# On the number of nonzero digits in the beta-expansions of algebraic numbers * 

Hajime Kaneko ${ }^{\dagger}$


#### Abstract

Many mathematicians have investigated the base- $b$ expansions for integral base- $b \geq 2$, and more general $\beta$-expansions for a real number $\beta>1$. However, little is known on the $\beta$-expansions of algebraic numbers. The main purpose of this paper is to give new lower bounds for the numbers of nonzero digits in the $\beta$-expansions of algebraic numbers under the assumption that $\beta$ is a Pisot or Salem number. As a consequence of our main results, we study the arithmetical properties of power series $\sum_{n=1}^{\infty} \beta^{-\kappa(z ; n)}$, where $z>1$ is a real number and $\kappa(z ; n)=\left\lfloor n^{z}\right\rfloor$.


## 1 Normality of the digits in $\beta$-expansions

In this paper, let $\mathbb{N}$ (resp. $\mathbb{Z}^{+}$) be the set of nonnegative integers (resp. positive integers). We denote the integral and fractional parts of a real number $x$ by $\lfloor x\rfloor$ and $\{x\}$, respectively. Moreover, we write the minimal integer $n$ not less than $x$ by $\lceil x\rceil$. We denote the length of a nonempty finite word $W=w_{1} w_{2} \ldots w_{k}$ on a certain alphabet $\mathcal{A}$ by $|W|=k$. We use the Landau symbol $O$ and the Vinogradov symbols $\gg, \lll$ with their usual meaning.

For a real number $\beta$ greater than 1 , let $T_{\beta}:[0,1] \rightarrow[0,1)$ be the $\beta$ transformation defined by $T_{\beta}(x):=\{\beta x\}$. Using the $\beta$-transformation, Rényi [22] generalized the notion of the base- $b$ expansions of real numbers for an integral base $b$ as follows: Let $x$ be a real number with $0 \leq x \leq 1$. Putting $t_{n}(\beta, x):=\left\lfloor\beta T_{\beta}^{n-1}(x)\right\rfloor$ for any positive integer $n$, we have

$$
\begin{equation*}
x=\sum_{n=1}^{\infty} t_{n}(\beta, x) \beta^{-n} . \tag{1.1}
\end{equation*}
$$

The right-hand side of (1.1) is called the $\beta$-expansion of $x$. In what follows, we assume that $0 \leq x \leq 1$ when we consider the $\beta$-expansion of $x$. We have that $t_{n}(\beta, x) \leq\lfloor\beta\rfloor$. In particular, if $\beta=b$ is a rational integer, then we see $t_{n}(b, x) \leq b-1$ except the only case of $t_{1}(b ; 1)=b$.

Parry [21] showed that the digits $t_{n}(\beta, x)$ for $x<1$ are characterized by the expansion of 1. Put

$$
t_{n}(\beta, 1-):=\lim _{x \rightarrow 1-0} t_{n}(\beta, x)
$$

[^0]for any positive integer $n$. Then we have
$$
1=\sum_{n=1}^{\infty} t_{n}(\beta, 1-) \beta^{-n}
$$

For any real number $x \leq 1$, let $\boldsymbol{t}(\beta, x)$ be the right-infinite sequence defined by

$$
\boldsymbol{t}(\beta, x):=t_{1}(\beta, x) t_{2}(\beta, x) \ldots
$$

We also define $\boldsymbol{t}(\beta, 1-)$ in the same way. Consider the case where the sequence $\boldsymbol{t}(\beta, 1)$ is finite, namely, there exists a finite word $a_{1} \ldots a_{M}$ on the alphabet $\{0,1, \ldots,\lfloor\beta\rfloor\}$ with $a_{M} \neq 0$ such that

$$
\boldsymbol{t}(\beta, 1)=a_{1} \ldots a_{M} 00 \ldots
$$

Then it is known that

$$
\boldsymbol{t}(\beta, 1-)=a_{1} \ldots a_{M-1}\left(a_{M}-1\right) a_{1} \ldots a_{M-1}\left(a_{M}-1\right) a_{1} \ldots
$$

Suppose that the sequence $\boldsymbol{t}(\beta, 1)$ is not finite, that is, there exist infinitely many $n$ 's with $t_{n}(\beta, 1) \neq 0$. Then

$$
t_{n}(\beta, 1-)=t_{n}(\beta, 1)
$$

for any positive integer $n$. We denote by $\prec_{l e x}$ the lexicographical order on the sets of the infinite sequences of nonnegative integers. Let $\sigma$ be the one-sided shift operator defined by $\sigma\left(\left(s_{n}\right)_{n=1}^{\infty}\right)=\left(s_{n+1}\right)_{n=1}^{\infty}$. Parry [21] showed for any sequence $\left(s_{n}\right)_{n=1}^{\infty}$ of nonnegative integers that there exists a real number $x<1$ satisfying $s_{n}=t_{n}(\beta, x)$ for any positive integer $n$ if and only if

$$
\sigma^{k}\left(\left(s_{n}\right)_{n=1}^{\infty}\right) \prec_{l e x} \boldsymbol{t}(\beta, 1-)
$$

holds for any nonnegative integer $k$.
We review metrical results on the normality in the digits of $\beta$-expansions. We now recall the notion of $\beta$-admissibility. For any positive integers $n$ and $k$, we define the finite word $\boldsymbol{t}_{n, k}(\beta, x)$ by

$$
\boldsymbol{t}_{n, k}(\beta, x):=t_{n}(\beta, x) t_{n+1}(\beta, x) \ldots t_{n+k-1}(\beta, x)
$$

We call that a nonempty finite word $W$ on the alphabet $\{0,1, \ldots,\lfloor\beta\rfloor\}$ is $\beta$ admissible if there exists a real number $x<1$ such that

$$
W=\boldsymbol{t}_{1,|W|}(\beta, x)
$$

If $\beta=b$ is a rational integer, then any nonempty finite word $W$ on the alphabet $\{0,1, \ldots, b\}$ is $b$-admissible.

Borel [7] introduced the notion of normal numbers in base- $b$ for any integer $b \geq 2$. Recall that a real number $\xi<1$ is a normal number if, for any nonempty finite word $W$ on the alphabet $\{0,1, \ldots, b-1\}$, we have

$$
\lim _{N \rightarrow \infty} \frac{\operatorname{Card}\left\{n \in \mathbb{Z}^{+} \mid n \leq N, \boldsymbol{t}_{n,|W|}(b, \xi)=W\right\}}{N}=b^{-|W|}
$$

where Card denotes the cardinality.

