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Abstract

Let ξ be a positive algebraic irrational number with binary represen-
tation

∑∞
n=−∞ s(ξ, n)2n, s(ξ, n) ∈ {0, 1}. We derive new, improved lower

bounds of the number γ(ξ,N) of digit changes defined by

γ(ξ,N) = Card{n ∈ Z|n ≥ −N, s(ξ, n) ̸= s(ξ, n+ 1)},

where Card denotes the cardinality. Let ε be an arbitrary positive number.
Our main results show, for instance, that

γ

(
1√
3
, N

)
≥ 1− ε√

2

√
N

for any integer N with N ≥ C(1/
√
3, ε), where C(1/

√
3, ε) is an effectively

computable positive constant depending only on ε.

1 Introduction

Borel [2] proved that almost all positive number ξ are normal in every integral
base α ≥ 2. Namely, every string of l consecutive base-α digits occurs with
average frequency tending to 1/αl in the α-ary expansion of such ξ. It is widely
believed that all algebraic irrational numbers are normal in each integral base.
However, very few is known on this problem, which was first formulated by
Borel [3]. For instance it is still unknown whether, for α ≥ 3, the letter 1 occurs
infinitely often in the α-ary expansion of

√
2.

In this paper we study the binary expansions of algebraic irrational numbers.
In what follows, let N be the set of nonnegative integers and Z≥1 the set of
positive integers. Denote the integral and fractional parts of a real number ξ
by [ξ] and {ξ}, respectively. Moreover, let ⌈ξ⌉ be the minimal integer not less
than ξ. Then the binary expansion of a positive number ξ is written by

ξ =

∞∑
n=−∞

s(ξ, n)2n,

where

s(ξ, n) = [2−nξ]− 2[2−n−1ξ] ∈ {0, 1}.

There are several ways to measure the complexity of the binary expansions of
real numbers. First we introduce the block complexity. Let β(ξ,N) be the total
number of distinct blocks of N digits in the binary expansion of ξ, that is,

β(ξ,N) = Card{(s(ξ, i+ 1), . . . , s(ξ, i+N)) ∈ {0, 1}N |i ∈ Z},
∗2000 Mathematics Subject Classification : 11J71, 11K16, 11K60
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where Card denotes the cardinality. If ξ is normal in base 2, then β(ξ,N) = 2N

for any N ∈ Z≥1. Suppose that ξ is an algebraic irrational number. Bugeaud
and Evertse [5] showed for any positive δ with δ < 1/11 that

lim sup
N→∞

β(ξ,N)

N(logN)δ
= ∞.

Secondly, we consider the asymptotic behaviour of the number of digit changes
in the binary expansions of real numbers ξ. Let N be an integer. The number
γ(ξ,N) of digit changes, introduced in [4], is defined by

γ(ξ,N) = Card{n ∈ Z|n ≥ −N, s(ξ, n) ̸= s(ξ, 1 + n)}.

Note that γ(ξ,N) < ∞ since s(ξ, n) = 0 for all sufficiently large n ∈ N. Suppose
again that ξ is an algebraic irrational number of degree D ≥ 2. In [4] Bugeaud
proved that

lim
N→∞

γ(ξ,N)

logN
= ∞

by using Ridout’s theorem [8]. In the same paper, by using a quantitative
version of Ridout’s theorem [7], he showed that

γ(ξ,N) ≥ 3(logN)6/5(log logN)−1/4

for every sufficiently large N ∈ N. Moreover, by improving the quantitative
parametric subspace theorem from [6], Bugeaud and Evertse [5] verified the
following: There exist an effectively computable absolute constant C1 > 0 and
an effectively computable constant C2(ξ) > 0, depending only on ξ, satisfying

γ(ξ,N) ≥ C1
(logN)3/2

(log(6D))1/2(log logN)1/2

for any N with N ≥ C2(ξ).
Note that if ξ is normal, then the word 10 occurs in the binary expansion of ξ

with frequency 1/4. Thus, it is widely believed that the function γ(ξ,N) should
grow linearly in N . The main purpose of this paper is to improve lower bounds
of the function γ(ξ,N) for certain classes of algebraic irrational numbers. Now
we state the main results.

