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1 Introduction

In this paper we study the fractional parts of geometric progressions. Let
α > 1 be a common ratio. Then Koksma [8] proved for almost all real
numbers ξ that the sequence ξαn (n = 0, 1, . . .) is uniformly distributed
modulo 1. Moreover, let ξ be any positive initial value. Then Koksma also
showed that for almost all α greater than 1 the sequence ξαn is uniformly
distributed modulo 1.

On the other hand, it is generally difficult to show that given geomet-
ric progressions are uniformly distributed. In fact, we know little on the
fractional parts of given progressions. For instance, we can not disprove that

lim{en} = 0,

where {x} is the fractional part of a real number x. In the case where α is
a transcendental number, it is generally difficult to prove that the sequence
{αn} (n = 0, 1, . . .) has two distinct limit points.

In the case where α is an algebraic number, there is a criterion to decide
whether the sequence {ξαn} (n = 0, 1, . . .) has infinitely many limit points.
We recall the definition of Pisot and Salem numbers. Pisot numbers are
algebraic integers greater than 1 whose conjugates except themselves have
absolute values less than 1. Note that all integers greater than 1 are Pisot
numbers. Salem numbers are also algebraic integers greater than 1 satisfying
the following: the conjugates except themselves have absolute values less
than or equal to 1; there is at least one conjugate with absolute value 1.

∗This work is supported by the JSPS fellowship.

1



Let α be an algebraic number greater than 1 and let ξ be a positive real
number. Pisot [9] proved that the sequence {ξαn} (n = 0, 1, . . .) has only
finitely many limit points if and only if α is a Pisot number and ξ ∈ Q(α).
Dubickas [5] gave another proof of the result of Pisot. However, the limit
points of the fractional parts of geometric progressions are mysterious. For
instance, by the result of Pisot, the sequence {(3/2)n} (n = 0, 1, . . .) has
infinitely many limit points. However, there is no real number proven to
be the limit point of such a sequence. In what follows, we study ranges of
limit points of the fractional parts of geometric progressions, estimating the
maximal and minimal limit points. Namely, put

F (ξ, α) := lim sup
n→∞

{ξαn}, f(ξ, α) := lim inf
n→∞

{ξαn}.

In Section 2, we consider the values F (ξ, α) and f(ξ, α) for fixed algebraic
numbers α greater than 1.

Moreover, we also consider the distance ∥x∥ from a real number to the
nearest integer. Note that

∥x∥ = min{{x}, {1− x}}.

Pisot and Salem numbers are characterized by using the function ∥ · ∥.
Namely, let α be a Pisot number. Then we have

lim
n→∞

∥αn∥ = 0.

In fact, let α1 = α, α2, . . . , αd be the conjugates of α, where |αi| < 1 for any
2 ≤ i ≤ d. Since, for any nonnegative integer n, the trace αn

1 + · · ·+ αn
d is a

rational integer, we get

lim
n→∞

∥α∥ = ∥αn
2 + · · ·+ αn

d∥ = 0.

Conversely, let α be an algebraic number greater than 1 such that there exists
a positive ξ satisfying

lim
n→∞

∥ξαn∥ = 0.

Then Pisot’s result above implies that α is a Pisot number and that ξ ∈ Q(α).
Let α be a Pisot or Salem number. Then for an arbitrary positive real

number ε, there exists a positive ξ = ξ(α, ε) depending on α and ε such that

lim sup
n→∞

∥ξαn∥ ≤ ε.
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Namely, we have

inf
ξ>0

lim sup
n→∞

∥ξαn∥ = 0. (1.1)

Conversely, Dubickas showed for an algebraic number greater than 1 that if
(1.1) holds, then α is a Pisot or Salem number. For more details on Pisot
and Salem numbers, see [1].

If α is neither a Pisot nor Salem number, then the value

inf
ξ>0

lim sup
n→∞

∥ξαn∥(> 0)

is not known. Let

D(ξ, α) := lim sup
n→∞

∥ξαn∥, d(ξ, α) := lim inf
n→∞

∥ξαn∥.

In Sections 3 and 4, we study the valuesD(ξ, α) and d(ξ, α) for fixed algebraic
numbers α.

2 Limit points of the fractional parts of pow-

ers of algebraic numbers

Let α be an algebraic number greater than 1. Then the Koksma’s results
mentioned in Section 1 implies that

F (ξ, α) = 1, f(ξ, α) = 0

for almost all positive real numbers ξ. On the other hand, let α be a real
number greater than 2. Tijdeman [10] proved the following: there exists a
positive number ξ0 = ξ0(α) depending on α such that

F (ξ0, α) ≤
1

α− 1
. (2.1)

In this section we consider the length of the shortest interval including the
limit points of the sequences {ξαn} (n = 0, 1, . . .). Namely, we estimate the
value

F (ξ, α)− f(ξ, α)

in the case where α is an algebraic number greater than 1.
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We give some notation for algebraic numbers. Let Pα(X) = adX
d +

ad−1X
d−1+· · ·+a0 ∈ Z[X] be the minimal polynomial of an algebraic number

α. The length of Pα(X) is given by

L(Pα(X)) =
d∑

i=0

|ai|.

