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Abstract

Many mathematicians have investigated the base-b expansions for in-
tegral base-b ≥ 2, and more general β-expansions for a real number β > 1.
However, little is known on the β-expansions of algebraic numbers. The
main purpose of this paper is to give new lower bounds for the num-
bers of nonzero digits in the β-expansions of algebraic numbers under
the assumption that β is a Pisot or Salem number. As a consequence
of our main results, we study the arithmetical properties of power series∑∞

n=1 β
−κ(z;n), where z > 1 is a real number and κ(z;n) = ⌊nz⌋.

1 Normality of the digits in β-expansions

In this paper, let N (resp. Z+) be the set of nonnegative integers (resp. positive
integers). We denote the integral and fractional parts of a real number x by ⌊x⌋
and {x}, respectively. Moreover, we write the minimal integer n not less than
x by ⌈x⌉. We denote the length of a nonempty finite word W = w1w2 . . . wk

on a certain alphabet A by |W | = k. We use the Landau symbol O and the
Vinogradov symbols ≫,≪ with their usual meaning.

For a real number β greater than 1, let Tβ : [0, 1] → [0, 1) be the β-
transformation defined by Tβ(x) := {βx}. Using the β-transformation, Rényi
[22] generalized the notion of the base-b expansions of real numbers for an in-
tegral base b as follows: Let x be a real number with 0 ≤ x ≤ 1. Putting
tn(β, x) := ⌊βTn−1

β (x)⌋ for any positive integer n, we have

x =
∞∑

n=1

tn(β, x)β
−n. (1.1)

The right-hand side of (1.1) is called the β-expansion of x. In what follows,
we assume that 0 ≤ x ≤ 1 when we consider the β-expansion of x. We have
that tn(β, x) ≤ ⌊β⌋. In particular, if β = b is a rational integer, then we see
tn(b, x) ≤ b− 1 except the only case of t1(b; 1) = b.

Parry [21] showed that the digits tn(β, x) for x < 1 are characterized by the
expansion of 1. Put

tn(β, 1−) := lim
x→1−0

tn(β, x)
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for any positive integer n. Then we have

1 =
∞∑

n=1

tn(β, 1−)β−n.

For any real number x ≤ 1, let t(β, x) be the right-infinite sequence defined by

t(β, x) := t1(β, x)t2(β, x) . . . .

We also define t(β, 1−) in the same way. Consider the case where the sequence
t(β, 1) is finite, namely, there exists a finite word a1 . . . aM on the alphabet
{0, 1, . . . , ⌊β⌋} with aM ̸= 0 such that

t(β, 1) = a1 . . . aM00 . . . .

Then it is known that

t(β, 1−) = a1 . . . aM−1(aM − 1)a1 . . . aM−1(aM − 1)a1 . . . .

Suppose that the sequence t(β, 1) is not finite, that is, there exist infinitely
many n’s with tn(β, 1) ̸= 0. Then

tn(β, 1−) = tn(β, 1)

for any positive integer n. We denote by ≺lex the lexicographical order on the
sets of the infinite sequences of nonnegative integers. Let σ be the one-sided
shift operator defined by σ((sn)

∞
n=1) = (sn+1)

∞
n=1. Parry [21] showed for any

sequence (sn)
∞
n=1 of nonnegative integers that there exists a real number x < 1

satisfying sn = tn(β, x) for any positive integer n if and only if

σk((sn)
∞
n=1) ≺lex t(β, 1−)

holds for any nonnegative integer k.
We review metrical results on the normality in the digits of β-expansions.

We now recall the notion of β-admissibility. For any positive integers n and k,
we define the finite word tn,k(β, x) by

tn,k(β, x) := tn(β, x)tn+1(β, x) . . . tn+k−1(β, x).

We call that a nonempty finite word W on the alphabet {0, 1, . . . , ⌊β⌋} is β-
admissible if there exists a real number x < 1 such that

W = t1,|W |(β, x).