THEOREM 1.1. Let ξ > 0 be an algebraic irrational number with minimal
polynomial ADXD + AD−1X

D−1 + · · · + A0 ∈ Z[X], where AD > 0. As-
sume that there exists an odd prime number p which divides all coefficients
AD, AD−1, . . . , A1, but not the constant term A0. Let ε be an arbitrary posi-
tive number with ε < 1 and r the minimal positive integer such that p divides
(2r − 1). Then there exists an effectively computable positive constant C(ξ, ε)
depending only on ξ and ε such that

γ(ξ,N) ≥ (1− ε)p1/Dr−1/DA
−1/D
D N1/D

for any integers N with N ≥ C(ξ, ε).
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For instance, letA andD be positive integers such thatA−1/D is an irrational
number of degree D. Assume that there is an odd prime p which divides A. Let
ε be any positive number with ε < 1 and r defined as in Theorem 1.1. Then,
since the minimal polynomial of A−1/D is AXD − 1, by Theorem 1.1 we obtain

γ(A−1/D, N) ≥ (1− ε)p1/Dr−1/DA−1/DN1/D

for every integer N ≥ C(A−1/D, ε). In the case where A = 3 and D = 2, we get
p = 3 and r = 2. Hence

γ

(
1√
3
, N

)
≥ 1− ε√

2

√
N

for each integer N ≥ C(1/
√
3, ε).

2 The number of nonzero digits

Let n be a nonnegative integer. Let µ(n) be the number of nonzero digits in
the binary expansion of n. For instance, µ(0) = 0 and µ(2l) = 1, for l ∈ N.
Bailey, Borwein, Crandall, and Pomerance [1] proved the convexity relations of
the function µ(n). Namely, for any nonnegative integers m and n, we have

µ(m+ n) ≤ µ(m) + µ(n), (2.1)

µ(mn) ≤ µ(m)µ(n).

Let h be a positive integer and S a subset of Z. Then put

S = S ∪ {−s|s ∈ S},
hS = {s1 + · · ·+ sh|s1, . . . , sh ∈ S}.

For convenience, let 0S = {0}. We consider the set Λ defined by

Λ = {0} ∪ {2l|l ∈ N}.

For each integer n, put

ν(n) = min{h ∈ N|n ∈ hΛ}.

Then we have the following:

LEMMA 2.1. Let n be a nonzero integer and λ1, . . . , λν(n) ∈ Λ. Assume that

λ1 + . . .+ λν(n) = n.

Then, for any i with 1 ≤ i ≤ ν(n),

1 ≤ |λi|.

Moreover, for any i and j with 1 ≤ i < j ≤ ν(n),

|λi| ̸= |λj |.
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Proof. If λi = 0 for some i, then

n =

ν(n)∑
k=1
k ̸=i

λk ∈ (−1 + ν(n))Λ,

which contradicts to the definition of ν(n). Next, assume that |λi| = |λj | for
some i and j with 1 ≤ i < j ≤ ν(n). Observe that

λi + λj ∈ Λ.

Thus

n = λi + λj +

ν(n)∑
k=1
k ̸=i,j

λk ∈ (−1 + ν(n))Λ,

which is a contradiction.

Suppose that n ∈ N. Then, by the definition of the function ν(n), we get

0 ≤ ν(n) = ν(−n) ≤ µ(n) ≤ n.

For instance, if n ≥ 2, then

µ(2n − 1) = n, ν(2n − 1) = 2.

We now prove the convexity relations of the function ν(n).

LEMMA 2.2. Let m and n be integers. Then

ν(m+ n) ≤ ν(m) + ν(n), (2.2)

ν(mn) ≤ ν(m)ν(n). (2.3)

Proof. (2.2) is obvious by the definition of the function ν(n). We check (2.3).
Put

a = ν(m), b = ν(n).

Without loss of generality we may assume that mn ̸= 0. Namely, a, b ≥ 1. Then
there exist λ1, . . . , λa, λ

′
1, . . . , λ

′
b ∈ Λ such that

m =

a∑
i=1

λi, n =

b∑
j=1

λ′
j .

Note that, for any i and j with 1 ≤ i ≤ a and 1 ≤ j ≤ b, λiλ
′
j ∈ Λ. Thus

mn =

a∑
i=1

b∑
j=1

λiλ
′
j ∈ abΛ,

which implies (2.3).
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COROLLARY 2.3. Let m and n be integers. Then

|ν(m+ n)− ν(m)| ≤ |n|.

Proof. By Lemma 2.2, we get

ν(m+ n)− ν(m) ≤ ν(n) ≤ |n|

and

ν(m)− ν(m+ n) ≤ ν(−n) ≤ |n|.

We represent the function ν(n) by using µ(n).

LEMMA 2.4. Let n be an integer. Then

ν(n) = min
x∈N

(µ(|n|+ x) + µ(x)). (2.4)

Proof. We denote the right-hand side of (2.4) by ν(n). In the case of n = 0, (2.4)
is trivial. Without loss of generality, we may assume that n ≥ 1 since ν(n) =
ν(−n) for any n ∈ Z. There exist b ∈ Z≥1 with b ≤ ν(n) and λ1, . . . , λν(n) ∈ Λ
such that

n = λ1 + · · ·+ λb − λb+1 − · · ·λν(n).