Moreover, let

L+(Pα(X)) =
d∑

i=0

max{0, ai}, L−(Pα(X)) =
d∑

i=0

max{0,−ai}.

We introduce the reduced length defined in [3]. Put

l′(α) := inf{L(B(X)Pα(X)) | B(X) ∈ R[X], B(X) is monic}.

Then the reduced length of α is

l(α) = min{l′(α), l′(α−1)}. (2.2)

Let again α be an algebraic number greater than 1 and ξ a positive
number. Suppose that ξ ̸∈ Q(α) in the case where α is a Pisot or Salem
number. Then Dubickas [3] showed that∣∣∣∣∣

d∑
i=0

ad−i{ξαn−i}

∣∣∣∣∣ ≥ 1

for infinitely many positive integer n. In particular, we have

F (ξ, α) ≥ min

{
1

L+(Pα(X))
,

1

L−(Pα(X))

}
. (2.3)

The author [7] improved (2.3) for certain classes of algebraic numbers α.
Dubickas [3] also proved that

F (ξ, α)− f(ξ, α) ≥ 1

l(α)
. (2.4)

In the case where α = b is a rational integer, (2.4) implies that

F (ξ, b)− f(ξ, b) ≥ 1

b
.
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In the rest of this section we introduce the results by Bugeaud and Dubickas
[2] on irrational numbers ξ satisfying

F (ξ, b)− f(ξ, b) =
1

b
.

For any bounded sequence of integers w = (wn)
∞
n=1, put

(w)b :=
∞∑
n=1

wn

bn
.

Let ξ be an irrational number. Then the sequence {ξbn} (n = 0, 1, . . .) lies
in a closed interval of length 1/b if and only if

ξ = g +
k

b− 1
+ (w)b,

where g, k are integers with 0 ≤ k ≤ b− 2 and w is a Sturmian word on the
alphabet {0, 1}. In this case, ξ is a transcendental number.

3 The distances between powers of algebraic

numbers and those nearest integers

Let α be an algebraic number greater than 1 and ξ a positive real number.
Let P (X) = adX

d + ad−1X
d−1 + · · ·+ a0 ∈ Z[X] be the minimal polynomial

of α. We use the same notation on the length and reduced length as that in
Section 2. In this section we study lower bounds of D(ξ, α) for such α and
ξ. If α is a Pisot or Salem number, then we assume that ξ ̸∈ Q(α). Then
Dubickas [4] showed that

D(ξ, α) ≥ max

{
1

L(Pα(X))
,

1

2l(α)

}
. (3.1)

In the same paper, he also improved the inequality above in the case where
α is a rational number, using a fixed point a substitution. Let τ : {1, 2}∗ →
{1, 2} be the substitution defined by

τ(1) = 2, τ(2) = 211.

Then τ has a unique fixed point

lim
m→∞

τm(2) = 21122211211 . . . =: t1t2 . . . .
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Let λ be an empty word. Define the sequence γ = (γm)
∞
m=1 by

γm =

{
λ if tm = 1,
0 if tm = 2.

Moreover, the right infinite word e0e1e2 . . . is given by

e0e1e2 . . . = 1γ11γ21γ31γ41γ51 . . .

= 101110101 . . . ,

where 1 denotes −1. Let m, r be integers with m ≥ 0, r ≥ 1. and X1, . . . , Xr

indeterminants. Put

ρm(X1, . . . , Xr) :=
∑

i1,...,ir≥0
i1+···+ir=m

X i1
1 · · ·X ir

r

and

Er(X1, . . . , Xr) =
∞∑
i=0

ρi(X1, . . . , Xr)ei.

In the case of r = 1, Dubickas [4] showed that

E1(X) =
1− (1−X)

∏∞
i=0(1−X2i)

2X
.

The infinite product

Ψ(X) =
∞∏
i=0

(1−X2i)

is called a Mahler function because it satisfies the functional equation

Ψ(X2) =
Ψ(X)

1−X
.

In the case of r ≥ 2, the author [6] proved that

Er(X1, . . . , Xr) =
r∑

i=1

 ∏
1≤j≤r
j ̸=i

1

Xi −Xj

Xr−1
i E1(Xi).

In particular, the power series Ed(X1, . . . , Xd) is represented by the Mahler
function Ψ(X).
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Now we assume that α = p/q is a rational number, where p and q are
relatively coprime integers with p > q > 0. In the case where α is an integer,
then suppose that ξ is a irrational number. Then Dubickas improved (3.1)
as follows:

D

(
ξ,

p

q

)
≥ 1

p
E1

(
q

p

)
. (3.2)

(3.2) is stronger than (3.1). In fact, (3.1) implies that

D

(
ξ,

p

q

)
≥ 1

p+ q
.