Rényi [22] proved for any real number $\beta>1$ that there exists a unique $T_{\beta^{-}}$ invariant probability measure $\mu_{\beta}$ on $[0,1)$ which is absolutely continuous with respect to the Lebesgue measure on $[0,1)$. Moreover, he also verified that $\mu_{\beta}$ is ergodic. Consequently, almost all real numbers $\xi<1$ are normal with respect to the $\beta$-expansion, that is, for any (nonempty finite) $\beta$-admissible word $W$, we have

$$
\lim _{N \rightarrow \infty} \frac{\operatorname{Card}\left\{n \in \mathbb{Z}^{+} \mid n \leq N, \boldsymbol{t}_{n,|W|}(\beta, \xi)=W\right\}}{N}
$$

On the other hand, it is difficult to determine whether a given real number $\xi<1$ is normal with respect to the $\beta$-expansion. For instance, if $\beta=b$ is a rational integer, then Borel [8] conjectured that every algebraic irrational number is normal in base-b. However, neither proof nor counterexample is known for Borel's conjecture. The main purpose of this paper is to study the properties of digits in the $\beta$-expansions of algebraic numbers in the case where $\beta$ is a Pisot or Salem number.

We recall the definition of Pisot and Salem numbers. Let $\beta$ be an algebraic integer greater than 1 . Then $\beta$ is called a Pisot number if the conjugates of $\beta$ except itself have moduli less than 1 . Moreover, $\beta$ is a Salem number if the conjugates of $\beta$ except itself have absolute values not greater than 1 , and there exists a conjugate of $\beta$ with absolute value 1 .

In Section 2, we study the complexity of the sequence $\boldsymbol{t}(\beta, \xi)$ in the case where $\beta$ is a Pisot or Salem number and $0<\xi \leq 1$ is an algebraic number. In particular, we give new lower bounds for the numbers of nonzero digits in $\boldsymbol{t}(\beta, \xi)$. The lower bounds are deduced from Theorem 2.2, which is proved in Section 3.

## 2 Main results

Let $\beta>1$ and $0<\xi \leq 1$ be algebraic numbers. Lower bounds for the numbers $\gamma(\beta, \xi ; N)$ of digit changes, defined by

$$
\gamma(\beta, \xi ; N):=\operatorname{Card}\left\{n \in \mathbb{Z}^{+} \mid n \leq N, t_{n}(\beta, \xi) \neq t_{n+1}(\beta, \xi)\right\}
$$

for positive integer $N$ were studied in $[9,11,13,18,19]$, which gives partial results on the normality of $\xi$ with respect to the $\beta$-expansion. In particular, Bugeaud [11] proved the follwoing: Suppose that $\beta$ is a Pisot or Salem number and that $t_{n}(\beta, \xi) \neq t_{n+1}(\beta, \xi)$ for infinitely many $n$. Then there exist effectively computable positive constants $C_{1}(\beta, \xi), C_{2}(\beta, \xi)$, depending only on $\beta$ and $\xi$, satisfying

$$
\begin{equation*}
\gamma(\beta, \xi ; N) \geq C_{1}(\beta, \xi) \frac{(\log N)^{3 / 2}}{(\log \log N)^{1 / 2}} \tag{2.1}
\end{equation*}
$$

for any $N$ with $N \geq C_{2}(\beta, \xi)$. Lower bounds for the block complexity $p(\beta, \xi ; N)$, defined by

$$
p(\beta, \xi ; N):=\operatorname{Card}\left\{\boldsymbol{t}_{n, N}(\beta, \xi) \mid n \in \mathbb{Z}^{+}\right\}
$$

for positive integer $N$, were also obtained in $[2,3,10,13,17]$. Moreover, the diophantine exponents of the sequence $\boldsymbol{t}(\beta, \xi)$ were studied in [2, 15].

Bailey, Borwein, Crandall, and Pomerance [5] studied the numbers of nonzero digits in the binary expansions of algebraic irrational numbers. More generally, we estimate lower bounds for the nonzero digits in the $\beta$-expansions of algebraic numbers. Let $\beta>1$ and $\xi \leq 1$ be real numbers. Put

$$
\nu(\beta, \xi ; N):=\operatorname{Card}\left\{n \in \mathbb{Z}^{+} \mid n \leq N, t_{n}(\beta, \xi) \neq 0\right\}
$$

for any positive integer $N$. It is easily seen that

$$
\nu(\beta, \xi ; N) \geq \frac{1}{2} \gamma(\beta, \xi ; N)+O(1)
$$

Let $\beta$ be a Pisot or Salem number and $\xi$ an algebraic number. Assume that the digits of $\boldsymbol{t}(\beta, \xi)$ change infinitely many times. Then (2.1) implies that

$$
\begin{equation*}
\nu(\beta, \xi ; N) \geq \frac{C_{1}(\beta, \xi)}{3} \cdot \frac{(\log N)^{3 / 2}}{(\log \log N)^{1 / 2}} \tag{2.2}
\end{equation*}
$$

for any sufficiently large $N$.
The main purpose of this paper is to improve lower bound (2.2). Bailey, Borwein, Crandall, and Pomerance [5] proved for any algebraic irrational number $\xi \leq 1$ of degree $D$ that there exist positive constants $C_{3}(\xi)$ and $C_{4}(\xi)$, depending only on $\xi$, satisfying

$$
\begin{equation*}
\nu(2, \xi ; N) \geq C_{3}(\xi) N^{1 / D} \tag{2.3}
\end{equation*}
$$

for any integer $N$ with $N \geq C_{4}(\xi)$. Note that $C_{3}(\xi)$ is effectively computable but $C_{4}(\xi)$ is not. Rivoal [23] improved the constant $C_{3}(\xi)$ for certain classes of algebraic irrational numbers.

