}, 1, \underbrace{0, \ldots, 0}_{x_2}, -1, \ldots,$$

where

$$x_n \in \{0, 1, 2\} \ (n = 0, 1, 2, \ldots)$$

Suppose that $x_n = 2$ for infinitely many n. Then we may assume that

$$\mu_2 < 2\mu_3$$

since by (2.4)

$$\limsup_{n \to \infty} ||\xi \alpha^n|| - \psi \ge (\mu_0 - \mu_3) - (\mu_0 - \mu_2 + \mu_3) = \mu_2 - 2\mu_3.$$

Let $(\tau_n)_{n=0}^{\infty}$ be defined by the recurrence

$$\tau_0 = 1, \ \tau_{n+1} = (\sqrt{5} - 1) \frac{1 + \tau_n + {\tau_n}^2 + {\tau_n}^3}{1 + {\tau_n} + {\tau_n}^2} - 1.$$

Then $(\tau_n)_{n=0}^{\infty}$ is a positive decreasing sequence, which converges to $\tau = 0.25093...$ as *n* tends to infinity. Put

$$p = \max\{\alpha^{-1}, \alpha_2^{-1}\}, \ q = \min\{\alpha^{-1}, \alpha_2^{-1}\}.$$

Now we verify that

$$q \le \tau p, \tag{4.2}$$

checking that

$$q \le \tau_n p \ (n = 0, 1, \ldots) \tag{4.3}$$

by induction on n. The inequality (4.3) is clear if n = 0. Suppose $n \ge 1$. By the induction hypothesis we have

$$0 < 2\mu_3 - \mu_2 = \mu_2(2p-1) + \frac{2}{|a_0|}q^3$$

$$\leq \mu_2 \left(2p\frac{1+\tau_n + \tau_n^2 + \tau_n^3}{1+\tau_n + \tau_n^2} - 1\right)$$

and so

$$p \geq \frac{1+\tau_n+\tau_n^2}{2(1+\tau_n+\tau_n^2+\tau_n^3)},$$

$$q \leq \frac{\sqrt{5}-1}{2} - \frac{1+\tau_n+\tau_n^2}{2(1+\tau_n+\tau_n^2+\tau_n^3)}.$$

Hence we obtain $q \leq \tau_{n+1}p$. Moreover, we have the following:

$$\frac{\sqrt{5}-1}{2} \ge p \ge \frac{1+\tau+\tau^2}{2(1+\tau+\tau^2+\tau^3)} = 0.49405\dots;$$
(4.4)

$$q \leq 0.12397\dots \tag{4.5}$$

Since $(x_n)_{n=0}^{\infty}$ is not ultimately periodic, there exist infinitely many $n \ge 0$ such that $x_n = 2$ and $x_{n+1} \le 1$. Thus by (2.4)

$$\limsup_{n \to \infty} ||\xi \alpha^n|| \ge \mu_0 - \mu_3 + \min\{\mu_4 - \mu_5, \mu_5 - \mu_6\}.$$

Since

$$\mu_4 - 2\mu_5 + \mu_6 \geq (1 - 2p + p^2)\mu_4 - \frac{2}{|a_0|}q^5 \\
\geq \left(\frac{7 - 3\sqrt{5}}{2} - \frac{2q}{1 + \tau^{-1} + \tau^{-2} + \tau^{-3} + \tau^{-4}}\right)\mu_4 \\
> 0,$$

we get

$$\begin{split} \limsup_{n \to \infty} ||\xi \alpha^n|| - \psi &\geq \mu_2 - 2\mu_3 + \mu_4 + \mu_5 - 2\mu_6 \\ &\geq (1 - 2p + p^2 + p^3 - 2p^4)\mu_2 - \frac{3}{|a_0|}q^3 \\ &> 0. \end{split}$$

In what follows, we suppose that $x_n \in \{0, 1\}$ for all n. We may assume that the sequence $\mathbf{y} = (y_n)_{n=0}^{\infty}$, where $y_n = 1 + x_n$, satisfies the second statement of Proposition 3.3. Let N, m, w and v be as in the proof of Theorem 2.3. Then by (2.4)

$$\limsup_{n \to \infty} ||\xi \alpha^n|| - \psi \ge \mu_{1+w} - \mu_{2+w} - \mu_{1+w+v}$$

and so we may assume that v = 1 and that $2\mu_{2+w} \ge \mu_{1+w}$. Since $(\mu_{n+1}/\mu_n)_{n=0}^{\infty}$ is a decreasing sequence, we see that $2\mu_3 > \mu_2$. Therefore the inequalities (4.2), (4.4) and (4.5) hold.