Let y = λ1+b + · · · + λν(n). Note that if b = ν(n), then y = 0. By Lemma 2.1
we get

µ(y) = ν(n)− b

and

µ(n+ y) = µ(λ1 + · · ·+ λb) = b.

Hence

ν(n) = µ(n+ y) + µ(y) ≥ ν(n).

On the other hand, there exists x0 ∈ N such that

µ(n+ x0) + µ(x0) = ν(n).

By using

n+ x0 ∈ µ(n+ x0)Λ

and

x0 ∈ µ(x0)Λ = (ν(n)− µ(n+ x0))Λ,

we obtain

n = (n+ x0)− x0 ∈ ν(n)Λ,

consequently,

ν(n) ≤ ν(n).

Therefore we verified the Lemma 2.4.
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Let w be an integer and p an odd prime number. In the rest of this section,
we give lower bounds of the value ν([(2Nw)/p]) for each N ∈ N. We start
with some simple observations about the number of nonzero digits of binary
expansion. Let N, a, b be nonnegative integers with a ≤ b. Put

µ(a, b;N) = Card{i ∈ N|s(N, i) ̸= 0, a ≤ i ≤ b}.

Then we have the following.

LEMMA 2.5. Let x, y ∈ N. Suppose that s(x, a) = 0 and s(x, b) = 1 for some
a, b ∈ N with a < b. Then

µ(a, b;x+ y) + µ(a, b; y) ≥ 1.

Proof. Assume the contrary, namely, that

µ(a, b;x+ y) = µ(a, b; y) = 0.

Let

x′ =

b∑
i=0

s(x, i)2i, y′ =

b∑
i=0

s(y, i)2i.

Since x′ + y′ ≡ x+ y mod 21+b and since y′ ≡ y mod 21+b,

µ(a, b;x′ + y′) = µ(a, b; y′) = 0. (2.5)

Then, by s(x, a) = 0, s(x, b) = 1 and (2.5), we get

2b ≤ x′ ≤
b∑

i=0

2i − 2a < 21+b − 2a (2.6)

and

0 ≤ y′ =

a−1∑
i=0

s(y, i)2i < 2a.

Hence, by combining (2.5) and x′ + y′ < 21+b, we obtain

x′ + y′ ≤
a−1∑
i=0

2i < 2a < 2b

which contradicts to (2.6).

LEMMA 2.6. Let w be an integer and p an odd prime number. Assume that
p does not divide w. Let r be the minimal positive integer such that p divides
(2r − 1). Then

ν

([
2Nw

p

])
≥ N

r
− 3

for each N ∈ N with N ≥ 2r.
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Proof. Let η = w/p. First we consider the case of w ≥ 0. Since p divides
(2r − 1), there exist F,G ∈ N with 0 ≤ G ≤ 2r − 2 such that

η = F +
G

2r − 1
.

Since p does not divide w, we have G ≥ 1. Let us denote the binary expansion
of G by

G = 2r−1g−1 + · · ·+ 2g−r+1 + g−r,

where g−1, . . . , g−r+1, g−r ∈ {0, 1}. Since 1 ≤ G ≤ 2r − 2, g−i = 1 for some i
with 1 ≤ i ≤ r and g−j = 0 for some j with 1 ≤ j ≤ r. The binary expansion
of η is given by

η = F +

∞∑
i=0

2−(i+1)r
r∑

j=1

g−j2
r−j

= F +

∞∑
i=0

r∑
j=1

g−j2
−ir−j .

Namely, for any i, j with 1 ≤ j ≤ r, we have

s(η,−ir − j) = g−j .

In particular, let m and n be positive integers such that m ≡ n mod r. Then

s(η,−m) = s(η,−n). (2.7)

Let

e = min{n ≥ 1|s(η,−n) = 1},
f = min{n ≥ e+ 1|s(η,−n) = 0}.

Then, by (2.7) we get

e ≤ r, f ≤ e+ r − 1. (2.8)

Let N ∈ N with N ≥ 2r and

j0 =

[
N − e+ 1

r

]
≥ 1.

