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1 Introduction

In this paper we study the fractional parts of geometric progressions. Let
a > 1 be a common ratio. Then Koksma [8] proved for almost all real
numbers ¢ that the sequence {a” (n = 0,1,...) is uniformly distributed
modulo 1. Moreover, let £ be any positive initial value. Then Koksma also
showed that for almost all a greater than 1 the sequence £a™ is uniformly
distributed modulo 1.

On the other hand, it is generally difficult to show that given geomet-
ric progressions are uniformly distributed. In fact, we know little on the
fractional parts of given progressions. For instance, we can not disprove that

lim{e"} =0,

where {z} is the fractional part of a real number z. In the case where « is
a transcendental number, it is generally difficult to prove that the sequence
{a"} (n=0,1,...) has two distinct limit points.

In the case where « is an algebraic number, there is a criterion to decide
whether the sequence {{a”} (n = 0,1,...) has infinitely many limit points.
We recall the definition of Pisot and Salem numbers. Pisot numbers are
algebraic integers greater than 1 whose conjugates except themselves have
absolute values less than 1. Note that all integers greater than 1 are Pisot
numbers. Salem numbers are also algebraic integers greater than 1 satisfying
the following: the conjugates except themselves have absolute values less
than or equal to 1; there is at least one conjugate with absolute value 1.
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Let a be an algebraic number greater than 1 and let £ be a positive real
number. Pisot [9] proved that the sequence {£a”} (n = 0,1,...) has only
finitely many limit points if and only if « is a Pisot number and £ € Q(«).
Dubickas [5] gave another proof of the result of Pisot. However, the limit
points of the fractional parts of geometric progressions are mysterious. For
instance, by the result of Pisot, the sequence {(3/2)"} (n = 0,1,...) has
infinitely many limit points. However, there is no real number proven to
be the limit point of such a sequence. In what follows, we study ranges of
limit points of the fractional parts of geometric progressions, estimating the
maximal and minimal limit points. Namely, put

F(& a) :==limsup{¢a"}, (£ a) ;= liminf{{a"}.
n—00 n—o0
In Section 2, we consider the values F(¢,«) and f(&, «) for fixed algebraic
numbers « greater than 1.
Moreover, we also consider the distance ||z|| from a real number to the
nearest integer. Note that

] = min{{z}, {1 — z}}.

Pisot and Salem numbers are characterized by using the function | - ||.
Namely, let a be a Pisot number. Then we have

lim ||a"|| = 0.
n—oo
In fact, let g = , as, ..., a4 be the conjugates of «, where |o;| < 1 for any

2 <4 < d. Since, for any nonnegative integer n, the trace af +---+afj is a
rational integer, we get

lim flaff = g +-- -+ ag = 0.
n—oo

Conversely, let a be an algebraic number greater than 1 such that there exists
a positive £ satisfying

lim [|£a™]| = 0.
n—oo

Then Pisot’s result above implies that « is a Pisot number and that £ € Q(«).
Let a be a Pisot or Salem number. Then for an arbitrary positive real
number ¢, there exists a positive £ = {(«, ¢) depending on « and ¢ such that

limsup [|€a”|| < e.
n—oo



Namely, we have

inf li ™l =0. 1.1
inf lim sup €0 (L1)

n—o0

Conversely, Dubickas showed for an algebraic number greater than 1 that if
(1.1) holds, then « is a Pisot or Salem number. For more details on Pisot
and Salem numbers, see [1].

If « is neither a Pisot nor Salem number, then the value

. .
inf limsup [€a” (> 0

n—oo

is not known. Let

D(&,a) = limsup |€a"]|, d(€, @) := lim n [[¢a”]|

n—oo

In Sections 3 and 4, we study the values D(&, ) and d(&, a) for fixed algebraic
numbers a.