If β = b is a rational integer, then any nonempty finite word W on the alphabet
{0, 1, . . . , b} is b-admissible.

Borel [7] introduced the notion of normal numbers in base-b for any integer
b ≥ 2. Recall that a real number ξ < 1 is a normal number if, for any nonempty
finite word W on the alphabet {0, 1, . . . , b− 1}, we have

lim
N→∞

Card{n ∈ Z+ | n ≤ N, tn,|W |(b, ξ) =W}
N

= b−|W |,

where Card denotes the cardinality.
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Rényi [22] proved for any real number β > 1 that there exists a unique Tβ-
invariant probability measure µβ on [0, 1) which is absolutely continuous with
respect to the Lebesgue measure on [0, 1). Moreover, he also verified that µβ is
ergodic. Consequently, almost all real numbers ξ < 1 are normal with respect
to the β-expansion, that is, for any (nonempty finite) β-admissible word W , we
have

lim
N→∞

Card{n ∈ Z+ | n ≤ N, tn,|W |(β, ξ) =W}
N

= µβ({x ∈ [0, 1) | t1,|W |(β, x) =W}).

On the other hand, it is difficult to determine whether a given real number
ξ < 1 is normal with respect to the β-expansion. For instance, if β = b is
a rational integer, then Borel [8] conjectured that every algebraic irrational
number is normal in base-b. However, neither proof nor counterexample is
known for Borel’s conjecture. The main purpose of this paper is to study the
properties of digits in the β-expansions of algebraic numbers in the case where
β is a Pisot or Salem number.

We recall the definition of Pisot and Salem numbers. Let β be an algebraic
integer greater than 1. Then β is called a Pisot number if the conjugates of
β except itself have moduli less than 1. Moreover, β is a Salem number if the
conjugates of β except itself have absolute values not greater than 1, and there
exists a conjugate of β with absolute value 1.

In Section 2, we study the complexity of the sequence t(β, ξ) in the case
where β is a Pisot or Salem number and 0 < ξ ≤ 1 is an algebraic number.
In particular, we give new lower bounds for the numbers of nonzero digits in
t(β, ξ). The lower bounds are deduced from Theorem 2.2, which is proved in
Section 3.

2 Main results

Let β > 1 and 0 < ξ ≤ 1 be algebraic numbers. Lower bounds for the numbers
γ(β, ξ;N) of digit changes, defined by

γ(β, ξ;N) := Card{n ∈ Z+ | n ≤ N, tn(β, ξ) ̸= tn+1(β, ξ)},

for positive integer N were studied in [9, 11, 13, 18, 19], which gives partial
results on the normality of ξ with respect to the β-expansion. In particular,
Bugeaud [11] proved the follwoing: Suppose that β is a Pisot or Salem number
and that tn(β, ξ) ̸= tn+1(β, ξ) for infinitely many n. Then there exist effectively
computable positive constants C1(β, ξ), C2(β, ξ), depending only on β and ξ,
satisfying

γ(β, ξ;N) ≥ C1(β, ξ)
(logN)3/2

(log logN)1/2
(2.1)

for any N with N ≥ C2(β, ξ). Lower bounds for the block complexity p(β, ξ;N),
defined by

p(β, ξ;N) := Card{tn,N (β, ξ) | n ∈ Z+}
for positive integer N , were also obtained in [2, 3, 10, 13, 17]. Moreover, the
diophantine exponents of the sequence t(β, ξ) were studied in [2, 15].
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Bailey, Borwein, Crandall, and Pomerance [5] studied the numbers of nonzero
digits in the binary expansions of algebraic irrational numbers. More generally,
we estimate lower bounds for the nonzero digits in the β-expansions of algebraic
numbers. Let β > 1 and ξ ≤ 1 be real numbers. Put

ν(β, ξ;N) := Card{n ∈ Z+ | n ≤ N, tn(β, ξ) ̸= 0}

for any positive integer N . It is easily seen that

ν(β, ξ;N) ≥ 1

2
γ(β, ξ;N) +O(1).