Assume that N is odd. Then by (2.4)

$$\limsup_{n \to \infty} ||\xi \alpha^n|| - \psi \ge \mu (1+w) - 2\mu (2+w) + \sum_{i=0}^3 (-1)^i \mu \left(2+w + \sum_{k=0}^i w_{N+1+k} \right) + \sum_{i=0}^3 (-1)^i \mu \left(2+w + \sum_{k=0}^i y_{m+N+2+k} \right),$$

where

$$\mu(h) = \mu_h$$

for $h \ge 0$. Since $y_n \in \{1, 2\}$ for each n, it is easy to check

$$\sum_{i=0}^{3} (-1)^{i} \mu \left(2 + w + \sum_{k=0}^{i} y_{m+N+2+k} \right)$$

$$\geq \mu (4+w) - \mu (5+w) + \mu (7+w) - \mu (8+w)$$

Since $w_N = 2$ and since **w** is a concatenation of the words $A_2 = 2, 1, 1$ and $A_3 = 2, 1, 1, 2, 2$, we have

 $(w_{N+1}, w_{N+2}, w_{N+3}, w_{N+4}) \in \{(1, 1, 2, 1), (1, 1, 2, 2), (2, 1, 1, 2), (2, 2, 1, 1)\}.$

Thus we get

$$\sum_{i=0}^{3} (-1)^{i} \ \mu \left(2 + w + \sum_{k=0}^{i} w_{N+1+k} \right)$$

$$\geq \ \mu (4+w) - \mu (5+w) + \mu (6+w) - \mu (8+w).$$

Using (4.4), (4.5), and $w \ge 3$, we obtain

$$\begin{split} \limsup_{n \to \infty} &|| \xi \alpha^n || - \psi \\ &\geq (1 - 2p + 2p^3 - 2p^4 + p^5 + p^6 - 2p^7) \mu (1 + w) - \frac{4q^{2+w}}{|a_0|} \\ &\geq \left(\frac{\sqrt{5} - 1}{2}\right)^8 \mu (1 + w) - \frac{4q^{2+w}}{|a_0|} > 0. \end{split}$$

Next, we consider the case where N is even. Then by (2.4) we have

$$\limsup_{n \to \infty} ||\xi \alpha^n|| - \psi \ge \mu (1+w) - 2\mu (2+w) + \sum_{i=0}^3 (-1)^i \mu \left(2+w + \sum_{k=0}^i w_{N+2+k}\right) + \sum_{i=0}^3 (-1)^i \mu \left(2+w + \sum_{k=0}^i y_{m+N+1+k}\right)$$

and

$$\sum_{i=0}^{3} (-1)^{i} \mu \left(2 + w + \sum_{k=0}^{i} y_{m+N+1+k} \right)$$

$$\geq \mu (4+w) - \mu (5+w) + \mu (7+w) - \mu (8+w)$$

Since $w_N = w_{N+1} = 1$, we get

$$(w_{N+2}, w_{N+3}, w_{N+4}, w_{N+5}) \in \{(2, 1, 1, 2), (2, 2, 2, 1)\}$$

and so

$$\sum_{i=0}^{3} (-1)^{i} \ \mu \left(2 + w + \sum_{k=0}^{i} w_{N+2+k} \right)$$

$$\geq \ \mu (4+w) - \mu (5+w) + \mu (6+w) - \mu (8+w).$$

Hence we obtain

$$\limsup_{n \to \infty} ||\xi \alpha^n|| > \psi.$$

5. Geometric sequences with small fractional parts

Koksma [10] proved that, if any real number $\alpha > 1$ is given, the sequence $(\xi \alpha^n)_{n=0}^{\infty}$ is uniformly distributed modulo 1 for almost all ξ . Similarly, if any nonzero real number ξ is given, the sequence $(\xi \alpha^n)_{n=0}^{\infty}$ is uniformly distributed modulo 1 for almost all $\alpha > 1$. In this section we study the exceptional set of Koksma's Theorem. Boyd proved the following:

THEOREM 5.1 (Boyd [3]). Let δ , M be arbitrary positive numbers. Then the set of real numbers $\alpha \geq M$ such that

$$\sup_{n\geq 0} \|\xi\alpha^n\| \leq \frac{1}{(\alpha-1)(\alpha-3)}$$

for some ξ with $|\xi - 2| \leq \delta$ is uncountable.

