On the binary digits of algebraic numbers*

Hajime Kaneko

Abstract
Let & be a positive algebraic irrational number with binary represen-
tation Y 7 s(&,n)2", s(&,n) € {0,1}. We derive new, improved lower

n—=—oo

bounds of the number v(£, N) of digit changes defined by
v(§, N) = Card{n € ZIn > =N, s(§,n) # s(§,n + 1)},

where Card denotes the cardinality. Let € be an arbitrary positive number.
Our main results show, for instance, that

(@)=

for any integer N with N > C(1/+/3,¢), where C(1/+/3,¢) is an effectively
computable positive constant depending only on e.

1 Introduction

Borel [2] proved that almost all positive number & are normal in every integral
base a > 2. Namely, every string of [ consecutive base-a digits occurs with
average frequency tending to 1/a! in the a-ary expansion of such . It is widely
believed that all algebraic irrational numbers are normal in each integral base.
However, very few is known on this problem, which was first formulated by
Borel [3]. For instance it is still unknown whether, for o > 3, the letter 1 occurs
infinitely often in the a-ary expansion of v/2.

In this paper we study the binary expansions of algebraic irrational numbers.
In what follows, let N be the set of nonnegative integers and Zx>; the set of
positive integers. Denote the integral and fractional parts of a real number &
by [¢] and {¢}, respectively. Moreover, let [£] be the minimal integer not less
than £. Then the binary expansion of a positive number £ is written by

o0

&= Z s(&,m)2",

n=—oo

where

s(€n) =[27"¢] - 227"71¢) € {0, 1}.

There are several ways to measure the complexity of the binary expansions of
real numbers. First we introduce the block complexity. Let 5(&, N) be the total
number of distinct blocks of NV digits in the binary expansion of £, that is,

B(€,N) = Card{(s(&,i+1),...,s(&,i+ N)) € {0,1}V]i € Z},
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where Card denotes the cardinality. If ¢ is normal in base 2, then 3(¢, N) = 2V
for any N € Z>;. Suppose that £ is an algebraic irrational number. Bugeaud
and Evertse [5] showed for any positive § with § < 1/11 that

lim sup BEN) = oo
N —o00 N(log N)5
Secondly, we consider the asymptotic behaviour of the number of digit changes
in the binary expansions of real numbers £. Let N be an integer. The number
(&, N) of digit changes, introduced in [4], is defined by

v(&, N) = Card{n € Z|n > —N, s(¢,n) # s(§,1+n)}.

Note that (&, N) < oo since s(§,n) = 0 for all sufficiently large n € N. Suppose
again that ¢ is an algebraic irrational number of degree D > 2. In [4] Bugeaud
proved that

v(€,N)

N log N

by using Ridout’s theorem [8]. In the same paper, by using a quantitative
version of Ridout’s theorem [7], he showed that

(& N) > 3(log N)*/5(loglog N)~*/*

for every sufficiently large N € N. Moreover, by improving the quantitative
parametric subspace theorem from [6], Bugeaud and Evertse [5] verified the
following: There exist an effectively computable absolute constant C; > 0 and
an effectively computable constant C(£) > 0, depending only on &, satisfying

(log N)3/2
(108(6D)) /2 (log log N) /2

7(§7N) Z C(1

for any N with N > C(§).

Note that if £ is normal, then the word 10 occurs in the binary expansion of £
with frequency 1/4. Thus, it is widely believed that the function (£, N') should
grow linearly in V. The main purpose of this paper is to improve lower bounds
of the function (&, N) for certain classes of algebraic irrational numbers. Now
we state the main results.

THEOREM 1.1. Let £ > 0 be an algebraic irrational number with minimal
polynomial ApXP + Ap 1 XP~1 4+ ... + Ay € Z[X], where Ap > 0. As-
sume that there exists an odd prime number p which divides all coefficients
Ap,Ap_1,..., A1, but not the constant term Ag. Let € be an arbitrary posi-
tive number with ¢ < 1 and r the minimal positive integer such that p divides
(2" —1). Then there exists an effectively computable positive constant C(&,¢)
depending only on & and € such that

Y(EN) > (1 - e)pt/Pr= /D AP NID

for any integers N with N > C(§,¢).



For instance, let A and D be positive integers such that A~/? is an irrational
number of degree D. Assume that there is an odd prime p which divides A. Let
€ be any positive number with ¢ < 1 and r defined as in Theorem 1.1. Then,
since the minimal polynomial of A='/P is AXP — 1, by Theorem 1.1 we obtain

’V(A_l/D,N) > (1 _ €)p1/DT‘_1/DA_1/DN1/D

for every integer N > C(A~Y/P ¢). In the case where A = 3 and D = 2, we get
p =3 and r = 2. Hence

()=

for each integer N > C(1//3,¢).