Let β be a Pisot or Salem number and ξ an algebraic number. Assume that the
digits of t(β, ξ) change infinitely many times. Then (2.1) implies that

ν(β, ξ;N) ≥ C1(β, ξ)

3
· (logN)3/2

(log logN)1/2
(2.2)

for any sufficiently large N .
The main purpose of this paper is to improve lower bound (2.2). Bailey,

Borwein, Crandall, and Pomerance [5] proved for any algebraic irrational num-
ber ξ ≤ 1 of degree D that there exist positive constants C3(ξ) and C4(ξ),
depending only on ξ, satisfying

ν(2, ξ;N) ≥ C3(ξ)N
1/D (2.3)

for any integer N with N ≥ C4(ξ). Note that C3(ξ) is effectively computable
but C4(ξ) is not. Rivoal [23] improved the constant C3(ξ) for certain classes of
algebraic irrational numbers.

Adamczewski, Faverjon [4] and Bugeaud [12] independently verified for each
integral base b ≥ 2 and any algebraic irrational number ξ of degree D that there
exist effectively computable positive constants C5(b, ξ) and C6(b, ξ), depending
only on b and ξ, satisfying

ν(b, ξ;N) ≥ C5(b, ξ)N
1/D

for any integer N with N ≥ C6(b, ξ).
Let again β be a Pisot or Salem number and ξ ≤ 1 an algebraic number. Put

[Q(β, ξ) : Q(β)] = D, where [L : K] denotes the degree of the field extension
L/K. Suppose that there exist infinitely many nonzero digits in the sequence
t(β, ξ). Then we have [20]

ν(β, ξ;N) ≥ C7(β, ξ)
N1/(2D−1)

(logN)1/(2D−1)
(2.4)

for any integer N with N ≥ C8(β, ξ), where C7(β, ξ) and C8(β, ξ) are effectively
computable positive constants depending only on β and ξ. The inequality (2.4)
follows from Theorem 2.1 in [20], which we introduce as follows: For any se-
quence s = (sn)

∞
n=0 of integers, we set

Γ(s) = {n ∈ N | sn ̸= 0}

and

f(s;X) :=
∞∑

n=0

snX
n.
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Moreover, for any nonnegative integerN and any nonempty setA of nonnegative
integers, we put

λ(A;N) := Card([0, N ] ∩ A).

THEOREM 2.1 ([20, Theorem 2.1]). Let β be a Pisot or Salem number and
ξ an algebraic number with [Q(β, ξ) : Q(β)] = D. Suppose that there exists a
sequence s = (sn)

∞
n=0 of integers satisfying the following two assumptions:

1. There exists a positive integer B such that, for any n ∈ N, we have 0 ≤
sn ≤ B. Moreover, there exist infinitely many n such that sn > 0.

2. ξ = f(s;β−1).

Then there exist effectively computable positive constants C9 = C9(β, ξ,B) and
C10 = C10(β, ξ, B), depending only on β, ξ and B, such that, for any integer N
with N ≥ C10, we have

λ(Γ(s);N) ≥ C9
N1/(2D−1)

(logN)1/(2D−1)
. (2.5)

In what follows, we improve Theorem 2.1 under the same assumptions.

THEOREM 2.2. Let β be a Pisot or Salem number and ξ an algebraic number
with [Q(β, ξ) : Q(β)] = D. Suppose that there exists a sequence s = (sn)

∞
n=0 of

integers satisfying the following two assumptions:

1. There exists a positive integer B such that, for any n ∈ N, we have 0 ≤
sn ≤ B. Moreover, there exist infinitely many n such that sn > 0.

2.

ξ = f(s;β−1). (2.6)

Then there exist effectively computable positive constants C11 = C11(β, ξ,B) and
C12 = C12(β, ξ, B), depending only on β, ξ and B, such that, for any integer N
with N ≥ C12, we have

λ(Γ(s);N) ≥ C11
N1/D

(logN)1/D
. (2.7)

We note that Theorems 2.1 and 2.2 are applicable not only to the β-expansion
but also to a general β-representation

ξ =
∞∑

n=0

tnβ
−n,

where (tn)
∞
n=0 is a bounded sequence of nonnegative integers.