Note that

[2Nη] =

∞∑
i=0

s(η, i−N)2i

and that, for any j with 1 ≤ j ≤ j0,

N − e+ 1− jr ≥ 0.
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Let y be a nonnegative integer. Then

µ([2Nη] + y) + µ(y)

≥
j0∑
j=1

(
µ
(
N − e+ 1− jr,N − e− (j − 1)r; [2Nη] + y

)
+µ
(
N − e+ 1− jr,N − e− (j − 1)r; y

))
(2.9)

Denote the right-hand side of (2.9) by
∑j0

j=0 Φ(j). Let j be an integer with
1 ≤ j ≤ j0. Put

a = N − f − (j − 1)r, b = N − e− (j − 1)r.

By (2.7) we get

s([2Nη], a) = s(η, a−N) = s(η,−f) = 0 (2.10)

and

s([2Nη], b) = s(η, b−N) = s(η,−e) = 1. (2.11)

By using (2.10), (2.11), and Lemma 2.5, and a ≥ N − e+ 1− jr, we obtain

Φ(j) ≥ µ(a, b; [2Nη] + y) + µ(a, b; y) ≥ 1.

Therefore, by combining the inequality above and (2.9), we conclude that

µ([2Nη] + y) + µ(y) ≥ j0 ≥ N

r
− 2.

Since y is an arbitrary nonnegative integer,

ν([2Nη]) ≥ N

r
− 2

by Lemma 2.4.
Next, we assume that η < 0. Then, since 2Nη ̸∈ Z, we have

[2Nη] = −[−2Nη]− 1.

Thus, by using Corollary 2.3 and lower bounds in the case of η ≥ 0, we obtain

ν([2Nη]) ≥ ν(−[−2Nη])− 1

= ν([−2Nη])− 1 ≥ N

r
− 3.

3 Proof of Theorem 1.1

First we check the following.
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LEMMA 3.1. Let η1, η2 be real numbers.
(1)

|[η1 + η2]− ([η1] + [η2])| ≤ 1.

(2)

|[η1 − η2]− ([η1]− [η2])| ≤ 1.

Proof. We have

[η1 + η2]− ([η1] + [η2]) = −{η1 + η2}+ {η1}+ {η2}.

Thus we may assume that 0 ≤ η1, η2 < 1. Hence

[η1 + η2]− ([η1] + [η2]) = η1 + η2 − {η1 + η2} = [η1 + η2] ∈ {0, 1},

which implies the first statement. Since

|[η1 − η2]− ([η1]− [η2])| = |[η1]− ([η1 − η2] + [η2])|,

the second statement follows from the first.

We study the relations between the number γ(ξ,N) of digit changes and the
value ν([2Nξh]) for h ∈ Z≥1 and N ∈ N.

LEMMA 3.2. Let ξ be a positive number. Then, for any h ∈ Z≥1 and N ∈ N,

ν([2Nξh]) ≤
(
γ(ξ,N) + 1

)h
+ 2h+1 max{1, ξh}.

Proof. First we prove

ν([2Nξ]) ≤ γ(ξ,N) + 1. (3.1)

Since

2Nξ =

∞∑
n=−∞

s(ξ, n−N)2n,

we get

γ(ξ,N) = γ(ξ2N , 0).

We denote this number by τ . Let

{n ∈ N|s(ξ, n−N) ̸= s(ξ, 1 + n−N)} =: {0 ≤ t1 < t2 < · · · < tτ}.

Then

[2Nξ] =

tτ∑
n=0

s(ξ, n−N)2n

= s(ξ, t1 −N)

t1∑
n=0

2n +

τ∑
i=2

s(ξ, ti −N)

ti∑
n=1+ti−1

2n.

9



Note that

ν

(
t1∑

n=0

2n

)
= ν(21+t1 − 1) ≤ 2 (3.2)

and that, for any i with 2 ≤ i ≤ τ ,

ν

 ti∑
n=1+ti−1

2n

 = ν(21+ti − 21+ti−1) ≤ 2. (3.3)

By using (3.2), (3.3) and Lemma 2.2, we obtain

ν([2Nξ]) ≤ 2

τ∑
i=1

s(ξ, ti −N).

By the definition of t1, . . . , tτ , we have

(s(ξ, ti −N), s(ξ, t1+i −N)) ∈ {(0, 1), (1, 0)}.

Hence

ν([2Nξ]) ≤ 2
[τ
2

]
≤ τ + 1,

which implies (3.1).
Next suppose that h ≥ 2. Put

ξ1 =

∞∑
n=−N

s(ξ, n)2n, ξ2 =

−N−1∑
n=−∞

s(ξ, n)2n.

Note that 2Nξ1 ∈ Z. We have

2Nξh = 2N (ξ1 + ξ2)
h = 2Nξh1 + 2N

h∑
i=1

(
h

i

)
ξh−i
1 ξi2,

and so, by Lemma 3.1,

[2Nξh] ≤ [2Nξh1 ] +

[
2N

h∑
i=1

(
h

i

)
ξh−i
1 ξi2

]
+ 1.

