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Abstract. We prove that there are only finitely many perfect powers in any

linear recurrence sequence of integers of order at least two and whose charac-
teristic polynomial is irreducible and has a dominant root.

1. Introduction and main result

Let (un)n≥0 be a linear recurrence sequence of integers with initial terms u0, . . . , uk−1
and defined by the recurrence relation

un+k = t1un+k−1 + t2un+k−2 + · · ·+ tkun(1.1)

for n ≥ 0, where k ≥ 1 is the order of (un)n≥0 and t1, . . . , tk are integers with
tk 6= 0. We call the polynomial

Xk − t1Xk−1 − · · · − tk−1X − tk
the characteristic polynomial of (un)n≥0 and its roots

α1, . . . , αk, numbered such that |α1| ≥ . . . ≥ |αk|,

the roots of (un)n≥0. We say that (un)n≥0 has a dominant root if |α1| > |α2|.
Furthermore, (un)n≥0 is simple if all its roots are distinct. In the case where
(un)n≥0 is simple, we say that (un)n≥0 is nondegenerate if αi/αj is not a root of
unity for any 1 ≤ i < j ≤ k.

In all what follows, for an integer q ≥ 2, a q-th power is an integer of the form
yq, where y is in Z. An integer is called a perfect power if it is a q-th power for
some integer q ≥ 2.

Perfect powers in terms of linear recurrence sequences (un)n≥0 of integers have
been widely studied, see e.g. [11] for references. The first general result, established
in the early 80s independently by Shorey and Stewart [10] and Pethő [5, 6] asserts
that if (un)n≥0 has a dominant root and un = yq with integers y, q, n > 1, then
q is less than an effectively computable positive number q0 depending only on
(un)n≥0. The Diophantine ingredient of the proof is Baker’s theory of linear forms
in logarithms of algebraic numbers.

For fixed q ≥ 2, Corvaja and Zannier [1] established in 2002 that, if (un)n≥0 has a
dominant root and un is a q-th power for infinitely many integers n, then this comes
from an algebraic relation, that is, there exist an infinite arithmetic progression P
and a linear recurrence sequence (vn)n≥0 such that un = vqn for every n in P. The
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Diophantine ingredient of their proof is the Schmidt subspace theorem; see also
[4, 3].

The combination of these two results gives much information on the perfect
powers in terms of linear recurrence sequences of integers with a dominating root.
More precisely, on page 59 of his monograph [12], Zannier attributes to Pethő the
following remark:

Take a simple recurrence (un)n≥0 with a dominant root and at least another root;
then, firstly one can apply the results in [10] to show that, for a certain computable
q0, the equation un = yq has only finitely many solutions in integers q > q0, n, and
y. And secondly one can apply Corollary IV.7 [of [12]] for each q ≤ q0 to obtain a
complete description of the solutions, for variable q ≥ 2.

Indeed, Pethő [7] used [10] and the above mentioned result from [1] to prove the
finiteness of the number of perfect powers in linear recurrence sequences of order
three whose characteristic polynomial is irreducible and has a dominant root.

The aim of the present note is to extend Pethő’s result to linear recurrence
sequences of arbitrary order at least two, with a dominant root and whose charac-
teristic polynomial is irreducible. This boils down to exclude the putative algebraic
relations occurring in the conclusion of Corvaja and Zannier’s result [1] mentioned
above.

THEOREM 1.1. Let (un)n≥0 be a linear recurrence sequence of integers of order
at least two and such that its characteristic polynomial is irreducible and has a dom-
inant root. Then there are only finitely many perfect powers in (un)n≥0. Moreover,
their number can be bounded by an effectively computable number.

Let α1, . . . , αk be the roots of the (irreducible) characteristic polynomial of
(un)n≥0 in Theorem 1.1, numbered such that |α1| > |α2| ≥ . . . ≥ |αk|. We
note that, for every i, j with 1 ≤ i < j ≤ n, the ratio αi/αj is not a root of
unity. In particular, α1, . . . , αk are all distinct. Indeed, suppose on the contrary
that (αi/αj)

h = 1 for some positive integer h. Taking an automorphism σ of
Q(α1, . . . , αk)/Q such that σ(αi) = α1, we get that 1 = |αh

1/σ(αj)
h| > 1, a contra-

diction.
Consider the recurrence sequence (un)n≥0 defined by u0 = 0, u1 = 1, u2 = 1, and

un+3 = 2(un+2 + un+1)− un, for n ≥ 0.