As a consequence of Theorem 2.2, we improve (2.4) as follows:
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COROLLARY 2.3. Let β be a Pisot or Salem number and ξ ≤ 1 an alge-
braic number with [Q(β, ξ) : Q(β)] = D. Suppose that there exist infinitely
many nonzero digits in t(β, ξ). Then there exist effectively computable positive
constants C13(β, ξ) and C14(β, ξ), depending only on β and ξ, satisfying

ν(β, ξ;N) ≥ C13(β, ξ)
N1/D

(logN)1/D

for any integer N with N ≥ C14(β, ξ).

We apply Theorem 2.2 to the arithmetical properties on certain values of
power series at algebraic points. Let (vn)

∞
n=1 be a sequence of nonnegative

integers such that vn+1 > vn for sufficiently large n. Bugeaud [9, 11] posed a
problem on the transcendence of

∑∞
n=1 α

vn , where α is an algebraic number with
0 < |α| < 1, under the assumption that (vn)

∞
n=1 increases sufficiently rapidly.

Corvaja and Zannier [14] proved for any algebraic number α with 0 < |α| < 1
that if

lim inf
n→∞

vn+1

vn
> 1

holds, then
∑∞

n=1 α
vn is transcendental. In particular, consider the case of

α = β−1, where β is a Pisot or Salem number. Adamczewski [1] proved that if

lim sup
n→∞

vn+1

vn
> 1,

then
∑∞

n=1 β
−vn is transcendental. However, if

lim
n→∞

vn+1

vn
= 1, (2.8)

then it is generally difficult to determine whether
∑∞

n=1 α
vn is transcenden-

tal. For instance, put, for any real number z > 1 and any positive integer n,
κ(z;n) := ⌊nz⌋. Moreover, set ψ(z;X) :=

∑∞
n=1X

κ(z;n). Then the transcen-
dence of ψ(z;α) is unknown except the case where ψ(2;α) is transcendental
for any algebraic number α with 0 < |α| < 1, which was proved by Duverney,
Nishioka, Nishioka, Shiokawa [16], and Bertrand [6] independently.

Using Theorem 2.1 or Theorem 2.2, we obtain that if

lim sup
n→∞

vn
nR

= ∞ (2.9)

for any positive real number R, then, for any Pisot or Salem number β, we have∑∞
n=1 β

−vn is transcendental. This criterion for transcendence is applicable to
certain sequences (vn)

∞
n=1 satisfying (2.8). For instance, let, for any positive

integer n,
wn :=

⌊
nlogn

⌋
=
⌊
exp

(
(log n)2

)⌋
.

Then (wn)
∞
n=1 fulfills (2.8). Since (wn)

∞
n=1 satisfies (2.9), we see that

∑∞
n=1 β

−wn

is transcendental.
Moreover, Using Theorem 2.1, we get for real number z > 1 and any Pisot or

Salem number β that ψ(z;β−1) cannot be algebraic of small degree over Q(β),
precisely [

Q
(
ψ(z;β−1), β

)
: Q (β)

]
≥
⌈
z + 1

2

⌉
. (2.10)
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In fact, we put

ψ(z;X) =:

∞∑
n=0

snX
n.

Then a bounded sequence s = (sn)
∞
n=0 of nonnegative integers satisfies

lim
N→∞

λ(Γ(s);N)

N1/z
= 1.

If ψ(z;β−1) is transcendental, then (2.10) is clear because the left-hand side
is equal to infinity. Assume that ψ(z;β−1) is an algebraic number satisfying[
Q
(
ψ(z;β−1), β

)
: Q (β)

]
= D. Then (2.5) holds only in the case of z ≤ 2D−1.