Adamczewski, Faverjon [4] and Bugeaud [12] independently verified for each integral base $b \geq 2$ and any algebraic irrational number $\xi$ of degree $D$ that there exist effectively computable positive constants $C_{5}(b, \xi)$ and $C_{6}(b, \xi)$, depending only on $b$ and $\xi$, satisfying

$$
\nu(b, \xi ; N) \geq C_{5}(b, \xi) N^{1 / D}
$$

for any integer $N$ with $N \geq C_{6}(b, \xi)$.
Let again $\beta$ be a Pisot or Salem number and $\xi \leq 1$ an algebraic number. Put $[\mathbb{Q}(\beta, \xi): \mathbb{Q}(\beta)]=D$, where $[L: K]$ denotes the degree of the field extension $L / K$. Suppose that there exist infinitely many nonzero digits in the sequence $\boldsymbol{t}(\beta, \xi)$. Then we have [20]

$$
\begin{equation*}
\nu(\beta, \xi ; N) \geq C_{7}(\beta, \xi) \frac{N^{1 /(2 D-1)}}{(\log N)^{1 /(2 D-1)}} \tag{2.4}
\end{equation*}
$$

for any integer $N$ with $N \geq C_{8}(\beta, \xi)$, where $C_{7}(\beta, \xi)$ and $C_{8}(\beta, \xi)$ are effectively computable positive constants depending only on $\beta$ and $\xi$. The inequality (2.4) follows from Theorem 2.1 in [20], which we introduce as follows: For any sequence $s=\left(s_{n}\right)_{n=0}^{\infty}$ of integers, we set

$$
\Gamma(s)=\left\{n \in \mathbb{N} \mid s_{n} \neq 0\right\}
$$

and

$$
f(s ; X):=\sum_{n=0}^{\infty} s_{n} X^{n}
$$

Moreover, for any nonnegative integer $N$ and any nonempty set $\mathcal{A}$ of nonnegative integers, we put

$$
\lambda(\mathcal{A} ; N):=\operatorname{Card}([0, N] \cap \mathcal{A}) .
$$

THEOREM 2.1 ([20, Theorem 2.1]). Let $\beta$ be a Pisot or Salem number and $\xi$ an algebraic number with $[\mathbb{Q}(\beta, \xi): \mathbb{Q}(\beta)]=D$. Suppose that there exists a sequence $s=\left(s_{n}\right)_{n=0}^{\infty}$ of integers satisfying the following two assumptions:

1. There exists a positive integer $B$ such that, for any $n \in \mathbb{N}$, we have $0 \leq$ $s_{n} \leq B$. Moreover, there exist infinitely many $n$ such that $s_{n}>0$.
2. $\xi=f\left(\boldsymbol{s} ; \beta^{-1}\right)$.

Then there exist effectively computable positive constants $C_{9}=C_{9}(\beta, \xi, B)$ and $C_{10}=C_{10}(\beta, \xi, B)$, depending only on $\beta, \xi$ and $B$, such that, for any integer $N$ with $N \geq C_{10}$, we have

$$
\begin{equation*}
\lambda(\Gamma(s) ; N) \geq C_{9} \frac{N^{1 /(2 D-1)}}{(\log N)^{1 /(2 D-1)}} \tag{2.5}
\end{equation*}
$$

In what follows, we improve Theorem 2.1 under the same assumptions.
THEOREM 2.2. Let $\beta$ be a Pisot or Salem number and $\xi$ an algebraic number with $[\mathbb{Q}(\beta, \xi): \mathbb{Q}(\beta)]=D$. Suppose that there exists a sequence $\boldsymbol{s}=\left(s_{n}\right)_{n=0}^{\infty}$ of integers satisfying the following two assumptions:

1. There exists a positive integer $B$ such that, for any $n \in \mathbb{N}$, we have $0 \leq$ $s_{n} \leq B$. Moreover, there exist infinitely many $n$ such that $s_{n}>0$.
2. 

$$
\begin{equation*}
\xi=f\left(s ; \beta^{-1}\right) \tag{2.6}
\end{equation*}
$$

Then there exist effectively computable positive constants $C_{11}=C_{11}(\beta, \xi, B)$ and $C_{12}=C_{12}(\beta, \xi, B)$, depending only on $\beta, \xi$ and $B$, such that, for any integer $N$ with $N \geq C_{12}$, we have

$$
\begin{equation*}
\lambda(\Gamma(s) ; N) \geq C_{11} \frac{N^{1 / D}}{(\log N)^{1 / D}} \tag{2.7}
\end{equation*}
$$

We note that Theorems 2.1 and 2.2 are applicable not only to the $\beta$-expansion but also to a general $\beta$-representation

$$
\xi=\sum_{n=0}^{\infty} t_{n} \beta^{-n}
$$

where $\left(t_{n}\right)_{n=0}^{\infty}$ is a bounded sequence of nonnegative integers.
As a consequence of Theorem 2.2, we improve (2.4) as follows:

COROLLARY 2.3. Let $\beta$ be a Pisot or Salem number and $\xi \leq 1$ an algebraic number with $[\mathbb{Q}(\beta, \xi): \mathbb{Q}(\beta)]=D$. Suppose that there exist infinitely many nonzero digits in $\boldsymbol{t}(\beta, \xi)$. Then there exist effectively computable positive constants $C_{13}(\beta, \xi)$ and $C_{14}(\beta, \xi)$, depending only on $\beta$ and $\xi$, satisfying

$$
\nu(\beta, \xi ; N) \geq C_{13}(\beta, \xi) \frac{N^{1 / D}}{(\log N)^{1 / D}}
$$

for any integer $N$ with $N \geq C_{14}(\beta, \xi)$.
We apply Theorem 2.2 to the arithmetical properties on certain values of power series at algebraic points. Let $\left(v_{n}\right)_{n=1}^{\infty}$ be a sequence of nonnegative integers such that $v_{n+1}>v_{n}$ for sufficiently large $n$. Bugeaud [9, 11] posed a problem on the transcendence of $\sum_{n=1}^{\infty} \alpha^{v_{n}}$, where $\alpha$ is an algebraic number with $0<|\alpha|<1$, under the assumption that $\left(v_{n}\right)_{n=1}^{\infty}$ increases sufficiently rapidly. Corvaja and Zannier [14] proved for any algebraic number $\alpha$ with $0<|\alpha|<1$ that if

$$
\liminf _{n \rightarrow \infty} \frac{v_{n+1}}{v_{n}}>1
$$

holds, then $\sum_{n=1}^{\infty} \alpha^{v_{n}}$ is transcendental. In particular, consider the case of $\alpha=\beta^{-1}$, where $\beta$ is a Pisot or Salem number. Adamczewski [1] proved that if

