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1 Introduction

There are close relations between numerical systems and number theory. For
example, let b be an integer greater than 1. Then base-b expansions of real
numbers are related to uniform distribution theory. Let ξ be a nonnegative
real number. We write the integral and fractional parts of ξ by ⌊ξ⌋ and {ξ},
respectively. Then ξ is a normal number in base-b if and only if ξbn (n = 0, 1, . . .)
is uniformly distributed modulo 1. Borel [7] conjectured that any algebraic
irrational number is normal in every integral base-b. If Borel’s conjecture is true,
then it gives strong criteria for transcendence of real numbers. In Section 2 we
introduce criteria for transcendence related to Borel’s conjecture. In Section 3
we consider transcendence of the values of power series at algebraic points, which
is related to the β-expansion of real numbers. In Section 4 we study algebraic
independence of the values of lacunary series. In Section 5 we give algebraic
independence related to the base-b expansions of real numbers. For references
on base-b expansions, β-expansions, and more general numerical systems, see
[4, 18]. There are a number of excellent books on uniform distribution theory
[8, 12, 17]. In particular, see [8] for more details on relations between numerical
systems and number theory. In this paper we denote the set of nonnegative
integers by N. We use the Landau symbols o and O with its usual meaning.
Namely, we write f = o(g) if f/g tends to zero. Moreover, f = O(g) implies
that |f | ≤ cg with certain positive constant c.

2 Transcendence of the values of power series at
certain rational points

Let w(n) (n = 0, 1, . . .) be a strictly increasing sequence of nonnegative integers.
Put

f(w(n);X) :=
∞∑

n=0

Xw(n).

Bugeaud [9] conjectured that if w(n) (n = 0, 1, . . .) increases sufficiently rapidly,
then f(w(n);α) is transcendental for any algebraic α with 0 < |α| < 1. If b is
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an integer greater than 1, then the equality

ξb(w(n)) := f(w(n); b−1) =
∞∑

n=0

b−w(n) (2.1)

gives the base-b expansion of ξb(w(n)). Suppose that w(n) (n = 0, 1, . . .) fulfills

lim
n→∞

w(n)

n
= ∞. (2.2)

Then ξb(w(n)) is neither rational nor normal. So, if w(n) (n = 0, 1, . . .) satisfies
(2.2) and if Borel’s conjecture is true, then ξb(w(n)) is transcendental. Note
for algebraic α with 0 < |α| < 1 that if subsums of f(w(n);α) =

∑∞
n=0 α

w(n)

vanish, then f(w(n);α) is not generally transcendental. In fact, let α0 be a
unique zero of X3 +X + 1 on the interval (−1, 0). Then we have

0 =
∞∑

n=2

αn!
0 (1 + α0 + α3

0) = α2
0 + α3

0 + α5
0 + α6

0 + α7
0 + α9

0 + · · · .

Next we consider the case of b ≥ 3. Then the digits greater than 1 do not
appear in the base-b expansion of ξb(w(n)). In particular, ξb(w(n)) is not nor-
mal in base-b. Thus, if Borel’s conjecture holds, then ξb(w(n)) is rational or
transcendental.

However, we know little on the base-b expansions of algebraic irrational
numbers. For instance, we cannot prove that 1 appears infinitely many times
in the decimal expansion of

√
2. There is no algebraic number whose normality

was proved. There is also no known counter example on Borel’s conjecture.
Here we introduce known partial results on Borel’s conjecture. In particular,
we study the numbers of nonzero digits. Let η be a real number whose base-b
expansion is written as

η = ⌊η⌋+
∞∑

n=1

sn(b; η)b
−n,

where sn(b; η) ∈ {0, 1, . . . , b− 1} for any n ≥ 1 and sn(b; η) ≤ b− 2 for infinitely
many n’s. We write the number of nonzero digits among the first N digits of η
by

νb(η;N) := Card{n ∈ N | n ≤ N, sn(b; η) ̸= 0},

where Card denotes the cardinality. Consider the case of b = 2. Let η be an
algebraic irrational number of degree D. Then Bailey, Borwein, Crandall, and
Pomerance [5] proved that there exist positive constants C1(η), C2(η) (depend-
ing only on η) satisfying the following: for any integer N with N ≥ C2(η) we
have

ν2(η;N) ≥ C1(η)N
1/D. (2.3)