Similarly, using Theorem 2.2, we deduce that[
Q
(
ψ(z;β−1), β

)
: Q (β)

]
≥ ⌈z⌉,

which improves (2.10).

3 Proof of Theorem 2.2

For the proof of Theorem 2.2, we recall the following Liouville type inequality
deduced from Theorem 11 in [24, p. 34].

LEMMA 3.1 ([20, Proposition 3.1]). Let z and ξ be algebraic numbers. Sup-
pose that there exists a sequence s = (sn)

∞
n=0 of integers satisfying the following

three assumptions:

1. There exists a positive integer B such that, for any n ∈ N, we have 0 ≤
sn ≤ B.

2. ξ = f(s; z).

3. For any M ∈ N, we have

M∑
n=0

snz
n ̸= ξ.

Let (w(m))∞m=0 be a strictly increasing sequence of nonnegative integers defined
by

{n ∈ N | sn ̸= 0} =: {w(0) < w(1) < · · · }.

Then there exist effectively computable positive constants C15 = C15(z, ξ, B) and
C16 = C16(z, ξ, B), depending only on z, ξ and B, such that, for any integer m
with m ≥ C16, we have

w(m+ 1)

w(m)
< C15.
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If D = 1, then (2.7) is deduced from (2.5). Thus, we may assume that
D ≥ 2. For simplicity, put

Γ := Γ(s), λ(N) := λ(Γ;N).

We may assume that s0 ̸= 0, that is ,

0 ∈ Γ. (3.1)

In what follows, the implied constants in the symbol ≪ and the constants
C17, C18, . . . are effectively computable positive ones depending only on β, ξ
and B. We see for any M ∈ N that

∑M
n=0 snβ

−n ̸= ξ by (2.6) and the first
assumption of Theorem 2.2. Thus, using Lemma 3.1, we get that there exist
C17 and C18 satisfying

Γ ∩ [x,C17x) ̸= ∅ (3.2)

for any real number x with x ≥ C18. By [Q(β, ξ) : Q(β)] = D, there exists an
polynomial P (X) = ADX

D + AD−1X
D−1 + · · · + A0 ∈ Z[β][X] with AD > 0

such that P (ξ) = 0. In the same way as the proof of Theorem 2.1 in [20], we
see for any k with 1 ≤ k ≤ D that

ξk =

(∑
m∈Γ

smβ
−m

)k

=
∞∑

m=0

β−mρ(k;m), (3.3)

where
ρ(k;m) =

∑
m1,...,mk∈Γ

m1+···+mk=m

sm1 · · · smk
.

Note for any nonnegative integer m that ρ(k;m) is a nonnegative integer. More-
over, putting

kΓ := {m1 + · · ·+mk | m1, . . . ,mk ∈ Γ},

we get that ρ(k;m) is positive if and only if m ∈ kΓ. By (3.1), we have

(0 ∈) Γ ⊂ 2Γ ⊂ · · · ⊂ (D − 1)Γ ⊂ DΓ. (3.4)

Observe that

λ(kΓ;N) = Card([0, N ] ∩ kΓ) ≤ Card([0, N ] ∩ Γ)k = λ(N)k (3.5)

and that

ρ(k;m) ≤ Bk
∑

m1,...,mk∈Γ
m1+···+mk=m

1 ≤ Bk(m+ 1)k. (3.6)

We see that

0 = P (ξ) = A0 +

D∑
k=1

Akξ
k

= A0 +

D∑
k=1

Ak

∞∑
m=0

β−mρ(k;m) (3.7)
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by (3.3). Let R be a nonnegative integer. Then, multiplying (3.7) by βR, we
get

0 = A0β
R +

D∑
k=1

Ak

∞∑
m=−R

β−mρ(k;m+R).