$$
\limsup _{n \rightarrow \infty} \frac{v_{n+1}}{v_{n}}>1
$$

then $\sum_{n=1}^{\infty} \beta^{-v_{n}}$ is transcendental. However, if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{v_{n+1}}{v_{n}}=1 \tag{2.8}
\end{equation*}
$$

then it is generally difficult to determine whether $\sum_{n=1}^{\infty} \alpha^{v_{n}}$ is transcendental. For instance, put, for any real number $z>1$ and any positive integer $n$, $\kappa(z ; n):=\left\lfloor n^{z}\right\rfloor$. Moreover, set $\psi(z ; X):=\sum_{n=1}^{\infty} X^{\kappa(z ; n)}$. Then the transcendence of $\psi(z ; \alpha)$ is unknown except the case where $\psi(2 ; \alpha)$ is transcendental for any algebraic number $\alpha$ with $0<|\alpha|<1$, which was proved by Duverney, Nishioka, Nishioka, Shiokawa [16], and Bertrand [6] independently.

Using Theorem 2.1 or Theorem 2.2, we obtain that if

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{v_{n}}{n^{R}}=\infty \tag{2.9}
\end{equation*}
$$

for any positive real number $R$, then, for any Pisot or Salem number $\beta$, we have $\sum_{n=1}^{\infty} \beta^{-v_{n}}$ is transcendental. This criterion for transcendence is applicable to certain sequences $\left(v_{n}\right)_{n=1}^{\infty}$ satisfying (2.8). For instance, let, for any positive integer $n$,

$$
w_{n}:=\left\lfloor n^{\log n}\right\rfloor=\left\lfloor\exp \left((\log n)^{2}\right)\right\rfloor .
$$

Then $\left(w_{n}\right)_{n=1}^{\infty}$ fulfills (2.8). Since $\left(w_{n}\right)_{n=1}^{\infty}$ satisfies (2.9), we see that $\sum_{n=1}^{\infty} \beta^{-w_{n}}$ is transcendental.

Moreover, Using Theorem 2.1, we get for real number $z>1$ and any Pisot or Salem number $\beta$ that $\psi\left(z ; \beta^{-1}\right)$ cannot be algebraic of small degree over $\mathbb{Q}(\beta)$, precisely

$$
\begin{equation*}
\left[\mathbb{Q}\left(\psi\left(z ; \beta^{-1}\right), \beta\right): \mathbb{Q}(\beta)\right] \geq\left\lceil\frac{z+1}{2}\right\rceil . \tag{2.10}
\end{equation*}
$$

In fact, we put

$$
\psi(z ; X)=: \sum_{n=0}^{\infty} s_{n} X^{n}
$$

Then a bounded sequence $s=\left(s_{n}\right)_{n=0}^{\infty}$ of nonnegative integers satisfies

$$
\lim _{N \rightarrow \infty} \frac{\lambda(\Gamma(s) ; N)}{N^{1 / z}}=1
$$

If $\psi\left(z ; \beta^{-1}\right)$ is transcendental, then (2.10) is clear because the left-hand side is equal to infinity. Assume that $\psi\left(z ; \beta^{-1}\right)$ is an algebraic number satisfying $\left[\mathbb{Q}\left(\psi\left(z ; \beta^{-1}\right), \beta\right): \mathbb{Q}(\beta)\right]=D$. Then (2.5) holds only in the case of $z \leq 2 D-1$. Similarly, using Theorem 2.2, we deduce that

$$
\left[\mathbb{Q}\left(\psi\left(z ; \beta^{-1}\right), \beta\right): \mathbb{Q}(\beta)\right] \geq\lceil z\rceil,
$$

which improves (2.10).

## 3 Proof of Theorem 2.2

For the proof of Theorem 2.2, we recall the following Liouville type inequality deduced from Theorem 11 in [24, p. 34].

LEMMA 3.1 ([20, Proposition 3.1]). Let $z$ and $\xi$ be algebraic numbers. Suppose that there exists a sequence $s=\left(s_{n}\right)_{n=0}^{\infty}$ of integers satisfying the following three assumptions:

1. There exists a positive integer $B$ such that, for any $n \in \mathbb{N}$, we have $0 \leq$ $s_{n} \leq B$.
2. $\xi=f(s ; z)$.
3. For any $M \in \mathbb{N}$, we have

$$
\sum_{n=0}^{M} s_{n} z^{n} \neq \xi
$$

Let $(w(m))_{m=0}^{\infty}$ be a strictly increasing sequence of nonnegative integers defined by

$$
\left\{n \in \mathbb{N} \mid s_{n} \neq 0\right\}=:\{w(0)<w(1)<\cdots\} .
$$

Then there exist effectively computable positive constants $C_{15}=C_{15}(z, \xi, B)$ and $C_{16}=C_{16}(z, \xi, B)$, depending only on $z, \xi$ and $B$, such that, for any integer $m$ with $m \geq C_{16}$, we have

$$
\frac{w(m+1)}{w(m)}<C_{15} .
$$

If $D=1$, then (2.7) is deduced from (2.5). Thus, we may assume that $D \geq 2$. For simplicity, put

$$
\Gamma:=\Gamma(s), \lambda(N):=\lambda(\Gamma ; N) .
$$

We may assume that $s_{0} \neq 0$, that is ,

$$
\begin{equation*}
0 \in \Gamma \tag{3.1}
\end{equation*}
$$

In what follows, the implied constants in the symbol $\ll$ and the constants $C_{17}, C_{18}, \ldots$ are effectively computable positive ones depending only on $\beta, \xi$ and $B$. We see for any $M \in \mathbb{N}$ that $\sum_{n=0}^{M} s_{n} \beta^{-n} \neq \xi$ by (2.6) and the first assumption of Theorem 2.2. Thus, using Lemma 3.1, we get that there exist $C_{17}$ and $C_{18}$ satisfying

$$
\begin{equation*}
\Gamma \cap\left[x, C_{17} x\right) \neq \emptyset \tag{3.2}
\end{equation*}
$$

for any real number $x$ with $x \geq C_{18}$. By $[\mathbb{Q}(\beta, \xi): \mathbb{Q}(\beta)]=D$, there exists an polynomial $P(X)=A_{D} X^{D}+A_{D-1} X^{D-1}+\cdots+A_{0} \in \mathbb{Z}[\beta][X]$ with $A_{D}>0$ such that $P(\xi)=0$. In the same way as the proof of Theorem 2.1 in [20], we see for any $k$ with $1 \leq k \leq D$ that

$$
\begin{equation*}
\xi^{k}=\left(\sum_{m \in \Gamma} s_{m} \beta^{-m}\right)^{k}=\sum_{m=0}^{\infty} \beta^{-m} \rho(k ; m) \tag{3.3}
\end{equation*}
$$

where

$$
\rho(k ; m)=\sum_{\substack{m_{1}, \ldots, m_{k} \in \subseteq \\ m_{1}+\cdots+m_{k}=m}} s_{m_{1}} \cdots s_{m_{k}}
$$