We have

1

p
E1

(
q

p

)
− 1

p+ q

=
p− q

2q(p+ q)

(
1−

(
1− q2

p2

∞∏
i=1

(
1− q2

i

p2i

)))
> 0.

In the rest of this section we assume that α is quadratic irrational number for
simplicity. Let α2 be the conjugate of α and a2X

2 + a1X + a0 ∈ Z[X] be the
minimal polynomial of α, where a2 > 0 and gcd(a2, a1, a0) = 1. In the case
of |α2| > 1, the author [6] improved (3.1), using the function E2(X1, X2).

First we consider the case of α2 > 1. If

α−1 + α−1
2 ≤

√
5− 1

2
, (3.3)

then we have

D(ξ, α) ≥ 1

a0
E2(α

−1, α−1
2 ). (3.4)

Under the conditions (3.3) and α2 > 1, we have

1

a0
E2(α

−1, α−1
2 ) > max

{
1

L(Pα(X))
,

1

2l(α)

}
.

So (3.4) is stronger than (3.1).
Next, assume that α2 < −1. Define the number ζ by

ζ =

{
1 if α < |α2|,
−1 if α ≥ |α2|.
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Suppose for i = 0, 1 that

0 < ρm+1(ζα
−1, ζα−1

2 ) ≤ 1

2
ρm(ζα

−1, ζα−1
2 ). (3.5)

Then

D(ξ, α) ≥ 1

|a0|
E2(ζα

−1, ζα−1
2 ). (3.6)

Under the conditions (3.5) and α2 < −1, we get

1

|a0|
E2(ζα

−1, ζα−1
2 ) > max

{
1

L(Pα(X))
,

1

2l(α)

}
.

Thus, (3.6) is stronger than (3.1). In the case where α is an algebraic number
with an arbitrary degree, see [6].

We give a numerical example. Let α = 4+
√
2. Then we have α2 = 4−

√
2.

(3.1) implies that

D(ξ, 4 +
√
2) ≥ 0.0434 . . .

for any positive number ξ. On the other hand, since α and α2 satisfies (3.3),
the lower bound (3.4) means that

D(ξ, 4 +
√
2) ≥ 0.0581 . . .

for all positive numbers ξ.
In the same way as the proof of (2.1), we can prove following: Let α be

any real number α greater than 2. Then there exists a positive real number
ξ1 = ξ1(α) depending on α such that

D(ξ1, α) ≤
1

2α− 2
.

Thus, there exists a positive ξ1 such that

0.0581 . . . ≤ D(ξ1, 4 +
√
2) ≤ 0.113 . . . .

4 Main results

In this section we show that if b is an even positive integer, then the value

inf
ξ>0,ξ ̸∈Q

(D(ξ, b)− d(ξ, b))
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is described by using certain kinds of substitutions. We introduce some
notation. Recall that, for any bounded sequence of integers w = (wn)

∞
n=1,

(w)b = (w1w2 . . .)b =
∞∑
n=1

wn

bn
.

and that the substitution τ : {1, 2}∗ → {1, 2} is defined by τ(1) = 2 and
τ(2) = 211. Moreover, let κ : {1, 2}∗ → {1, 2} be the substitution defined by

κ(1) = 1, κ(2) = 21.

For any (finite or infinite) word x = (xn)
R
n=1 on the alphabet {1, 2}, where

1 ≤ R ≤ ∞, we define the word µ(x) = (µn(x))
R+1
n=1 as follows: Put µ1(x) := 1

and

µn+1(x) :=

{
−µn(x) (if xn = 1),
µn(x) (if xn = 2),

for 1 ≤ n ≤ R. Recall that τm(2) converges to the right-infinity sequence
t = (tn)

∞
n=1. Put

y1 := κ(t), y2 := 1y1

and

w1 := µ(y1), w2 := µ(y2)

Moreover, let

Lb :=
1

2
(w1)b −

1

2
(w2)b.

Now we state the main results.

THEOREM 4.1. Let b be an even integer greater than 2.
(1) For any irrational number ξ,

D(ξ, b)− d(ξ, b) ≥ Lb.

(2) There exists a irrational number ξ0 satisfying

D(ξ0, b)− d(ξ0, b) = Lb. (4.1)

(3) Suppose that an irrational number ξ0 satisfies (4.1). Then

D(ξ0, b) =
1

2
(w1)b, d(ξ0, b) =

1

2
(w2)b.

Consequently, we obtain the following:

COROLLARY 4.2. Let b be an integer greater than 2. Then

inf
ξ>0,ξ ̸∈Q

(D(ξ, b)− d(ξ, b)) = Lb.
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