2 The number of nonzero digits

Let n be a nonnegative integer. Let u(n) be the number of nonzero digits in
the binary expansion of n. For instance, (0) = 0 and u(2!) = 1, for [ € N.
Bailey, Borwein, Crandall, and Pomerance [1] proved the convexity relations of
the function p(n). Namely, for any nonnegative integers m and n, we have

< p(m) + p(n), (2.1)
p(mn) < p(m)p(n).

Let h be a positive integer and S a subset of Z. Then put

S = Su{-slse S},
hS = {si1+---+sp|s1,...,5, € S}

For convenience, let 05 = {0}. We consider the set A defined by

A = {0} U {2"]l e N}.
For each integer n, put

v(n) = min{h € N|n € hA}.

Then we have the following;:
LEMMA 2.1. Let n be a nonzero integer and A1, ..., Ayn) € A. Assume that

AL+ Ay =1
Then, for any i with 1 < i < v(n),

L <Al

Moreover, for any i and j with 1 <i < j <wv(n),

(Al # |-



Proof. If A\; = 0 for some 4, then

v(n)
n=> M€ (-1+v(n)A,
foon

which contradicts to the definition of v(n). Next, assume that |\;| = |);] for
some i and j with 1 <i < j <w(n). Observe that

Ai + /\j €A.
Thus
v(n)
n=X+X+ > M€ (—1+v(n)A,
k=1
k#i,j
which is a contradiction. O

Suppose that n € N. Then, by the definition of the function v(n), we get
0 <v(n)=v(—n) < uln) <n.
For instance, if n > 2, then
u2=1)=n,v(2" —-1)=2.
We now prove the convexity relations of the function v(n).

LEMMA 2.2. Let m and n be integers. Then

v(m+n)

<
v(mn) <

Proof. (2.2) is obvious by the definition of the function v(n). We check (2.3).
Put

a=v(m), b=rv(n).

Without loss of generality we may assume that mn # 0. Namely, a,b > 1. Then
there exist A1,...,Aq, A],..., A, € A such that

a b
m = Z)‘i’ n= Z/\;
i=1 j=1

Note that, for any ¢ and j with 1 <i<agand 1 <j<b, )\i)\;- € A. Thus

a b
mn = NN € abA,
D2 AN

i=1 j=1

which implies (2.3). O



COROLLARY 2.3. Let m and n be integers. Then

[v(m +n) —v(m)| <|n.

Proof. By Lemma 2.2, we get
v(im+n)—v(m) <v(n) <|n|
and

v(m) —v(m+n) <v(—n) <|n|.

We represent the function v(n) by using u(n).
LEMMA 2.4. Let n be an integer. Then

v(n) = min(u(|n] +2) + ()

Proof. We denote the right-hand side of (2.4) by 7(n). In the case of n = 0,
is trivial. Without loss of generality, we may assume that n > 1 since v/(
v(—n) for any n € Z. There exist b € Z>1 with b < wv(n) and Ay, ...

(2.4
n)

) )‘u(n) €

(2.4)

~—

=l

such that
n=A4 X = Aoyt — - Ay
Let y = Aty + -+ + Ayn). Note that if b= v(n), then y = 0. By Lemma 2.1
we get
p(y) =v(n) —b
and
) = O o ) =
Hence

v(n) = p(n +y) + ply) = v(n).
On the other hand, there exists o € N such that

u(n + o) + (o) = P(n).

By using
n+xo € p(n + xo)A
and
zo € p(wo)A = (T(n) — p(n + o)A,
we obtain
n=(n+x0) —xo € U(n)A,
consequently,

v(n) <v(n).

Therefore we verified the Lemma 2.4.



Let w be an integer and p an odd prime number. In the rest of this section,
we give lower bounds of the value v([(2Vw)/p]) for each N € N. We start
with some simple observations about the number of nonzero digits of binary
expansion. Let IV, a,b be nonnegative integers with a < b. Put

p(a,b; N) = Card{i € N|s(N,i) # 0,a < i < b}.
Then we have the following.

LEMMA 2.5. Let x,y € N. Suppose that s(x,a) =0 and s(z,b) =1 for some
a,b €N with a < b. Then

pla, byz +y) + p(a,bjy) > 1.