In the proof of (2.3), the Thue―Siegel―Roth theorem [25] was applied. We
can verify analogies of (2.3) in the same way as the proof of Theorem 7.1 in
[5]. Moreover, applying Liouville’s inequality instead of the Thue―Siegel―
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Roth theorem and modifying the proof, we obtain an effective version of lower
bounds. Namely, there are positive constants C3(b, η), C4(b, η) depending only
on b and η such that

νb(η;N) ≥ C3(b, η)N
1/D (2.4)

for any integer N with N ≥ C4(b, η). In the case of b = 2, Rivoal [24] improved
C1(η) for certain classes of algebraic irrational η. Adamczewski, Faverjon [3],
and Bugeaud [8] independently calculated explicit formulae for C3(b, η) and
C4(b, η) in (2.4). Here we introduce the formulae by Bugeaud as follows: Let
ADXD + AD−1X

D−1 + · · ·+ A0 ∈ Z[X], where AD > 0, be the minimal poly-
nomial of 1 + {ξ}. Let

H := max{|Ai| | 0 ≤ i ≤ D}.

Then, for any integer N with N > (20bDD2H)2D, we have

νb(η;N) ≥ 1

b− 1

(
N

2(D + 1)AD

)1/D

. (2.5)

Using (2.4) or (2.5), we obtain criteria for transcendence related to the base-b
expansions of real numbers. Suppose that w(n) (n = 0, 1, . . .) satisfies

lim
n→∞

w(n)

nR
= ∞ (2.6)

for any positive real number R. Then we have

νb(ξb(w(n));N) = o(Nε)

as N tends to infinity, where ε is an arbitrary positive real number. We now
give examples. Let y be a positive real number. Put

τy(n) :=
⌊
exp

(
(log y)1+y

)⌋
(n = 1, 2, . . .) (2.7)

and

µy(X) := f(τy(n) : X) =

∞∑
n=1

Xτy(n). (2.8)

It is easily seen that τy(n) (n = 1, 2, . . .) satisfies (2.6) because n = exp(R log n).
Hence, µy(b

−1) is transcendental for any integer b greater than 1. However, it
is still unknown whether µy(−b−1) is transcendental or not.

3 Transcendence of the values of lacunary series
at algebraic points

Let β be a real number greater than 1. The β-expansions of real numbers are
introduced by Rényi [22] in 1957. Recall that β transformation is defined on the
interval [0, 1] by Tβ : x 7−→ βx mod 1. Let x be a real number with 0 ≤ x < 1.
Then the β-expansion of x is denoted by

x =

∞∑
n=1

tn(β;x)

βn
,
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where tn(β;x) = ⌊βTn−1
β (x)⌋ ∈ Z ∩ [0, β) for n = 1, 2, . . .. In the case where x

is a general nonnegative real number, we define the β-expansion of x by using
the β-expansion of β−kx, where k is an integer with 0 ≤ β−kx < 1. A sequence
s1s2 . . . is called β-admissible if there exists an x ∈ [0, 1) such that sn = tn(β;x)
for any positive integer n. Here, we put

an(β) := lim
x→1−

tn(β;x)

for n = 1, 2, . . .. Then Parry [21] showed that s1s2 . . . is β-admissible if and only
if

00 . . . ≤lex sksk+1 . . . <lex a1(β)a2(β) . . .

for any k = 1, 2, . . ., where <lex denotes the lexicographical order. β-expansions
are natural generalizations of base-b expansions for integral base b ≥ 2. In
particular, consider the case of β > 2. Then every sequence s1s2 . . ., where
sn ∈ {0, 1} for n = 1, 2, . . ., is β-admissible because a1(β) ≥ 2. Let again
w(n)(n = 0, 1, . . .) be a strictly increasing sequence of nonnegative integers.
Then

ξβ(w(n)) := f(w(n);β−1) =
∞∑

n=0

β−w(n)

gives the β-expansion of ξβ(w(n)). We discuss the transcendence of ξβ(w(n)).
We now recall the following results by Corvaja and Zannier [11]: Assume that
w(n)(n = 0, 1, . . .) satisfies

lim inf
n→∞

w(n+ 1)

w(n)
> 1. (3.1)