It is known that there exist only countable pairs (ξ, α) , where $\xi \neq 0$ and $\alpha > 1$, satisfying

$$\limsup_{n \to \infty} \|\xi \alpha^n\| < \frac{1}{2(1+\alpha)^2}$$

(see for instance [2, p.95]).

We now consider the exceptional set of Koksma's Theorem for a fixed $\alpha > 1$. Tijdeman [12] proved for any $\alpha > 1$ that there exists a nonzero ξ such that $\{\xi\alpha^n\} = \xi\alpha^n - [\xi\alpha^n]$ and $[\xi\alpha^n] \le 1/(\alpha - 1)(n = 0, 1, ...)$ is the largest integer not greater than $\xi\alpha^n$. By the same way as Tijdeman we can prove the existence of ξ such that $\|\xi\alpha^n\| \le 1/(2\alpha - 2)(n = 0, 1, ...)$. We note that Dubickas [4, 7] obtained sharper estimation.

Next, we consider the exceptional set for a fixed nonzero ξ .

THEOREM 5.2. (1) Let ξ be a nonzero real number. Then for arbitrary positive numbers δ and M, the set of real numbers α with $\alpha > M$ satisfying

$$\limsup_{n \to \infty} ||\xi \alpha^n|| \le \frac{1+\delta}{2\alpha}$$

is at least countable.

(2) Let ξ be a nonzero real number. Then for arbitrary positive numbers δ and M, the set of real numbers α with $\alpha > M$ satisfying

$$\limsup_{n \to \infty} ||\xi \alpha^n|| \le \frac{1+\delta}{\alpha}$$

is uncountable.

Proof. We may assume $\xi > 0$. First we prove the statement (1) of the theorem. Take any positive integer R with $R \ge \max\{12, \xi, \xi^{-1/2}\}$. We define the sequence $(z_n)_{n=0}^{\infty}$ by

$$z_1 = R^2$$
, $z_{n+1} = u(\xi^{-1/n} z_n^{(n+1)/n})$ $(n = 1, 2, ...).$

Since $R \ge \xi$, we can easily check by induction on n that

$$z_n \ge R^{n+1}.$$

We put

$$\beta_n = \xi^{-1/n} z_n^{1/n}.$$

Since

$$|z_{n+1} - \xi^{-1/n} z_n^{(n+1)/n}| \le \frac{1}{2},$$

we have

$$|\beta_n - \beta_{n+1}| \le \frac{1}{2} \xi^{-1} \left(\sum_{i=0}^n \beta_{n+1}^i \beta_n^{n-i} \right)^{-1}.$$
 (5.1)

We denote the right-hand side of (5.1) by q_n . Since

$$q_n \le \frac{1}{2} \xi^{-1} (n+1)^{-1} R^{-n}, \tag{5.2}$$

the sequence $(\beta_n)_{n=1}^{\infty}$ converges. Let $\alpha = \lim_{n \to \infty} \beta_n$. Using (5.2) and

$$\beta_{n+1} \ge \beta_n (1 - \beta_n^{-1} q_n) \ge \beta_n (1 - R^{-1} q_n),$$

we obtain

$$\beta_n \geq \beta_1 \prod_{i=1}^{n-1} \left(1 - \frac{1}{2} \xi^{-1} (i+1)^{-1} R^{-i-1} \right)$$
$$\geq \xi^{-1} R^2 \prod_{i=2}^{\infty} \left(1 - \frac{1}{2} \xi^{-1} i^{-1} R^{-i} \right).$$

In what follows, C_1, C_2 , and C_3 denote positive constants depending only on ξ . Then

$$\beta_n \ge \xi^{-1} R^2 (1 - C_1 R^{-2}).$$

By considering only the case where R is sufficiently large, we may assume that

$$C_1 R^{-2} \le \frac{1}{2}.$$

Thus

$$\frac{q_{n+1}}{q_n} \leq \frac{\sum_{i=0}^n \beta_{n+1}^i \beta_n^{n-i}}{\beta_{n+1} \sum_{i=0}^n \beta_{n+2}^i \beta_{n+1}^{n-i}} \\
\leq \xi R^{-2} (1 - C_1 R^{-2})^{-1} \left(1 - \frac{1}{2} \xi^{-1} R^{-2} (n+1)^{-1} \right)^{-n} \\
\leq \xi R^{-2} (1 + 2C_1 R^{-2}) \left(1 + \xi^{-1} R^{-2} (n+1)^{-1} \right)^n \\
\leq \xi R^{-2} (1 + 2C_1 R^{-2}) (1 + 2\xi^{-1} R^{-2}) \\
\leq 6\xi R^{-2}$$