2 Limit points of the fractional parts of pow-
ers of algebraic numbers

Let a be an algebraic number greater than 1. Then the Koksma’s results
mentioned in Section 1 implies that

F(&a)=1, f(§,a)=0

for almost all positive real numbers £&. On the other hand, let a be a real
number greater than 2. Tijdeman [10] proved the following: there exists a
positive number &, = &y(«) depending on « such that

Fléy,a) < ﬁ (2.1)

In this section we consider the length of the shortest interval including the
limit points of the sequences {{a”} (n = 0,1,...). Namely, we estimate the
value

F(&,Oé) - f(gaa)

in the case where « is an algebraic number greater than 1.



We give some notation for algebraic numbers. Let P (X) = a4X? +
ag1 X+ -+ag € Z[X] be the minimal polynomial of an algebraic number
a. The length of P,(X) is given by

d

L(P.(X)) = ) lail.

=0

Moreover, let

L. (P, Z max{0,a;}, L Z max{0, —

We introduce the reduced length defined in [3]. Put
I'(a) :=inf{L(B(X)P,(X)) | B(X) € R[X], B(X) is monic}.
Then the reduced length of « is
(o) = min{l'(a), (")} (2.2)

Let again « be an algebraic number greater than 1 and £ a positive
number. Suppose that £ € Q(«) in the case where « is a Pisot or Salem
number. Then Dubickas [3] showed that

d

Z ag—i{€a"""}

=0

> 1

for infinitely many positive integer n. In particular, we have

. 1 1
F(6, @) 2 min { L (Ba (X))’ T (Ba(X)) } ' (23)

The author [7] improved (2.3) for certain classes of algebraic numbers .
Dubickas [3] also proved that

F(&.a) - f(¢a) > l(ia (2.4)

In the case where o = b is a rational integer, (2.4) implies that

~—

@I»—t

F(&,b) = f(§,b) =



In the rest of this section we introduce the results by Bugeaud and Dubickas
[2] on irrational numbers & satisfying

F(ED) ~ F(E0) = ;.

o0

For any bounded sequence of integers w = (w,,)> |,

(W)= %
n=1

Let ¢ be an irrational number. Then the sequence {£b"} (n = 0,1,...) lies
in a closed interval of length 1/b if and only if

put

k
=g+ — +(wh,
where g, k are integers with 0 < k£ < b — 2 and w is a Sturmian word on the
alphabet {0,1}. In this case, £ is a transcendental number.

3 The distances between powers of algebraic
numbers and those nearest integers

Let o be an algebraic number greater than 1 and £ a positive real number.
Let P(X) = ag X%+ ag_1 X' + -+ ag € Z[X] be the minimal polynomial
of a. We use the same notation on the length and reduced length as that in
Section 2. In this section we study lower bounds of D(¢, «) for such o and
€. If o is a Pisot or Salem number, then we assume that £ ¢ Q(«). Then
Dubickas [4] showed that

1 1
D(&, ) ZmaX{L(Pa(X))’Ql(a)}‘ (3.1)

In the same paper, he also improved the inequality above in the case where
« is a rational number, using a fixed point a substitution. Let 7 : {1,2}* —
{1,2} be the substitution defined by

(1) =2, 7(2) = 211.
Then 7 has a unique fixed point

lim 77(2) = 21122211211... =: t1to.. ..

m—ro0



Let A be an empty word. Define the sequence v = (v, )p—; by

x ittt =1,
TmE0 i, = 2.
Moreover, the right infinite word egejes . .. is given by

ege1ey ... = 1y lylyslylysl. ..
101110101... .,

where 1 denotes —1. Let m, r be integers with m > 0,7 > 1. and X1, ..., X,
indeterminants. Put

p(X1 . X)) = Y X X

i15eesip >0
i1+ +ir=m

and
E (X1, X)) =) pi(X1,.., X )er
=0

In the case of r = 1, Dubickas [4] showed that

1— (1= X) [T (1 - X*)
2X '

Ey(X) =

The infinite product

o

w(x) = [ - x*)

i=0

is called a Mahler function because it satisfies the functional equation

v(X)

V(X% = —2.
(X)=1—x

In the case of r > 2, the author [6] proved that

E.(X1,....X)=>_| TI ﬁ X1 E(X).
4 J

i=1 1<j<r
J#i

In particular, the power series F4(X7, ..., Xy) is represented by the Mahler
function ¥(X).