Note for any nonnegative integer $m$ that $\rho(k ; m)$ is a nonnegative integer. Moreover, putting

$$
k \Gamma:=\left\{m_{1}+\cdots+m_{k} \mid m_{1}, \ldots, m_{k} \in \Gamma\right\},
$$

we get that $\rho(k ; m)$ is positive if and only if $m \in k \Gamma$. By (3.1), we have

$$
\begin{equation*}
(0 \in) \Gamma \subset 2 \Gamma \subset \cdots \subset(D-1) \Gamma \subset D \Gamma \tag{3.4}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\lambda(k \Gamma ; N)=\operatorname{Card}([0, N] \cap k \Gamma) \leq \operatorname{Card}([0, N] \cap \Gamma)^{k}=\lambda(N)^{k} \tag{3.5}
\end{equation*}
$$

and that

$$
\begin{equation*}
\rho(k ; m) \leq B^{k} \sum_{\substack{m_{1}, \ldots, m_{k} \in \Gamma \\ m_{1}+\ldots+m_{k}=m}} 1 \leq B^{k}(m+1)^{k} . \tag{3.6}
\end{equation*}
$$

We see that

$$
\begin{align*}
0 & =P(\xi)=A_{0}+\sum_{k=1}^{D} A_{k} \xi^{k} \\
& =A_{0}+\sum_{k=1}^{D} A_{k} \sum_{m=0}^{\infty} \beta^{-m} \rho(k ; m) \tag{3.7}
\end{align*}
$$

by (3.3). Let $R$ be a nonnegative integer. Then, multiplying (3.7) by $\beta^{R}$, we get

$$
0=A_{0} \beta^{R}+\sum_{k=1}^{D} A_{k} \sum_{m=-R}^{\infty} \beta^{-m} \rho(k ; m+R)
$$

In particular, putting

$$
Y_{R}:=\sum_{k=1}^{D} A_{k} \sum_{m=1}^{\infty} \beta^{-m} \rho(k ; m+R)
$$

we obtain

$$
\begin{equation*}
Y_{R}=-A_{0} \beta^{R}-\sum_{k=1}^{D} A_{k} \sum_{m=-R}^{0} \beta^{-m} \rho(k ; m+R) . \tag{3.8}
\end{equation*}
$$

Note that $Y_{R}$ is an algebraic integer by (3.8) because $\beta$ is a Pisot or Salem number. In the same way as the proof of Lemma 4.1 in [20], we deduce the following: There exists positive integers $C_{19}$ and $C_{20}$ such that if $R$ is an integer with $R \geq C_{20}$, then we have

$$
\begin{equation*}
Y_{R}=0 \text { or }\left|Y_{R}\right| \geq R^{-C_{19}} . \tag{3.9}
\end{equation*}
$$

In the case of $\beta=2$, Bailey, Borwein, Crandall, and Pomerance [5] investigated the numbers of positive $Y_{R}$ to prove (2.3). More precisely, they estimated upper and lower bounds for the value

$$
\operatorname{Card}\left\{R \in \mathbb{N} \mid R \leq N, Y_{R}>0\right\}
$$

for a nonnegative integer $N$. However, if $\beta$ is a general Pisot or Salem number, then it is difficult to obtain upper bounds. So we modify their definition, that is, we consider the value

$$
y_{N}:=\operatorname{Card}\left\{R \in \mathbb{N} \mid R \leq N, Y_{R} \geq C_{21}\right\}
$$

for a integer $N$ with $N \gg 1$, where $C_{21}=\min \left\{1 / \beta, A_{D} / \beta\right\}$. We give upper bounds for $y_{N}$ in Lemma 3.2, using the function $\lambda(N)$. Note that we modify the definition of $y_{N}$ to get (3.11), which is the key inequality for the proof of Lemma 3.2. On the other hand, we estimate upper bounds for $y_{N}$ in Lemma 3.5. The main tool for the proof of Lemma 3.5 is Lemma 3.4, which is deduced from Liouville type inequality (3.9).

In what follows, we assume that $N$ is a sufficiently large integer satisfying

$$
\begin{equation*}
\left(1+\frac{1}{N}\right)^{D}<\frac{1+\beta}{2} \tag{3.10}
\end{equation*}
$$

## LEMMA 3.2.

$$
y_{N} \ll \log N+\lambda(N)^{D}
$$

for any integer $N$ with $N \gg 1$.

Proof. Putting $K:=\left\lceil(D+1) \log _{\beta} N\right\rceil$, we get

$$
\begin{equation*}
y_{N} \leq K+y_{N-K}=K+\sum_{\substack{0 \leq R \leq N-K \\ Y_{R} \geq C_{21}}} 1 \leq K+\frac{1}{C_{21}} \sum_{R=0}^{N-K}\left|Y_{R}\right| . \tag{3.11}
\end{equation*}
$$

Observe that

$$
\begin{align*}
\sum_{R=0}^{N-K}\left|Y_{R}\right| & \leq \sum_{R=0}^{N-K} \sum_{k=1}^{D} \sum_{m=1}^{\infty}\left|A_{k}\right| \beta^{-m} \rho(k ; m+R) \\
& =\sum_{k=1}^{D}\left|A_{k}\right| \sum_{R=0}^{N-K} \sum_{m=1}^{\infty} \beta^{-m} \rho(k ; m+R) \\
& =: \quad \sum_{k=1}^{D}\left|A_{k}\right| z_{N}^{(k)} \tag{3.12}
\end{align*}
$$

where

$$
z_{N}^{(k)}=\sum_{R=0}^{N-K} \sum_{m=1}^{\infty} \beta^{-m} \rho(k ; m+R)
$$

for any $N$ and $k$ with $N \geq 0$ and $1 \leq k \leq D$. By (3.11) and (3.12), it suffices to show

$$
\begin{equation*}
z_{N}^{(k)} \ll \lambda(N)^{D} \tag{3.13}
\end{equation*}
$$

for any $N$ and $k$ with $N \gg 1$ and $1 \leq k \leq D$. We see that

$$
\begin{align*}
z_{N}^{(k)}= & \sum_{m=1}^{K} \beta^{-m} \sum_{R=0}^{N-K} \rho(k ; m+R) \\
& +\sum_{m=K+1}^{\infty} \beta^{-m} \sum_{R=0}^{N-K} \rho(k ; m+R) \\
= & \quad S_{1}(k)+S_{2}(k) \tag{3.14}
\end{align*}
$$