Then, for any algebraic α with 0 < |α| < 1, we get that f(w(n);α) is transcen-
dental. If w(n) (n = 0, 1, . . .) fulfills (3.1), then we say that w(n) (n = 0, 1, . . .)
is lacunary. In particular, ξβ(w(n)) is transcendental for any real algebraic
number β > 1. The proof of the criteria above is based on the Schmidt sub-
space theorem. As we mentioned in Section 2, if β = b is an integer greater
than 1, then the transcendental results on ξb(w(n)) hold under weaker assump-
tions than (3.1). Here we introduce other criteria for transcendence of ξb(w(n)).
Using Ridout’s theorem [23], we deduce the following: Suppose that

lim sup
n→∞

w(n+ 1)

w(n)
> 1, (3.2)

which is weaker than (3.1). Then ξb(w(n)) is transcendental for any integer
b ≥ 2. Recall that a Pisot number is an algebraic integer greater than 1 such
that the conjugates except itself have absolute values less than 1. Moreover, a
Salem number is an algebraic integer greater than 1 such that the conjugates
except itself have absolute values at most 1 and that at least one conjugate has
absolute value 1. Adamczewski [1] showed for any Pisot or Salem number β
that if w(n) (n = 0, 1, . . .) satisfies (3.2), then ξβ(w(n)) is transcendental.

Investigating the digits of β-expansions of algebraic numbers, we obtain cri-
teria for transcendence of real numbers. However, β-expansion of algebraic
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numbers are mysterious. Bugeaud [10] studied digits of β-expansions of alge-
braic numbers, giving lower bounds of the number of nonzero digits denoted
as

γβ(x;N) := Card{n ∈ Z | 1 ≤ n ≤ N, tn(β;x) ̸= tn+1(β;x)},

where x is a nonnegative real number and N is a positive integer. He proved
the following: Let η be an algebraic number such that tn(β;x) ̸= 0 for infinitely
many positive integer n. Then there exists an effectively computable positive
constant C5(β, η), depending only on β and η, such that

γβ(η;N) ≥ C5(β, η)(logN)3/2(log logN)−3/2

for any sufficiently large N . Consequently, we obtain the following results on
transcendence: Let again β be a Pisot or Salem number. Let y be a real number
with y > 2/3. Put

ρy(n) := 2⌊n
y⌋

for n ≥ 1. Then ξβ(ρy(n)) is transcendental.

4 Algebraic independence of the values of lacu-
nary series at algebraic points

In Sections 1 and 2 we introduced the transcendence of f(w(n);α) related to
the rate of increase of w(n) (n = 0, 1, . . .). In particular, recall that if w(n) (n =
0, 1, . . .) is lacunary, then f(w(n);α) is transcendental for any algebraic α with
0 < |α| < 1. In this section we study the algebraic independence of f(w(n);α)
in the case where the rates of increases of the sequences w(n) (n = 0, 1, . . .) are
different. We first consider the case of

lim
n→∞

w(n+ 1)

w(n)
= ∞. (4.1)

Schmidt [26] gave criteria for algebraic independence, generalizing Liouville’s
inequality. Using his criteria, we deduce that if α = b is an integer greater than
1, then the set {

ξb((kn)!) =

∞∑
n=0

b−(kn)!

∣∣∣∣∣ k = 1, 2, . . .

}

is algebraically independent. In the case where α is a general algebraic number
with 0 < |α| < 1, Shiokawa [27] gave criteria for algebraic independence. For
instance, applying his criteria, we obtain that the continuum set{

f(⌊λ(n!)⌋;α) =
∞∑

n=0

α⌊λ(n!)⌋

∣∣∣∣∣λ ∈ R, λ > 0

}
(4.2)

is algebraically independent. Note that the algebraic independence of the set
(4.2) was proved by Durand [13] in the case where α is a real algebraic number
with 0 < α < 1.
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Next we consider the case where w(n) (n = 0, 1, . . .) does not satisfy (4.1).
Mahler’s method for algebraic independence is applicable to power series sat-
isfying certain functional equations. For instance, let k be an integer greater
than 1. Then f(kn;X) =

∑∞
n=0 X

kn

satisfies

f(kn;Xk) =

∞∑
n=0

Xkn+1

=

∞∑
n=0

Xkn

−X = f(kn;X)−X.

Using Mahler’s method, Nishioka [19] proved for any algebraic α with 0 < |α| <
1 that the set {

f(kn;α) =

∞∑
n=0

αkn

∣∣∣∣∣ k = 2, 3, . . .