In particular, putting

YR :=

D∑
k=1

Ak

∞∑
m=1

β−mρ(k;m+R),

we obtain

YR = −A0β
R −

D∑
k=1

Ak

0∑
m=−R

β−mρ(k;m+R). (3.8)

Note that YR is an algebraic integer by (3.8) because β is a Pisot or Salem
number. In the same way as the proof of Lemma 4.1 in [20], we deduce the
following: There exists positive integers C19 and C20 such that if R is an integer
with R ≥ C20, then we have

YR = 0 or |YR| ≥ R−C19 . (3.9)

In the case of β = 2, Bailey, Borwein, Crandall, and Pomerance [5] investigated
the numbers of positive YR to prove (2.3). More precisely, they estimated upper
and lower bounds for the value

Card{R ∈ N | R ≤ N, YR > 0}

for a nonnegative integer N . However, if β is a general Pisot or Salem number,
then it is difficult to obtain upper bounds. So we modify their definition, that
is, we consider the value

yN := Card {R ∈ N | R ≤ N, YR ≥ C21 }

for a integer N with N ≫ 1, where C21 = min{1/β,AD/β}. We give upper
bounds for yN in Lemma 3.2, using the function λ(N). Note that we modify
the definition of yN to get (3.11), which is the key inequality for the proof of
Lemma 3.2. On the other hand, we estimate upper bounds for yN in Lemma
3.5. The main tool for the proof of Lemma 3.5 is Lemma 3.4, which is deduced
from Liouville type inequality (3.9).

In what follows, we assume that N is a sufficiently large integer satisfying(
1 +

1

N

)D

<
1 + β

2
. (3.10)

LEMMA 3.2.
yN ≪ logN + λ(N)D.

for any integer N with N ≫ 1.
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Proof. Putting K := ⌈(D + 1) logβ N⌉, we get

yN ≤ K + yN−K = K +
∑

0≤R≤N−K
YR≥C21

1 ≤ K +
1

C21

N−K∑
R=0

|YR|. (3.11)

Observe that

N−K∑
R=0

|YR| ≤
N−K∑
R=0

D∑
k=1

∞∑
m=1

|Ak|β−mρ(k;m+R)

=

D∑
k=1

|Ak|
N−K∑
R=0

∞∑
m=1

β−mρ(k;m+R)

=:

D∑
k=1

|Ak|z(k)N , (3.12)

where

z
(k)
N =

N−K∑
R=0

∞∑
m=1

β−mρ(k;m+R)

for any N and k with N ≥ 0 and 1 ≤ k ≤ D. By (3.11) and (3.12), it suffices
to show

z
(k)
N ≪ λ(N)D (3.13)

for any N and k with N ≫ 1 and 1 ≤ k ≤ D. We see that

z
(k)
N =

K∑
m=1

β−m
N−K∑
R=0

ρ(k;m+R)

+
∞∑

m=K+1

β−m
N−K∑
R=0

ρ(k;m+R)

=: S1(k) + S2(k). (3.14)

Using the first assumption of Theorem 2.2 and the definition of ρ(k;R), λ(N),
we obtain

S1(k) ≤
K∑

m=1

β−m
N∑

R=0

ρ(k;R) ≤
∞∑

m=1

β−m
N∑

R=0

ρ(k;R)

≪
N∑

R=0

ρ(k;R) =

N∑
R=0

∑
m1,...,mk∈Γ

m1+···+mk=R

sm1 · · · smk

=
∑

m1,...,mk∈Γ

m1+···+mk≤N

sm1 · · · smk
≤ Bk

∑
m1,...,mk∈Γ

m1+···+mk≤N

1

≤ BDλ(N)D ≪ λ(N)D. (3.15)

On the other hand, (3.6) implies by k ≤ D that

S2(k) ≪
∞∑

m=K+1

β−m
N−K∑
R=0

(m+R+ 1)D ≤ N
∞∑

m=K+1

β−m(m+N)D.

10



Thus, using (3.10), we obtain for any integer N with N ≫ 1 that

S2(k) ≪ Nβ−1−K(1 +K +N)D
∞∑

m=0

β−m

(
1 + β

2

)m

≪ β−KND+1 ≤ 1. (3.16)

Therefore, combining (3.14), (3.15), and (3.16), we deduce (3.13).