Using the first assumption of Theorem 2.2 and the definition of $\rho(k ; R), \lambda(N)$, we obtain

$$
\begin{align*}
S_{1}(k) & \leq \sum_{m=1}^{K} \beta^{-m} \sum_{R=0}^{N} \rho(k ; R) \leq \sum_{m=1}^{\infty} \beta^{-m} \sum_{R=0}^{N} \rho(k ; R) \\
& \ll \sum_{R=0}^{N} \rho(k ; R)=\sum_{R=0}^{N} \sum_{\substack{m_{1}, \ldots, m_{k} \in \Gamma \\
m_{1}+\ldots+m_{k}=R}} s_{m_{1}} \cdots s_{m_{k}} \\
& =\sum_{\substack{m_{1}, \ldots, m_{k} \in \Gamma \\
m_{1}+\cdots+m_{k} \leq N}} s_{m_{1}} \cdots s_{m_{k}} \leq B^{k} \sum_{\substack{m_{1}, \ldots, m_{k} \in \Gamma \\
m_{1}+\cdots+m_{k} \leq N}} 1 \\
& \leq B^{D} \lambda(N)^{D} \ll \lambda(N)^{D} . \tag{3.15}
\end{align*}
$$

On the other hand, (3.6) implies by $k \leq D$ that

$$
S_{2}(k) \ll \sum_{m=K+1}^{\infty} \beta^{-m} \sum_{R=0}^{N-K}(m+R+1)^{D} \leq N \sum_{m=K+1}^{\infty} \beta^{-m}(m+N)^{D} .
$$

Thus, using (3.10), we obtain for any integer $N$ with $N \gg 1$ that

$$
\begin{align*}
S_{2}(k) & \ll N \beta^{-1-K}(1+K+N)^{D} \sum_{m=0}^{\infty} \beta^{-m}\left(\frac{1+\beta}{2}\right)^{m} \\
& \ll \beta^{-K} N^{D+1} \leq 1 . \tag{3.16}
\end{align*}
$$

Therefore, combining (3.14), (3.15), and (3.16), we deduce (3.13).
Recalling that $0 \in(D-1) \Gamma$ by (3.4), set

$$
[0, N) \cap(D-1) \Gamma=:\{0=i(1)<i(2)<\cdots<i(\tau)\}
$$

where

$$
\begin{equation*}
\tau=\tau(N) \leq \lambda(N)^{D-1} \tag{3.17}
\end{equation*}
$$

by (3.5). Put $i(1+\tau):=N$.
Let $1 \leq h \leq \tau$. We define the interval $I_{h}$ by

$$
I_{h}:=\left\{\begin{array}{cc}
{[i(h), i(1+h))} & (1 \leq h \leq-1+\tau), \\
{[i(\tau), i(1+\tau)]} & (h=\tau) .
\end{array}\right.
$$

Moreover, let $\left|I_{h}\right|:=i(1+h)-i(h)$ and

$$
y_{N}(h):=\operatorname{Card}\left\{R \in I_{h} \mid Y_{R} \geq C_{21}\right\} .
$$

Then we have

$$
\begin{equation*}
\sum_{h=1}^{\tau}\left|I_{h}\right|=N \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{h=1}^{\tau} y_{N}(h)=y_{N} . \tag{3.19}
\end{equation*}
$$

Consider the case where $I_{h}$ satisfies

$$
\begin{equation*}
\left|I_{h}\right|>8 D\left(1+C_{17}\right) C_{19} \log _{\beta} N=: C_{22} \log _{\beta} N . \tag{3.20}
\end{equation*}
$$

If $N \gg 1$, then applying (3.2) with $x=\left|I_{h}\right| /\left(1+C_{17}\right)$, we see by (3.20) that there exists $\theta(h) \in \Gamma$ with

$$
\frac{1}{1+C_{17}}\left|I_{h}\right| \leq \theta(h)<\frac{C_{17}}{1+C_{17}}\left|I_{h}\right| .
$$

Putting $M(h):=i(h)+\theta(h)$, we get

$$
\begin{equation*}
i(h)+\frac{1}{1+C_{17}}\left|I_{h}\right| \leq M(h)<i(h)+\frac{C_{17}}{1+C_{17}}\left|I_{h}\right| . \tag{3.21}
\end{equation*}
$$

Moreover, we obtain $M(h) \in D \Gamma$, by $i(h) \in(D-1) \Gamma$ and $\theta(h) \in \Gamma$.
LEMMA 3.3. Let $N, h$ be integers with $N \gg 1$ and $1 \leq h \leq \tau$. Assume that (3.20) holds. Then $Y_{R}>0$ for any integer $R$ with $i(h) \leq R<M(h)$.