}

is algebraically independent. For more details on Mahler’s method, see [20].

5 Main results

We recall that µy(X) is defined by (2.7) and (2.8) for a positive real number y
and that transcendental results in Section 2 is applicable even to the case of

lim
n→∞

w(n+ 1)

w(n)
= 1.

In fact, for a positive real y and a positive integer n, put

τ̃y(n) := exp
(
(log y)1+y

)
.

Then we have τy(n) = ⌊τ̃y(n)⌋. Observe that

log τ̃y(n+ 1)− log τ̃y =
(
log(n+ 1)

)1+y − (log n)1+y.

The mean value theorem implies that there exists a real number δ with n < δ <
n+ 1 satisfying

log τ̃y(n+ 1)− log τ̃y = (1 + y)
(log δ)1+y

δ
,

which tends to zero as n tends to infinity. Thus, we obtain

lim
n→∞

τy(n+ 1)

τy(n)
= lim

n→∞

τ̃y(n+ 1)

τ̃y(n)
= 1.

We introduce algebraic independence of µy(b
−1) for distinct y.

THEOREM 5.1 ([15]). Let b be an integer greater than 1. Then the continuum
set

{µy(b
−1) | y ∈ R, y ≥ 1}

is algebraically independent.
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We recall that the algebraic independence of {µy(b
−1) | y ∈ R, y ≥ 1}

implies the following: If we take arbitrary number of distinct real numbers
y1, . . . , yr ≥ 1, then µy1(b

−1), . . . , µyr (b
−1) are algebraically independent. It is

unknown whether the set {µy(b
−1) | y ∈ R, y > 0} is algebraically independent

or not. However, we have the following:

THEOREM 5.2 ([15]). Let b be an integer greater than 1 and x, y distinct
positive real numbers. Then µx(b

−1) and µy(b
−1) are algebraically independent.

The lower bounds (2.4) or (2.5) implies the following: Let D be an integer
and p a real number with 2 ≤ D < p. Then

ζp(b
−1) :=

∞∑
n=0

b−⌊np⌋

is not an algebraic number of degree at most D. The result above holds even
in the case of D = 1. In fact, if p > 1, then ζp(b

−1) is irrational because its
base-b expansion is not periodic. If p = 2, then it is known that ζ2(b

−1) is
transcendental (see [6, 14]). However, if p is a real number greater than 1, the
transcendence of ζp(b

−1) has not been proved.
Here we study further arithmetical properties on ζp(b

−1). We introduce
some notation to state the results. Let D be an integer greater than 2. Then it
is easily seen that the polynomial

(1−X)D + (D − 1)X − 1

has a unique zero σD on the interval (0, 1). Recall that ξb(w(n)) is defined by
(2.1).

THEOREM 5.3. Let b be an integer greater than 1 and w(n) (n = 0, 1, . . .)
a sequence of strictly increasing nonnegative integers. Suppose that w(n) (n =
0, 1, . . .) satisfies the following two assumptions:

1. For any positive real number R, we have

lim
n→∞

w(n)

nR
= ∞.

2.

lim sup
n→∞

w(n+ 1)

w(n)
< ∞.

Let D be a positive integer and p a real number. If 1 ≤ D ≤ 3, then assume
that p > D. If D ≥ 4, then suppose that p > σ−1

D . Then the set

{ζp(b−1)iξb(w(n))
j | 0 ≤ i ≤ D, 0 ≤ j}

is linearly independent over Q.

For example, we have σ−1
4 = 5.278 . . . , σ−1

5 = 8.942 . . . , σ−1
6 = 13.60 . . ..

Note that Theorem 5.3 gives partial results on algebraic independence. In fact,
two complex numbers x and y are algebraically independent if and only if the
set

{xiyj | 0 ≤ i, j}

is linearly independent over Q.
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6 Sketch of the proof of Theorem 5.3

In this section we provide a sketch of the proof of Theorem 5.3 without technical
details. For simplicity, we put

ζ := ζp(b
−1), ξ := ξb(w(n)).