We check that un is equal to the square of the n-th Fibonacci number for every
n ≥ 0. The characteristic polynomial of (un)n≥0 factors as

X3 − 2X2 − 2X + 1 = (X + 1)(X2 − 3X + 1).

This and similar examples show that the assumption of irreducibility of the char-
acteristic polynomial cannot be removed in the statement of Theorem 1.1.

Relaxing the dominant root assumption remains a challenging open problem.
It seems to be currently out of reach of the ineffective techniques (based on the
subspace theorem) and of the effective methods (based on the theory of linear
forms in logarithms).
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2. Linear recurrences of rational numbers

Let (un)n≥0 be a simple linear recurrence sequence of rational numbers satisfying
(1.1), where t1, . . . , tk are rational numbers with tk 6= 0. It can be written as

un = β1α
n
1 + · · ·+ βkα

n
k(2.1)

for any n ≥ 0, where α1, . . . , αk, β1, . . . , βk are nonzero algebraic numbers and
α1, . . . , αk are distinct. For convenience, if k = 0, then (2.1) means that un = 0 for
any nonnegative integer n.

If α1, . . . , αk are the Galois conjugates of α1, then we call (un)n≥0 an atom. If
(un)n≥0 is an atom, then, we say for i = 1, . . . , k that (un)n≥0 includes αi.

Let R denote the set of simple linear recurrence of rational numbers. Then R is
a ring with usual addition and multiplication of sequences, namely, we have

(un)n≥0 + (vn)n≥0 = (un + vn)n≥0,

(un)n≥0(vn)n≥0 = (unvn)n≥0,

for all (un)n≥0 and (vn)n≥0 in R.

PROPOSITION 2.1. Any element (un)n≥0 of R can be uniquely expressed as a
sum of linearly independent atoms (over Q) in R. We denote the number of atoms
in (un)n≥0 by Λ(un).

Proof. The uniqueness is clear. Let (un)n≥0 be as in (2.1). We prove the existence
of a representation by induction on k. The case of k = 0 is clear. Assume that k ≥ 1.
Let σ be any element of the absolute Galois group of Q satisfying σ(α1) = α1. Since
un is rational for any nonnegative integer n, we have un − σ(un) = 0. Thus, we
see that σ(β1) = β1, and so β1 is in Q(α1) because σ is an arbitrary element with
σ(α1) = α1.

Let α1, γ2, . . . , γs be the Galois conjugates of α1. For 2 ≤ j ≤ s, let σj be
an element of the absolute Galois group of Q satisfying σj(α1) = γj . Since un −
σj(un) = 0 for any nonnegative integer n, there exists 2 ≤ i(j) ≤ k with αi(j) =
γj , βi(j) = σj(β1). Using that β1 is in Q(α1), we get that

an := β1α
n
1 +

s∑
j=2

σj(β1α
n
1 ) ∈ R

is a subsum (2.1). Applying the inductive hypothesis to (un − an)n≥0, we deduce
Proposition 2.1. �

By a theorem proved independently by van der Poorten and Schlickewei [8] and
Evertse [2], for any nondegenerate linear recurrence sequence (wn)n≥0 of integers,
for any positive ε, we have

|wn| > An(1−ε), for every sufficiently large integer n,(2.2)

where A denotes the maximum of the moduli of the roots of the characteristic
polynomial of (wn)n≥0.

Let us also recall effective upper bounds for the number of zeros (the zero mul-
tiplicity) in nondegenerate linear recurrences obtained by Schmidt [9]. Let (vn)n≥0
be a linear recurrence of complex numbers of order k. If (vn)n≥0 is simple and
nondegenerate, then the number of nonnegative n with vn = 0 is at most

e(7k)
8k

.(2.3)
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3. Proof of the main theorem

Let (un)n≥0 be a linear recurrence sequence of integers as in the statement of
the theorem.