Proof. Assume the contrary, namely, that

wla, bz +y) = p(a,byy) = 0.
Let

b

b
¥ = Zs(m,i)?, y' = Zs(y,z)?

i=0 i=0
Since 2’ 4+ 9’ = x 4+ y mod 2'*? and since 3’ = y mod 2'*?,
pu(a, sz’ +y') = pla,byy') = 0. (2.5)
Then, by s(z,a) =0, s(z,b) =1 and (2.5), we get
b
20 <l <) 2P -2t <2t 90 (2.6)
i=0

and

I
-

0<y =) s(y,)2 < 2%

g

I
=3

Hence, by combining (2.5) and =’ + 3’ < 2!, we obtain

a—1
+y < ZT <20 <2t
i=0
which contradicts to (2.6). O

LEMMA 2.6. Let w be an integer and p an odd prime number. Assume that
p does not divide w. Let r be the minimal positive integer such that p divides

(2" —1). Then
(5]

for each N € N with N > 2r.



Proof. Let n = w/p. First we consider the case of w > 0. Since p divides
(2" — 1), there exist F,G € N with 0 < G < 2" — 2 such that

n=F+

2r —1°
Since p does not divide w, we have G > 1. Let us denote the binary expansion
of G by

G = 27'_1971 +o 297T+1 +9-r

where g_1,...,9—r+1,9—r € {0,1}. Since 1 < G < 2" -2, g_;, = 1 for some i
with 1 <7 <7 and g_; = 0 for some j with 1 < j <. The binary expansion
of n is given by

1=

= F—ﬁ-zzgsziirij.

i=0 j=1

n = F+ i27(i+1)r igijgrfj
0 j=1

Namely, for any ¢, with 1 < 7 <r, we have
s(n, —ir — j) = g—;-

In particular, let m and n be positive integers such that m = n mod r. Then

s(n,—m) = s(n, —n). (2.7)
Let
e = min{n > 1|s(n,—n) =1},
f = min{n >e+1|s(n,—n) = 0}.

Then, by (2.7) we get
e<r, f<e+r—1. (2.8)

Let N € N with N > 2r and

> 1.

) {N—e—i—l}
Jo=|— —

Note that
2Vn] = s(n,i— N)2’
i=0
and that, for any j with 1 < j < jp,

N—-e+1—-3r>0.



Let y be a nonnegative integer. Then
p([2%0) + ) + uly)
Jo
>3 (V= et 1= jr, N —e— (= 1rs[2Vn] +y)
j=1
+u(N—e+1—jr,N—e—(j— l)r;y)) (2.9)

Denote the right-hand side of (2.9) by ,j;():o ®(j). Let j be an integer with
1 <j <jo. Put

a=N-—f—(G-1rb=N-e—(j—1)r
By (2.7) we get
s([2"n),a) = s(n,a — N) = s(n,—f) =0 (2.10)
and
s([2Vn],b) = s(n,b = N) = s(n,—e) = 1. (2.11)
By using (2.10), (2.11), and Lemma 2.5, and a > N — e + 1 — jr, we obtain
®(j) > ua,b; 2] +y) + p(a, byy) > 1.

Therefore, by combining the inequality above and (2.9), we conclude that

P2V + ) +u(9) 2 o 2 o~ 2.

Since y is an arbitrary nonnegative integer,

W@V = > 2

by Lemma 2.4.
Next, we assume that < 0. Then, since 2Vn & Z, we have

2Vn) = —[-2%n) - 1.
Thus, by using Corollary 2.3 and lower bounds in the case of 7 > 0, we obtain
v(2M]) > w(=[-2"n) -1

= W21z -8

3 Proof of Theorem 1.1

First we check the following.



LEMMA 3.1. Let n1,n2 be real numbers.
(1)

[[n1 + 2] — (Im] + [n2])] < 1.
(2)
[Im —m2] — (Im] — [m2])| < 1.

Proof. We have

[+ m2] = (In] + [m2]) = —{m +m2} + {m} + {n2}.
Thus we may assume that 0 < 7,72 < 1. Hence
[m +n2] = (In] + [m2]) = m +n2 — {m +m2} = [m + ) € {0,1},
which implies the first statement. Since
Ifm —n2l = (Im] = 2Dl = |Im] = ([m — na] + 2],
the second statement follows from the first. O

We study the relations between the number (&, N) of digit changes and the
value v([2V¢M) for h € Z>; and N € N.