Then we have 1 ≤ ζ < 2. If necessary, changing ξ by {ξ} + 1, we may assume
that 1 ≤ ξ < 2. We write the base-b expansions of ζ and ξ by

ζ =:

∞∑
m=0

s(m)b−m, ξ =:

∞∑
n=0

t(n)b−n,

respectively, where s(0) = ⌊ζ⌋ = 1 and t(0) = ⌊ξ⌋ = 1. In particular, 0 ≤
s(m), t(m) ≤ b− 1 for any nonnegative integer m. Let D be defined as in The-
orem 5.3. Let P (X,Y ) be a non-constant polynomial with integral coefficients
such that the degree in X is not greater than D. For the proof of Theorem
5.3, we show that P (ζ, ξ) ̸= 0 for such a polynomial. If necessary, changing
P (X,Y ) by Y P (X,Y ), we may assume that Y divides P (X,Y ). We denote the
coefficients of P (X,Y ) by

P (X,Y ) =:
∑

k=(k,l)∈Λ

AkX
kY l,

where Λ is a nonempty finite subset of ([0, D]∩N)×N and Ak is a nonzero integer
for each k ∈ Λ. In order to show that P (ζ, ξ) ̸= 0, we search nonzero digits of the
base-b expansion of P (ζ, ξ), using the assumptions on D and w(n) (n = 0, 1, . . .)
in Theorem 5.3. The idea was inspired by the paper by Knight [16]. For any
k = (k, l) ∈ Λ, we get

ζkξl =

( ∞∑
m=0

s(m)b−m

)k( ∞∑
n=0

t(n)b−n

)l

=
∞∑
i=0

b−i
∑

m1,...,mk,n1,...,nl≥0
m1+···+mk+n1+···+nl=i

s(m1) · · · s(mk)t(n1) · · · t(nl)

=:
∞∑
i=0

b−iρ(k; i). (6.1)

It is easily seen that ρ(k; i) is a nonnegative integer. Moreover, let δ be the total
degree of P (X,Y ). Then

ρ(k; i) ≤
∑

m1,...,mk,n1,...,nl≥0
m1+···+mk+n1+···+nl=i

(b− 1)k+l

≤ (b− 1)k+l(i+ 1)k+l ≤ (b− 1)δ(i+ 1)δ.

In particular, if i is greater than 1, then

log
(
ρ(k; i)

)
= O(log i). (6.2)
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We study the conditions of positivity of ρ(k; i). Set

S := {m ∈ N | s(m) ̸= 0}, T := {n ∈ N | t(n) ̸= 0}.

Then we have S, T ∋ 0 because s(0) = t(0) = 1. Moreover, put

kS + lT := {m1 + · · ·+mk + n1 + · · ·+ nl | m1, . . . ,mk ∈ S, n1, . . . , nl ∈ T}.

Let (k, l), (k′, l′) ∈ Λ with k ≥ k′ and l ≥ l′. Then we have

kS + lT ⊃ k′S + l′T (6.3)

because S, T ∋ 0. We rewrite the conditions of positivity of ρ(k; i), using the
set kS + lT . Observe that

ρ(k; i) =
∑

m1,...,mk∈S,n1,...,nl∈T
m1+···+mk+n1+···+nl=i

s(m1) · · · s(mk)t(n1) · · · t(nl).

Thus, ρ(k; i) is positive if and only if i ∈ kS + lT .
Using (6.1), we obtain

P (ζ, ξ) =
∑

k=(k,l)∈Λ

Akζ
kξl =

∑
k=(k,l)∈Λ

Ak

∞∑
i=0

b−iρ(k; i)

=
∞∑
i=0

b−i
∑

k=(k,l)∈Λ

Akρ(k; i). (6.4)

Note that
∑

k=(k,l)∈Λ Akρ(k; i) is not generally nonnegative. Let ≻ be the

lexicographical order in N2, that is, (k, l) ≻ (k′, l′) if either k > k′, or k = k′

and l > l′. We write by g = (g, h) the maximal element of Λ with respect to
≻. Then h is positive because P (X,Y ) is divisible by Y . We may assume that
Ag > 0. In what follows, we search an integer i such that ρ(g; i) > 0 and that
ρ(k; i) = 0 for any k ∈ Λ\{g}. Put

θg(R) := max{n ∈ gS | n < R}.

Moreover, let

λ1(R) := {m ∈ N | m ∈ S,m ≤ R},
λ2(R) := {n ∈ N | n ∈ T, n ≤ R}.