By the results of Shorey and Stewart [10] and Pethő [5, 6] mentioned in the
beginning of Section 1, it is sufficient to show that, for any fixed integer q > 1 and
any sufficiently large integer n, the n-th term un of the linear recurrence sequence
is not a q-th power.

Let (un)n≥0 be as in (2.1). Recall that, for any i, j with 1 ≤ i < j ≤ k, the
quotient αi/αj is not a root of unity. In particular, for any positive integer m and
1 ≤ i < j ≤ k, two numbers αm

i and αm
j are distinct.

Let q be an integer with 2 ≤ q ≤ q0. In what follows, the implicit constants in the
symbols �, � are positive, effectively computable, and depend only on (un)n≥0.
We denote by Card S the cardinality of a finite set S. Let

A := {n ∈ N : un is a q-th power}.

Our aim is to show that Card A � 1. The proof of Theorem 2.1 in [3] implies
that there exist a subset B ⊂ A, a positive integer l � 1, distinct nonzero alge-
braic numbers δ1, . . . , δl, and nonzero algebraic numbers d1, . . . , dl satisfying the
following:

(1) For any n in B, we have

un =

(
l∑

i=1

diδ
n
i

)q

.(3.1)

(2) δ1, . . . , δl are effectively determined by (un)n≥0.
(3) There is a finite field extension K/Q effectively determined by (un)n≥0 such

that d1, . . . , dl are in K.
(4) For any R > 0, there is an effectively computable positive constant C =

C((un)n≥0;R), depending only on (un)n≥0 and R, such that if Card A ≥ C,
then Card B ≥ R. In what follows, we say that if Card A � 1, then Card
B � 1.

If necessary, changing d1, . . . , dl and B, we may assume by (3.1) that

vn :=

l∑
i=1

diδ
n
i is an integer,

for any n in B. Since l � 1 and δ1, . . . , δl are effectively determined by (un)n≥0,
there is a positive integer M � 1 such that(

uMn+i − vqMn+i

)
n≥0 is nondegenerate or identically zero,(3.2)

for any 0 ≤ i < M . By the pigeon hole principle, there exists an 0 ≤ i0 < M such
that

Card {n ∈ B | n ≡ i0 (mod M)} ≥ 1

M
Card B.

Let

P := {n ∈ N | n ≡ i0 (mod M)}, A′ := B ∩ P.
Then we see that vn is an integer for any n in A′, and if Card A � 1, then Card
A′ � 1. Thus, using (3.2) and the upper bound (2.3) for the zero multiplicity of
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nondenegerate linear recurrences, we deduce that

un = vqn

for any n in P.

LEMMA 3.1. If Card A � 1, then there exists an arithmetic progression Q =
{bn+ c | n = 0, 1, . . .} included in P such that vn is an integer for any n in Q.

Proof. Let K ′ be the Galois closure of a field extension K(δ1, . . . , δl)/Q and let
G = {σ1, . . . , σD} the Galois group of K ′/Q. Note that K ′ and G are effectively
determined by (un)n≥0. Let wn := vn − σ1(vn). Note that wn = 0 for any n in
A′. In the same way as the construction of A′ and P, we see by (2.3) that if Card
A � 1, then there exist a subset A′′ of A′ with Card A′′ � 1 and an arithmetic
progression

P ′ = {MM ′n+ i′0 : n ∈ N} ⊂ P
with M ′ � 1 and 0 ≤ i′0 < MM ′ satisfying A′′ ⊂ P ′ and wn = 0 for any n in P ′.

By repeating this argument, we end up with an arithmetic progressionQ included
in P such that σi(vn) = vn for any i = 1, . . . , D and n in Q. This establishes the
lemma. �

We are now in position to complete the proof of Theorem 1.1. Assume that Card
A � 1 and let Q be as given by Lemma 3.1. Put

ubn+c =

k∑
j=1

β′jα
′n
j =: u′n ∈ R,

where β′j = βjα
c
j , α
′
j = αb

j for j = 1, . . . , k, and

vbn+c =

l′∑
i=1

d′iδ
′n
i =: v′n ∈ R,

where d′1, . . . , d
′
l′ , δ
′
1, . . . , δ

′
l′ are nonzero algebraic numbers and δ′1, . . . , δ

′
l′ are dis-

tinct. By considering, if necessary, an arithmetic progression Q′ included in Q, we
may assume that δ′i/δ

′
j is not a root of unity for any 1 ≤ i < j ≤ l′.