Now we assume that o = p/q is a rational number, where p and ¢ are
relatively coprime integers with p > ¢ > 0. In the case where « is an integer,
then suppose that £ is a irrational number. Then Dubickas improved (3.1)

as follows:
1
D (g, ]3) > ~E, (g) . (3.2)
q p p

(3.2) is stronger than (3.1). In fact, (3.1) implies that

We have
1 1
lp (g) I
p p p+q

_ 2 2!
2q(p +q) P p

In the rest of this section we assume that « is quadratic irrational number for

simplicity. Let ay be the conjugate of o and as X? + a1 X + ay € Z[X] be the

minimal polynomial of «, where ay > 0 and ged(az, ai,ap) = 1. In the case

of |ag| > 1, the author [6] improved (3.1), using the function Fy(X;, X3).
First we consider the case of ag > 1. If

V5 —1

2 b

attayt <

(3.3)
then we have

D(&,a) > iEg(ofl,oz;l). (3.4)

Qo
Under the conditions (3.3) and ap > 1, we have

1 1 1
a—DEg(oz , Oy )>maX{L(Pa(X))’21(04)}'

So (3.4) is stronger than (3.1).
Next, assume that ay < —1. Define the number ¢ by

1 if a < asg|,
C:{ |2|

-1 if a > |ayl.
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Suppose for i = 0,1 that

0 < pmir(Ca™ Cazt) < %pm(éa‘l, Caz). (3.5)
Then
D(E.0) > M%,Ez«al,ca;). (3.6)

Under the conditions (3.5) and ay < —1, we get

1 ) 1 1
Jag] 260 0027) > {L<Pa<x>>’ 2Z<a>}‘

Thus, (3.6) is stronger than (3.1). In the case where « is an algebraic number
with an arbitrary degree, see [6].

We give a numerical example. Let o = 44/2. Then we have ay = 4—/2.
(3.1) implies that

D(£,44V?2) > 0.0434. ..

for any positive number . On the other hand, since a and ay satisfies (3.3),
the lower bound (3.4) means that

D(€,44/2) > 0.0581 ...

for all positive numbers &.

In the same way as the proof of (2.1), we can prove following: Let « be
any real number « greater than 2. Then there exists a positive real number
& = &1 (a) depending on « such that

D(&1,a) < 2% — 2

Thus, there exists a positive & such that

0.0581... < D(&,4+v2) <0.113....

4 Main results

In this section we show that if b is an even positive integer, then the value

et o P(6:0) — d(&,0))



is described by using certain kinds of substitutions. We introduce some

notation. Recall that, for any bounded sequence of integers w = (w,)32 ,,

0o w,
(W)p = (wywy ... )p = T
n=1
and that the substitution 7 : {1,2}* — {1,2} is defined by 7(1) = 2 and
7(2) = 211. Moreover, let x : {1,2}* — {1,2} be the substitution defined by

k(1) =1, k(2) = 21.

For any (finite or infinite) word x = (z,)_; on the alphabet {1,2}, where
1 < R < oo, we define the word z1(x) = (i, (x))24] as follows: Put 1 (x) := 1
and

,Un(x> (if Ln = 2)7

for 1 < mn < R. Recall that 7"(2) converges to the right-infinity sequence
t = (t,)0,. Put

Mn—i-l(X) = { —Hn(x) (lf Tn = 1)a

y1 = k(t), y2 = 1y
and
Wi = H(}ﬁ), Wo = ﬂ(h)

Moreover, let

1 1
Lb = E(Wl)b — §(W2)b.
Now we state the main results.

THEOREM 4.1. Let b be an even integer greater than 2.
(1) For any irrational number &,

D(&,b) — d(&,b) = Ly.
(2) There exists a irrational number & satisfying

D(&o, b) — d(&o,b) = Ly. (4.1)
(3) Suppose that an irrational number & satisfies (4.1). Then

D(E0,b) = 3 (Wil d(E0,D) = 3(wa)y

Consequently, we obtain the following:

COROLLARY 4.2. Let b be an integer greater than 2. Then

nf (D(ED) = d(,0)) = L,
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