Proof. We prove the lemma by induction on $R$. We first consider the case where $R=-1+M(h)$. Observe that

$$
\begin{align*}
Y_{-1+M(h)}= & A_{D} \sum_{m=1}^{\infty} \beta^{-m} \rho(D ; m+M(h)-1) \\
& \quad+\sum_{k=1}^{D-1} A_{k} \sum_{m=1}^{\infty} \beta^{-m} \rho(k ; m+M(h)-1) \\
= & S_{3}+S_{4} . \tag{3.22}
\end{align*}
$$

By $M(h) \in D \Gamma$, we get

$$
\begin{equation*}
S_{3} \geq \frac{A_{D}}{\beta} \rho(D ; M(h)) \geq \frac{A_{D}}{\beta} . \tag{3.23}
\end{equation*}
$$

We estimate upper bounds for $\left|S_{4}\right|$. Let $k, m$ be integers with $1 \leq k \leq D-1$ and $1 \leq m \leq-1+\left\lceil 2 D \log _{\beta} N\right\rceil$. Observe that, by (3.21), (3.20), and $C_{19} \geq 1$,

$$
\begin{aligned}
i(1+h)-M(h) & \geq i(1+h)-i(h)-\frac{C_{17}}{1+C_{17}}\left|I_{h}\right| \\
& =\frac{1}{1+C_{17}}\left|I_{h}\right|>8 D \log _{\beta} N>m
\end{aligned}
$$

Hence, we see

$$
i(h)<m+M(h)-1<i(1+h)
$$

by $i(h)<M(h) \leq m+M(h)-1$. Consequently, $m+M(h)-1 \notin(D-1) \Gamma$. In particular, by (3.4) we obtain $m+M(h)-1 \notin k \Gamma$. Therefore, we deduce that

$$
\rho(k ; m+M(h)-1)=0
$$

for any $k, m$ with $1 \leq k \leq D-1$ and $1 \leq m \leq-1+\left\lceil 2 D \log _{\beta} N\right\rceil$.
Using (3.6), we obtain

$$
\begin{aligned}
\left|S_{4}\right| & \leq \sum_{k=1}^{D-1}\left|A_{k}\right| \sum_{m \geq\left\lceil 2 D \log _{\beta} N\right\rceil} \beta^{-m} \rho(k ; m+M(h)-1) \\
& \leq \sum_{k=1}^{D-1}\left|A_{k}\right| \sum_{m \geq\left\lceil 2 D \log _{\beta} N\right\rceil} \beta^{-m} B^{D}(m+N)^{D} \\
& \ll \sum_{m \geq\left\lceil 2 D \log _{\beta} N\right\rceil} \beta^{-m}(m+N)^{D} .
\end{aligned}
$$

Consequently, (3.10) implies that

$$
\begin{aligned}
\left|S_{4}\right| & \ll \beta^{-\left\lceil 2 D \log _{\beta} N\right\rceil}\left(\left\lceil 2 D \log _{\beta} N\right\rceil+N\right)^{D} \sum_{m=0}^{\infty} \beta^{-m}\left(\frac{1+\beta}{2}\right)^{m} \\
& \ll N^{-D} .
\end{aligned}
$$

If $N \gg 1$, then

$$
\begin{equation*}
\left|S_{4}\right|<\frac{A_{D}}{2 \beta} \tag{3.24}
\end{equation*}
$$

Combining (3.22), (3.23), and (3.24), we deduce $Y_{-1+M(h)}>0$.
Next we assume $Y_{R}>0$ for some $R$ with $i(h)<R<M(h)(<i(1+h))$. Using $\rho(k ; R)=0$ for $k=1, \ldots, D-1$ by (3.4), we see

$$
\begin{align*}
Y_{R-1} & =\sum_{k=1}^{D} A_{k} \sum_{m=1}^{\infty} \beta^{-m} \rho(k ; m+R-1) \\
& =\frac{1}{\beta} A_{D} \rho(D ; R)+\frac{1}{\beta} \sum_{k=1}^{D} A_{k} \sum_{m=2}^{\infty} \beta^{-(m-1)} \rho(k ; m-1+R) \\
& =\frac{1}{\beta} A_{D} \rho(D ; R)+\frac{1}{\beta} Y_{R} \geq \frac{1}{\beta} Y_{R}>0 \tag{3.25}
\end{align*}
$$

by the inductive hypothesis. Therefore, we proved the lemma.
LEMMA 3.4. Let $N, h$ be integers with $N \gg 1$ and $1 \leq h \leq \tau$. Assume that (3.20) holds. Let $R$ be an integer with

$$
i(h)+4 C_{19} \log _{\beta} N \leq R<M(h)
$$

Then we have

$$
R-\max \left\{R^{\prime} \in \mathbb{N} \mid R^{\prime}<R, Y_{R^{\prime}} \geq C_{21}\right\} \leq 2 C_{19} \log _{\beta} N
$$

Proof. Let

$$
R_{1}:=\max \left\{R^{\prime} \in \mathbb{N} \mid R^{\prime}<R, Y_{R^{\prime}} \geq C_{21}\right\}
$$

In the same way as the proof of (3.25), we see for any integer $r$ with $i(h)<r<$ $i(1+h)$ that

$$
\begin{equation*}
Y_{r-1}=\frac{1}{\beta} A_{D} \rho(D ; r)+\frac{1}{\beta} Y_{r} . \tag{3.26}
\end{equation*}
$$

For the proof of the lemma, we may assume that $Y_{R}<1$. In fact, if $Y_{R} \geq 1$, then we have $Y_{R-1} \geq 1 / \beta \geq C_{21}$ by (3.26) and $R-R_{1}=1 \leq 2 C_{19} \log _{\beta} N$.

Put $S:=\left\lceil C_{19} \log _{\beta} N\right\rceil$. Assume for any integer $m$ with $0 \leq m \leq S$ that

$$
\rho(D ; R-m)=0
$$

Since $M(h)>R>R-1>\cdots>R-S>i(h)$, we get by (3.26) that

$$
1>Y_{R}=\beta Y_{R-1}=\cdots=\beta^{S} Y_{R-S}=\beta^{1+S} Y_{R-S-1}>0
$$

In fact, Lemma 3.3 implies $Y_{R-S-1}>0$ by $R-S-1 \geq i(h)$. Consequently, we see

$$
\beta^{S+1}<Y_{R-S-1}^{-1}=\left|Y_{R-S-1}\right|^{-1}
$$

If $N \gg 1$, then we have $R-S-1 \geq 2 C_{19} \log _{\beta} N \geq C_{20}$. Thus, using (3.9), we obtain

$$
\beta^{S+1}<\left|Y_{R-S-1}\right|^{-1} \leq(R-S-1)^{C_{19}}<N^{C_{19}}
$$

Hence, we deduce that

$$
\left\lceil C_{19} \log _{\beta} N\right\rceil+1=S+1<C_{19} \log _{\beta} N
$$

a contradiction. Therefore, there exists an integer $m^{\prime}$ with $0 \leq m^{\prime} \leq S$ such that $\rho\left(D ; R-m^{\prime}\right) \geq 1$. Finally, using (3.26) and $Y_{R-m^{\prime}}>0$ by Lemma 3.3, we obtain

$$
Y_{R-m^{\prime}-1} \geq \frac{A_{D}}{\beta} \geq C_{21}
$$

and

$$
R-R_{1} \leq m^{\prime}+1 \leq 2 C_{19} \log _{\beta} N
$$

LEMMA 3.5. There exists $C_{23}$ satisfying the following: If $N \gg 1$, then, for any integer $h$ with $1 \leq h \leq \tau$, we have

$$
\begin{equation*}
y_{N}(h) \geq\left\lfloor\frac{\left|I_{h}\right|}{C_{23} \log _{\beta} N}\right\rfloor . \tag{3.27}
\end{equation*}
$$