and so

$$|\alpha - \beta_n| \le \sum_{i=0}^{\infty} q_{n+i} \le (1 + 12\xi R^{-2})q_n$$

for any $n \ge 1$. Therefore

$$\begin{aligned} |\xi\alpha^{n} - z_{n}| &\leq \xi |\alpha - \beta_{n}| \sum_{i=0}^{n-1} \alpha^{i} \beta_{n}^{n-1-i} \\ &\leq \frac{1}{2} (1 + 12\xi R^{-2}) \frac{\sum_{i=0}^{n-1} \alpha^{i} \beta_{n}^{n-1-i}}{\sum_{i=0}^{n} \beta_{n+1}^{i} \beta_{n}^{n-i}} \\ &\leq \frac{1}{2} \xi R^{-2} (1 + 12\xi R^{-2}) (1 - C_{1}R^{-2})^{-1} \frac{\sum_{i=0}^{n-1} \alpha^{i} \beta_{n}^{n-1-i}}{\sum_{i=0}^{n-1} \beta_{n+1}^{i} \beta_{n}^{n-1-i}} \\ &\leq \frac{1}{2} \xi R^{-2} (1 + C_{2}R^{-2}) \end{aligned}$$

for $n \geq 1$. We may assume that

$$\frac{1}{2}\xi R^{-2}(1+C_2R^{-2}) < \frac{1}{2}.$$

Hence

$$|\xi R^{-2} - \alpha^{-1}| = \frac{1}{\alpha R^2} |\xi \alpha - z_1| < \frac{1}{2\alpha R^2},$$

and so

$$|\xi\alpha^n - z_n| \le \frac{1 + C_3 R^{-2}}{2\alpha}.$$

Since z_n is a rational integer, the statement (1) was proved.

Next we prove the statement (2). Take any sufficiently large integer R. Let $\mathbf{p} = (p_n)_{n=0}^{\infty}$ be a sequence with $p_n \in \{0,1\}$. We define the sequence $(z_n(\mathbf{p}))_{n=0}^{\infty}$ by

$$z_1(\mathbf{p}) = R^2,$$

 $z_{n+1}(\mathbf{p}) = \left[\xi^{-1/n} z_n(\mathbf{p})^{(n+1)/n}\right] + p_n \ (n = 1, 2, \ldots).$

Then we have

$$\left|\xi^{-1/n} z_n(\mathbf{p})^{(n+1)/n} - z_{n+1}(\mathbf{p})\right| \le 1.$$

By the same way as in the proof of statement (1) we can check that the sequence $(\xi^{-1/n} z_n(\mathbf{p})^{1/n})_{n=1}^{\infty}$ has a limit $\alpha(\mathbf{p})$ and that

$$|\xi\alpha(\mathbf{p})^n - z_n(\mathbf{p})| \le \frac{1+\delta}{\alpha} < \frac{1}{2}.$$

This implies the statement (2). In fact, if the sequences \mathbf{p} and \mathbf{p}' are different, then $\alpha(\mathbf{p}) \neq \alpha(\mathbf{p}')$.

In contrast with Tijdeman's result and Theorem 5.2, the following theorem implies that, if $\alpha > 1$ (resp. $\xi \neq 0$), then the set of nonzero ξ (resp. $\alpha > 1$) satisfying a stronger inequality is at most countable.

THEOREM 5.3. (1) Let $\alpha > 1$. Then the set of real numbers ξ satisfying

$$\limsup_{n \to \infty} ||\xi \alpha^n|| < \frac{1}{2\alpha + 2}$$
(5.3)

is at most countable.

(2) Let ξ be a nonzero real number. Then the set of real numbers α with $\alpha > 1$ satisfying

$$\limsup_{n \to \infty} ||\xi \alpha^n|| < \frac{1}{2\alpha + 2} \tag{5.4}$$

is at most countable.