Recalling that 0 ∈ (D − 1)Γ by (3.4), set

[0, N) ∩ (D − 1)Γ =: {0 = i(1) < i(2) < · · · < i(τ)},

where

τ = τ(N) ≤ λ(N)D−1 (3.17)

by (3.5). Put i(1 + τ) := N .
Let 1 ≤ h ≤ τ . We define the interval Ih by

Ih :=

{
[i(h), i(1 + h)) (1 ≤ h ≤ −1 + τ),
[i(τ), i(1 + τ)] (h = τ).

Moreover, let |Ih| := i(1 + h)− i(h) and

yN (h) := Card {R ∈ Ih | YR ≥ C21 } .

Then we have

τ∑
h=1

|Ih| = N (3.18)

and

τ∑
h=1

yN (h) = yN . (3.19)

Consider the case where Ih satisfies

|Ih| > 8D(1 + C17)C19 logβ N =: C22 logβ N. (3.20)

If N ≫ 1, then applying (3.2) with x = |Ih|/(1 + C17), we see by (3.20) that
there exists θ(h) ∈ Γ with

1

1 + C17
|Ih| ≤ θ(h) <

C17

1 + C17
|Ih|.

Putting M(h) := i(h) + θ(h), we get

i(h) +
1

1 + C17
|Ih| ≤M(h) < i(h) +

C17

1 + C17
|Ih|. (3.21)

Moreover, we obtain M(h) ∈ DΓ, by i(h) ∈ (D − 1)Γ and θ(h) ∈ Γ.

LEMMA 3.3. Let N,h be integers with N ≫ 1 and 1 ≤ h ≤ τ . Assume that
(3.20) holds. Then YR > 0 for any integer R with i(h) ≤ R < M(h).

11



Proof. We prove the lemma by induction on R. We first consider the case where
R = −1 +M(h). Observe that

Y−1+M(h) = AD

∞∑
m=1

β−mρ(D;m+M(h)− 1)

+
D−1∑
k=1

Ak

∞∑
m=1

β−mρ(k;m+M(h)− 1)

=: S3 + S4. (3.22)

By M(h) ∈ DΓ, we get

S3 ≥ AD

β
ρ(D;M(h)) ≥ AD

β
. (3.23)

We estimate upper bounds for |S4|. Let k,m be integers with 1 ≤ k ≤ D − 1
and 1 ≤ m ≤ −1 + ⌈2D logβ N⌉. Observe that, by (3.21), (3.20), and C19 ≥ 1,

i(1 + h)−M(h) ≥ i(1 + h)− i(h)− C17

1 + C17
|Ih|

=
1

1 + C17
|Ih| > 8D logβ N > m

Hence, we see
i(h) < m+M(h)− 1 < i(1 + h),

by i(h) < M(h) ≤ m+M(h)− 1. Consequently, m+M(h)− 1 ̸∈ (D − 1)Γ. In
particular, by (3.4) we obtain m+M(h)− 1 ̸∈ kΓ. Therefore, we deduce that

ρ(k;m+M(h)− 1) = 0

for any k,m with 1 ≤ k ≤ D − 1 and 1 ≤ m ≤ −1 + ⌈2D logβ N⌉.
Using (3.6), we obtain

|S4| ≤
D−1∑
k=1

|Ak|
∑

m≥⌈2D logβ N⌉

β−mρ(k;m+M(h)− 1)

≤
D−1∑
k=1

|Ak|
∑

m≥⌈2D logβ N⌉

β−mBD(m+N)D

≪
∑

m≥⌈2D logβ N⌉

β−m(m+N)D.

Consequently, (3.10) implies that

|S4| ≪ β−⌈2D logβ N⌉(⌈2D logβ N⌉+N)D
∞∑

m=0

β−m

(
1 + β

2

)m

≪ N−D.