Hence by Corollary 2.3, we get

ν([2Nξh]) ≤ ν([2Nξh1 ]) +

[
2N

h∑
i=1

(
h

i

)
ξh−i
1 ξi2

]
+ 1. (3.4)

In what follows we estimate upper bounds of the right-hand side of (3.4). By
(3.1) and Lemma 2.2,

ν(2hNξh1 ) ≤ ν(2Nξ1)
h = ν([2Nξ])h ≤ (τ + 1)h.
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By the inequality above and Lemma 2.1, there exist a, b ∈ N with a+b ≤ (τ+1)h

and l1, . . . , la, k1, . . . , kb ∈ N satisfying the following:

l1 < · · · < la, k1 < · · · < kb; (3.5)

2hNξh1 =

a∑
i=1

2li −
b∑

j=1

2kj .

Let

θ1 =
∑

1≤i≤a
li≥(h−1)N

2li−(h−1)N −
∑

1≤j≤b
kj≥(h−1)N

2kj−(h−1)N ,

θ2 =
∑

1≤i≤a
li<(h−1)N

2li−(h−1)N −
∑

1≤j≤b
kj<(h−1)N

2kj−(h−1)N .

Then θ1 ∈ Z and

θ1 + θ2 = 2Nξh1 . (3.6)

By (3.5) we have ∑
1≤i≤a

li<(h−1)N

2li−(h−1)N <

∞∑
i=1

2−i = 1

and ∑
1≤j≤b

kj<(h−1)N

2kj−(h−1)N < 1.

Thus

|θ2| < 1. (3.7)

By combining (3.6) and (3.7), we obtain

|[2Nξh1 ]− θ1| ≤ 1.

Hence by Corollary 2.3

ν([2Nξh1 ]) ≤ ν(θ1) + 1

≤ a+ b+ 1 ≤ (τ + 1)h + 1. (3.8)

Moreover, since ξ1 ≤ ξ and since ξ2 ≤ 2−N ,[
2N

h∑
i=1

(
h

i

)
ξh−i
1 ξi2

]
≤

h∑
i=0

(
h

i

)
max{1, ξh}

= 2h max{1, ξh}. (3.9)

By combining (3.4), (3.8), and (3.9), we conclude that

ν([2Nξh]) ≤ (τ + 1)h + 2h max{1, ξh}+ 2

≤ (τ + 1)h + 21+h max{1, ξh}.
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Now we verify Theorem 1.1. Let A′
i = Ai/p for i = 1, 2, . . . , D. Then we

have

D∑
h=1

A′
h2

Nξh = −2NA0

p

for each N ∈ N. By Lemma 2.6 we get

ν

([
−2NA0

p

])
≥ N

r
− 3. (3.10)

On the other hand, by Lemma 3.1∣∣∣∣∣
[

D∑
h=1

A′
h2

Nξh

]
−

D∑
h=1

A′
h[2

Nξh]

∣∣∣∣∣ ≤
D∑

h=1

|A′
h|.

Hence, by using Corollary 2.3, and Lemmas 2.2 and 3.2, we get

ν

([
−2NA0

p

])
= ν

([
D∑

h=1

A′
h2

Nξh

])
≤ ν

(
D∑

h=1

A′
h[2

Nξh]

)
+

D∑
h=1

|A′
h|

≤
D∑

h=1

|A′
h|
(
ν([2Nξh]) + 1

)
≤

D∑
h=1

|A′
h|
((

γ(ξ,N) + 1
)h

+ 2h+1 max{1, ξh}+ 1
)
.(3.11)

By combining (3.10) and (3.11), we obtain, for every nonnegative integer n,

N ≤ P (γ(ξ,N)), (3.12)

where P (X) ∈ R[X] is a polynomial of degree D with leading coefficient rA′
D.

Thus, for any positive number R, there is an effectively computable positive
constant C ′(ξ,R) depending only on ξ and R such that

γ(ξ,N) ≥ R

for any integer N with N ≥ C ′(ξ,R). Let ε be an arbitrary positive number
with ε < 1. Put

δ := −1 + (1− ε)−D > 0.

By (3.12), there exists an effectively computable positive constant C(ξ, ε) de-
pending only on ξ and ε such that, for every integer N with N ≥ C(ξ, ε),

N ≤ (1 + δ)rA′
Dγ(ξ,N)D,

namely,

(1− ε)p1/Dr−1/DA
−1/D
D ≤ γ(ξ,N).

Therefore we proved Theorem 1.1.
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