Proof. If ξ satisfies (5.3), we have

$$|u(\xi\alpha^{n+1}) - \alpha u(\xi\alpha^n)| = |\varepsilon(\xi\alpha^{n+1}) - \alpha\varepsilon(\xi\alpha^n)| < \frac{1}{2}$$

for all large n. Thus we get

$$u(\xi \alpha^{n+1}) = u(\alpha u(\xi \alpha^n)).$$

It is clear that the set of the sequences $(y_n)_{n=0}^{\infty}$ of rational integers satisfying $y_{n+1} = u(\alpha y_n)$ for all sufficiently large n is countable. Thus the statement (1) was proved. In fact, if $\xi \neq \xi'$, then the sequences $(u(\xi \alpha^n))_{n=0}^{\infty}$ and $(u(\xi' \alpha^n))_{n=0}^{\infty}$ are different.

Similarly, for the proof of the statement (2) it is sufficient to check the following: If α satisfies (5.4), then

$$u(\xi \alpha^{n+1}) = u\left(\xi^{-1/n} u(\xi \alpha^n)^{(n+1)/n}\right)$$

for all large n. Putting

$$u_n = u(\xi \alpha^n)$$
 and $\varepsilon_n = \varepsilon(\xi \alpha^n)$,

we have

$$\begin{aligned} |u_{n+1} - \xi^{-1/n} u_n^{(n+1)/n}| &\leq |u_{n+1} - \xi \alpha^{n+1}| + |\xi^{-1/n} u_n^{(n+1)/n} - \xi \alpha^{n+1}| \\ &\leq |\varepsilon_{n+1}| + |\xi \alpha^{n+1}| |(1 - \varepsilon_n \xi^{-1} \alpha^{-n})^{(n+1)/n} - 1|. \end{aligned}$$

Using the mean value theorem, we obtain

1

$$(1 - \varepsilon_n \xi^{-1} \alpha^{-n})^{(n+1)/n} = 1 - \varepsilon_n \xi^{-1} \alpha^{-n} \frac{n+1}{n} (1 - \delta \varepsilon_n \xi^{-1} \alpha^{-n})^{1/n},$$

where $0 < \delta < 1$. Hence we conclude that

$$|u_{n+1} - \xi^{-1/n} u_n^{(n+1)/n}| < \frac{1}{2}$$

for all large n.

Acknowledgements

I would like to thank Prof. Masayoshi Hata and Prof. Takaaki Tanaka for many suggestions and for improving the language of this paper. I am also grateful to Prof. Artūras Dubickas and Prof. Shigeki Akiyama for giving me helpful comments. The referee gave me fruitful information about the reference paper ([7, 12]).

References

- J.-P. Allouche, A. Arnold, J. Berstel, S. Brlek, W. Jockusch, S. Plouffe, and B. E. Sagan, A relative of the Thue-Morse sequence, Discrete Math. 139 (1995), 455-461.
- [2] M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, and J. P. Schreiber, Pisot and Salem numbers, Birkhäuser Verlag, Basel, 1992.
- [3] D. W. Boyd, Transcendental numbers with badly distributed powers, Proc. Amer. Soc. 23 (1969), 424-427.
- [4] A. Dubickas, An approximation property of lacunary sequences, to appear in Israel Journal of Mathematics.
- [5] A. Dubickas, Arithmetical properties of powers of algebraic numbers, Bull. London Math. Soc. 38 (2006), 70-80.
- [6] A. Dubickas, On the distance from a rational power to the nearest integer, J. Number Theory 117 (2006), 222-239.
- [7] A. Dubickas, On the fractional parts of lacunary sequences. Math. Scand. 99 (2006), 136-146.
- [8] A. Dubickas, There are infinitely many limit points of the fractional parts of powers, Proc. Indian Acad. Sci. Math. Sci. 115 (2005), 391-397.
- [9] D. H. Hardy, A problem of diophantine approximation, Collected papers of G. H. Hardy I, Clarendon Press, Oxford, 124-129.

 \Box

- [10] J. F. Koksma, Ein mengen-theoretischer Satz über Gleichverteilung modulo eins, Compositio Math. 2 (1935), 250-258.
- [11] K. Mahler, An unsolved problems on the powers of 3/2, J. Austral. Math. Soc. 8 (1968), 313-321.
- [12] R. Tijdeman, Note on Mahler's $\frac{3}{2}$ -problem, K. Norske Vidensk. Selsk. Skr. 16 (1972), 1-4.
- [13] H. Weyl, Über die Gleichverteilung von Zahlen mod Eins, Math. Ann. 77 (1916), 313-352.

Department of Mathematics, Kyoto University

Oiwake-tyou

Kitashirakawa

Kyoto-shi, Kyoto, Japan

e-mail: kanekoha@math.kyoto-u.ac.jp

Hajime Kaneko