Let (k, l) ∈ N2 with k < g. We use the assumptions on D and the first assump-
tion on w(n) (n = 0, 1, . . .) in order to check that

R− θg(R) = o

(
R

λ1(R)kλ2(R)l

)
(6.5)

as R tends to infinity and that, for any nonnegative integer m,

lim
R→∞

R

λ1(R)gλ2(R)m logR
= ∞. (6.6)

For any interval I = [x, y) ⊂ R, we write the length by |I| = y − x. In
what follows, N is a sufficiently large integer. First we construct an interval
J(N) = [α1, α2) ⊂ [0, N) satisfying the following:
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1. α1 ∈ r1S + u1T for (r1, u1) ∈ Λ with r1 < g.

2. If α2 < N , then α2 ∈ r2S + u2T for (r2, u2) ∈ Λ with r2 < g.

3. Let m be any integer with α1 < m < α2 and (k, l) ∈ Λ with k < g. Then
m ̸∈ kS + lT .

4.

|J(N)| ≥ C6
N

λ1(N)r3λ2(N)u3
, (6.7)

where C6 is a positive constant and (r3, u3) ∈ Λ with r3 < g.

Combining (6.5) and (6.7), we deduce that α1 and α2 are approximated by the
elements in gS. Namely, we get the nonempty subinterval J ′(N) = [β1, β2) ⊂
J(N) defined by

β1 := min{m ∈ gS | m > α1},
β2 := max{m ∈ gS | m < α2},

respectively. We divide J ′(N) into subintervals. Recall that h ≥ 1. Using (6.3),
we get a subinterval I(N) = [γ1, γ2) ⊂ J ′(N) satisfying the following:

1. γ1, γ2 ∈ gS + (h− 1)T.

2. Let m be any integer with γ1 < m < γ2 and k = (k, l) ∈ Λ with g ≻ k.
Then

m ̸∈ kS + lT. (6.8)

3.

|I(N)| ≥ C7
N

λ1(N)gλ2(N)h−1
, (6.9)

where C7 is a positive constant.

Combining (6.6) and (6.9), we obtain

|I(N)|
logN

= ∞. (6.10)

The second assumption on w(n) (n = 0, 1, . . .) implies that there exists a positive
constant C8 satisfying

T ∩ (R,C8R) ̸= ∅

for any sufficiently large R. In particular, there exists an m0 = m0(N) ∈ T
with

1

1 + C8
|I(N)| ≤ m0 ≤ C8

1 + C8
|I(N)| = γ2 − γ1 −

1

1 + C8
|I(N)|.

Put U := γ1 +m0. Then

γ1 +
1

1 + C8
|I(N)| ≤ U ≤ γ2 −

1

1 + C8
|I(N)|. (6.11)
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Moreover, U ∈ gS + hT because γ1 ∈ gS + (h− 1)T and m0 ∈ T . Namely,

ρ(g;U) > 0. (6.12)

We consider the base-b expansion of (6.4). Then (6.2) and (6.12) mean that

b−UAgρ(g;U)

causes O(log(Agρ(g;U))) = O(logU) = O(logN) carries to higher digits be-
cause Ag > 0. Hence, combining (6.8), (6.10), and (6.11), we conclude that
there are positive digits left in the base-b expansion of (6.4), which implies that
P (η, ξ) ̸= 0.
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[13] A. Durand, Indépendance algébrique de nombres complexes et critère de
transcendance, Compositio Math. 35 (1977), 259-267.

[14] D. Duverney, Ke. Nishioka, Ku. Nishioka, I. Shiokawa. Transcendence of
Jacobi’s theta series, Proc. Japan. Acad. Sci, Ser. A 72 (1996), 202-203.

[15] H. Kaneko, Algebraic independence of real numbers with low density of
nonzero digits, Acta Arith 154 (2012), 325-351.

[16] M. J. Knight, An ‘ocean of zeros’ proof that a certain non-Liouville number
is transcendental, American Mathematical Monthly 98 (1991), 947-949.

[17] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley-
Interscience, New York, 1974.

[18] M. Lothaire, Algebraic combinatorics on words, Encyclopedia Math. Appl.
90, Cambridge University Press, Cambridge, 2002.

[19] K. Nishioka, Algebraic independence by Mahler’s method and S-unit equa-
tions, Compositio Math. 92 (1994), 87-110.

[20] K. Nishioka, Mahler Functions and Transcendence, Lecture Notes in Math.
1631, Springer, 1996.

[21] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci.
Hungar. 11 (1960), 401―416.
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