Proof. If (3.20) holds, then (3.27) follows from Lemma 3.4. In what follows, we suppose that $\left|I_{h}\right| \leq C_{22} \log _{\beta} N$. If necessary, increasing $C_{23}$, we may assume that $C_{23}>C_{22}$. Thus, (3.27) holds by

$$
\left\lfloor\frac{\left|I_{h}\right|}{C_{23} \log _{\beta} N}\right\rfloor=0 .
$$

If $N \gg 1$, then, combining (3.19), Lemma 3.5, and (3.18), (3.17), we deduce that

$$
\begin{aligned}
y_{N} & =\sum_{h=1}^{\tau} y_{N}(h) \geq \sum_{h=1}^{\tau}\left(\frac{\left|I_{h}\right|}{C_{23} \log _{\beta} N}-1\right) \\
& \geq \frac{N}{C_{23} \log _{\beta} N}-\tau \gg \frac{N}{\log N}-\lambda(N)^{D-1}
\end{aligned}
$$

On the other hand, Lemma 3.2 implies that

$$
\log N+\lambda(N)^{D} \gg y_{N} \gg \frac{N}{\log N}-\lambda(N)^{D-1}
$$

Therefore, we proved Theorem 2.2.

## Acknowledgements

I would like to thank professor Yann Bugeaud for careful reading of the manuscript and for giving fruitful advice. I am grateful the referees for valuable comments. This work was supported by JSPS KAKENHI Grant Number 15K17505.

## References

[1] B. Adamczewski, Transcendance $\ll$ à la Liouville $\gg$ de certains nombres réels, C. R. Acad. Sci. Paris 338 (2004), 511-514.
[2] B. Adamczewski and Y. Bugeaud, Dynamics for beta-shifts and Diophantine approximation. Ergod. Theory and Dynamical Syst. 27 (2007), 16951711.
[3] B. Adamczewski and Y. Bugeaud, On the complexity of algeraic numbers I. Expansions in integer bases, Annals of Math. 165 (2007), 547-565.
[4] B. Adamczewski and C. Faverjon, Chiffres non nuls dans le développement en base entière des nombres algébriques irrationnels, C. R. Acad. Sci. Paris, 350 (2012), 1-4.
[5] D. H. Bailey, J. M. Borwein, R. E. Crandall and C. Pomerance, On the binary expansions of algebraic numbers, J. Théor. Nombres Bordeaux 16 (2004), 487-518.
[6] D. Bertrand. Theta functions and transcendence, The Ramanujan J. 1 (1997), 339-350.
[7] É. Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend. circ. Mat. Palermo 27 (1909), 247-271.
[8] É. Borel, Sur les chiffres décimaux de $\sqrt{2}$ et divers problèmes de probabilités en chaîne, C. R. Acad. Sci. Paris 230 (1950), 591-593.
[9] Y. Bugeaud, On the $b$-ary expansion of an algebraic number, Rend. Sem. Math. Univ. Padova 118 (2007), 217-233.
[10] Y. Bugeaud, An explicit lower bound for the block complexity of an algebraic number, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19 (2008), 229-235.
[11] Y. Bugeaud, On the $\beta$-expansion of an algebraic number in an algebraic base $\beta$, Integers 9 (2009), 215-226.
[12] Y. Bugeaud, Distribution modulo one and diophantine approximation, Cambridge Tracts in Math. 193, Cambridge, (2012).
[13] Y. Bugeaud and J.-H. Evertse, On two notions of complexity of algebraic numbers, Acta Arith. 133 (2008), 221-250.
[14] P. Corvaja and U. Zannier, Some new applications of the subspace theorem, Compositio Math. 131 (2002), 319-340.
[15] A. Dubickas, On $\beta$-expansions of unity for rational and transcendental numbers $\beta$, Mathematica Slovaca, 61 (2011), 705-716.
[16] D. Duverney, Ke. Nishioka, Ku. Nishioka, I. Shiokawa. Transcendence of Jacobi's theta series, Proc. Japan. Acad. Sci, Ser. A bf 72 (1996), 202-203.
[17] S. Ferenczi and C. Mauduit, Transcendence of numbers with a low complexity expansion, J. Number Theory 67 (1997), 146-161.
[18] H. Kaneko, On the binary digits of algebraic numbers, J. Aust. Math. Soc. 89 (2010), 233-244.
[19] H. Kaneko, On the number of digit changes in base- $b$ expansions of algebraic numbers, Unif. Distrib. Theory, 7 (2012), 141-168.
[20] H. Kaneko, On the beta-expansions of 1 and algebraic numbers for a Salem number beta, Ergod. Theory and Dynamical Syst. 35 (2015), 1243-1262.
[21] W. Parry, On the $\beta$-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11, (1960), 401-416.
[22] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957), 477-493.
[23] T. Rivoal, On the bits counting function of real numbers, J. Aust. Math. Soc. 85 (2008), 95-111.
[24] A. B. Shidlovskii, Transcendental Numbers, W. de Gruyter Studies in Math. 12, Walter de Gruyter \& Co., Berlin, (1989).

Hajime Kaneko
Institute of Mathematics, University of Tsukuba, 1-1-1
Tennodai, Tsukuba, Ibaraki, 350-0006, JAPAN
Center for Integrated Research in Fundamental Science and Engineering (CiRfSE)
University of Tsukuba, Tsukuba, Ibaraki 305-8571, JAPAN
e-mail: kanekoha@math.tsukuba.ac.jp


[^0]:    *2010 Mathematics Subject Classification : primary 11K16; secondary 11J91, 11J25
    ${ }^{\dagger}$ Keywords and phrases: beta expansions, nonzero digits, Pisot numbers, Salem numbers.