Observe that (u′n)n≥0 is a linear recurrence sequence of order k(> 1). Moreover,
the characteristic polynomial of (u′n)n≥0 is irreducible and has a dominant root.
Thus,

Λ(u′n) = 1.(3.3)

In what follows, we get a contradiction, calculating Λ(v′qn )(= Λ(u′n)). Renumber
δ′1, . . . , δ

′
l′ so that

|δ′1| = · · · = |δ′i1 | > |δ
′
1+i1 | = · · · = |δ

′
i2 | > · · · > |δ

′
1+ip−1

| = · · · = |δ′ip |,

where p is the number of distinct values among |δ′1|, . . . , |δ′l′ | and ip = l′. Moreover,
we may assume that α′1 is the dominant root of the characteristic polynomial of
(u′n)n≥0. Observe that |α′1| = |δ′1|q. Put

D1(n) :=

i1∑
i=1

d′iδ
′n
i , D2(n) :=

ip∑
i=1+i1

d′iδ
′n
i .
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Using

k∑
j=1

β′jα
′n
j = (D1(n) +D2(n))q(3.4)

we get

β′1α
′n
1 −D1(n)q =

q∑
i=1

(
q

i

)
D1(n)q−iD2(n)i −

k∑
j=2

β′jα
′n
j .

We argue as in the proof of Theorem 6 in [7]. Let ε be a positive real number. By
(2.2), the left-hand side of the last equality is, if nonzero, greater than |α′1|n(1−ε), for
n large enough, while its right-hand side is bounded from above by some constant
times max{|α′2|n, |α′1|(q−1)n/q}, again for n large enough. Since |α′2| < |α′1|, there
exists 1 ≤ i ≤ i1 satisfying

β′1α
′n
1 = D1(n)q = d′qi δ

′qn
i

for infinitely many integers n ≥ 0. Without loss of generality, we may assume that
i = 1. Thus, there exists a q-th root ζ of unity such that

d′1(1− ζ)δ′n1 + d′2δ
′n
2 + · · ·+ d′i1δ

′n
i1 = 0(3.5)

for infinitely many integers n ≥ 0. Since δ′i/δ
′
j is not a root of unity for any

1 ≤ i < j ≤ i1, we see by the Skolem-Mahler-Lech theorem that (3.5) holds for any
nonnegative integer n. Thus, we get ζ = 1, i1 = 1, and p ≥ 2 by (3.4) and k > 1.

Now, we bound from below the number of atoms in (v′qn )n≥0. First, we observe
that there exists an atom (an)n≥0 in (v′qn )n≥0 including δ′q1 because d′q1 δ

′qn
1 cannot

be vanished by other terms in (v′qn )n≥0.
Put d′1δ′n1 +

i2∑
i=2

d′iδ
′n
i +

ip∑
i=1+i2

d′iδ
′n
i

q

=: (d′1δ
′n
1 )q + q(d′1δ

′n
1 )q−1

(
i2∑
i=2

d′iδ
′n
i

)
+ ρ,

where ρ is the remaining term. Any algebraic number included in (an)n≥0 is of the

form δ′q, where δ′ is a conjugate of δ′1. Thus, for any i with 2 ≤ i ≤ i2, δ′q−11 δ′i
is not included in (an)n≥0. In fact, we see by q ≥ 2 that |δ′q−11 δ′i| 6= |δ′q| for any
conjugate δ′ of δ′1 because δ′1 is the dominant root of the characteristic polynomial
of (v′n)n≥0. Here, we have used that i1 = 1.

Moreover, for any summand sθn in ρ, we see that |δ′q−11 δi| > |θ| for any 2 ≤
i ≤ i2. Thus, qd′q−11 d′i(δ

′q−1
1 δi)

n cannot be vanished by terms in ρ. Hence, there
exists an atom in (v′qn − an)n≥0. Therefore, we conclude that Λ(v′qn ) ≥ 2, which
contradicts (3.3).

This implies that Card A � 1. The proof of Theorem 1.1 is complete.
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