If N ≫ 1, then

|S4| <
AD

2β
. (3.24)

12



Combining (3.22), (3.23), and (3.24), we deduce Y−1+M(h) > 0.
Next we assume YR > 0 for some R with i(h) < R < M(h)(< i(1 + h)).

Using ρ(k;R) = 0 for k = 1, . . . , D − 1 by (3.4), we see

YR−1 =
D∑

k=1

Ak

∞∑
m=1

β−mρ(k;m+R− 1)

=
1

β
ADρ(D;R) +

1

β

D∑
k=1

Ak

∞∑
m=2

β−(m−1)ρ(k;m− 1 +R)

=
1

β
ADρ(D;R) +

1

β
YR ≥ 1

β
YR > 0 (3.25)

by the inductive hypothesis. Therefore, we proved the lemma.

LEMMA 3.4. Let N,h be integers with N ≫ 1 and 1 ≤ h ≤ τ . Assume that
(3.20) holds. Let R be an integer with

i(h) + 4C19 logβ N ≤ R < M(h).

Then we have

R−max {R′ ∈ N | R′ < R, YR′ ≥ C21 } ≤ 2C19 logβ N.

Proof. Let
R1 := max {R′ ∈ N | R′ < R, YR′ ≥ C21 } .

In the same way as the proof of (3.25), we see for any integer r with i(h) < r <
i(1 + h) that

Yr−1 =
1

β
ADρ(D; r) +

1

β
Yr. (3.26)

For the proof of the lemma, we may assume that YR < 1. In fact, if YR ≥ 1,
then we have YR−1 ≥ 1/β ≥ C21 by (3.26) and R−R1 = 1 ≤ 2C19 logβ N .

Put S := ⌈C19 logβ N⌉. Assume for any integer m with 0 ≤ m ≤ S that

ρ(D;R−m) = 0.

Since M(h) > R > R− 1 > · · · > R− S > i(h), we get by (3.26) that

1 > YR = βYR−1 = · · · = βSYR−S = β1+SYR−S−1 > 0.

In fact, Lemma 3.3 implies YR−S−1 > 0 by R− S − 1 ≥ i(h). Consequently, we
see

βS+1 < Y −1
R−S−1 = |YR−S−1|−1.

If N ≫ 1, then we have R − S − 1 ≥ 2C19 logβ N ≥ C20. Thus, using (3.9), we
obtain

βS+1 < |YR−S−1|−1 ≤ (R− S − 1)C19 < NC19 .

Hence, we deduce that

⌈C19 logβ N⌉+ 1 = S + 1 < C19 logβ N,
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a contradiction. Therefore, there exists an integer m′ with 0 ≤ m′ ≤ S such
that ρ(D;R−m′) ≥ 1. Finally, using (3.26) and YR−m′ > 0 by Lemma 3.3, we
obtain

YR−m′−1 ≥ AD

β
≥ C21

and
R−R1 ≤ m′ + 1 ≤ 2C19 logβ N.

LEMMA 3.5. There exists C23 satisfying the following: If N ≫ 1, then, for
any integer h with 1 ≤ h ≤ τ , we have

yN (h) ≥
⌊

|Ih|
C23 logβ N

⌋
. (3.27)

Proof. If (3.20) holds, then (3.27) follows from Lemma 3.4. In what follows, we
suppose that |Ih| ≤ C22 logβ N . If necessary, increasing C23, we may assume
that C23 > C22. Thus, (3.27) holds by⌊

|Ih|
C23 logβ N

⌋
= 0.

If N ≫ 1, then, combining (3.19), Lemma 3.5, and (3.18), (3.17), we deduce
that

yN =

τ∑
h=1

yN (h) ≥
τ∑

h=1

(
|Ih|

C23 logβ N
− 1

)
≥ N

C23 logβ N
− τ ≫ N

logN
− λ(N)D−1.

On the other hand, Lemma 3.2 implies that

logN + λ(N)D ≫ yN ≫ N

logN
− λ(N)D−1.

Therefore, we proved Theorem 2.2.
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