LEMMA 3.2. Let £ be a positive number. Then, for any h € Z>1 and N € N,

v([2VEM) < (4(6,N) +1)" + 2" max{1, "}

Proof. First we prove

v(2Ve]) < (6 N) + 1. (3.1)
Since
2Ne= > s(n—N)2",
we get

(& N) =~(€27,0).
We denote this number by 7. Let
{neNs¢n—-—N)#s(1+n—N)}={0<t; <tag < -+ <t}

Then
t,
2V = ) s(¢n—N)2"
" t1 T t;
= (&t —N)Y 2"+ > s(Gti—-N) Y 2
n=0 1=2 n=1+t; 1



Note that

v (i 2”) =p(2'Th 1) <2

n=0

and that, for any ¢ with 2 <i <7,
ti
v Y 2v| =p@Eth o2ty <o

n=1+t;_1

By using (3.2), (3.3) and Lemma 2.2, we obtain
v(2Vg)) <2 (&t — N).
i=1

By the definition of ¢1,...,t,, we have

(s(§,ti = N), s(&, 114 — N)) € {(0,1),(1,0)}.

Hence
v(Ve) <2[5] <+,
which implies (3.1).
Next suppose that h > 2. Put

0 —N-1

& = Z s(€,n)2", & = Z s(&,n)2™.

n=—N n=-—oo

Note that 2V¢; € Z. We have

h
2N =2V (6 + ) =2V 2V Y (h> G,

i=1
and so, by Lemma 3.1,
h

2y (D)l

i=1

2Ve" < [2Ver] +

Hence by Corollary 2.3, we get

h I o
2NZ(Z.) g

i=1

v([2VeEM) < v(2Ve) +

+1.

+ 1.

(3.2)

(3.3)

(3.4)

In what follows we estimate upper bounds of the right-hand side of (3.4). By

(3.1) and Lemma 2.2,

v(2"Ver) <veNe)" = v(2VeEY" < (7 + )"
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By the inequality above and Lemma 2.1, there exist a,b € N with a+b < (74+1)"

and lq,...,lq, k1, ..., ky € N satisfying the following:

h < <lg, k1 <0 < ky;

a b
2Nl =3 "ol =y "ok,
i=1 j=1
Let

0, = Z oli—(h=1)N _ Z 9k —(h=1)N

1<i<a 1<5<b

1;,>(h—1)N k;j>(h=1)N
0y = § 2li—(h—1)N _ § 2k:j—(h—1)N.
1<i<a 1<5<b
1;<(h—1)N kj<(h=1)N

Then 0, € Z and
by + 0, = 2N ¢7
By (3.5) we have

Z 2l71—(h—1)N < i 2—i =1
i=1

1<i<a

1;<(h—1)N
and
E ki =(h=1N 1
1<5<b
kj<(h=1)N
Thus

|62] < 1.
By combining (3.6) and (3.7), we obtain
2Vl — 6y < 1.
Hence by Corollary 2.3

v(2¥e]) v(61) +1

<
< a+b+1<(r+ D)+ 1
Moreover, since &; < ¢ and since & < 27V,
"R i " (h
[zN > (i)sf-zs;] > (1) maxtrety
i=1 i=0
= 2" max{1,¢"}.

IN

By combining (3.4), (3.8), and (3.9), we conclude that

1/([2N§h]) (T+1)h—|—2hmax{l,§h}+2

<
< (T D" 2P max{1, ¢

11

(3.5)

(3.9)



Now we verify Theorem 1.1. Let A, = A;/p for i = 1,2,...,D. Then we
have

o)

N
> ANt = 2
h=1 p

for each N € N. By Lemma 2.6 we get

v ({— ZNAOD S (3.10)

P r

On the other hand, by Lemma 3.1

ZA’QN] ZA’ [2N¢h zi:

Hence, by using Corollary 2.3, and Lemmas 2.2 and 3.2, we get

(50 - (3
vl |- v

p h=1

S e |) <o (S aenen) + S
h=1 h=1

4 (v(2V €M) + 1)

NE

>
Il
—

WE

| A7 ((7(& N)+1)" + 2" max{1, "} + 1).(3.11)

=
Il
—_

By combining (3.10) and (3.11), we obtain, for every nonnegative integer n,
N < P(v(§N)), (3.12)

where P(X) € R[X] is a polynomial of degree D with leading coefficient rA’;.
Thus, for any positive number R, there is an effectively computable positive
constant C’(¢, R) depending only on £ and R such that

Y& N) >R

for any integer N with N > C'(§, R). Let £ be an arbitrary positive number
with € < 1. Put

§i=—1+(1-e)P>0.

By (3.12), there exists an effectively computable positive constant C(&,¢) de-
pending only on ¢ and € such that, for every integer N with N > C(¢,¢),

N < (L+6)rApy(E,N)P,
namely,
(1= Pr= P ALMP < 5(¢, N).

Therefore we proved Theorem 1.1.

12
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