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Abstract

Many mathematicians have studied the algebraic independence over
Q of the values of gap series, and the values of lacunary series satisfying
functional equations of Mahler type. In this paper, we give a new criterion
for the algebraic independence over Q of the values ) >  t(n)3~" for
distinct sequences (t(n))a~o of nonnegative integers, where 3 is a fixed
Pisot or Salem number. Our criterion is applicable to certain power series
which are not lacunary. Moreover, our criterion does not use functional
equations. Consequently, we deduce the algebraic independence of certain

values > (t1(n)B™", ..., > o> o tr(n)B7" satisfying

ti (n)

li — = b =2,...
n~>oo,tlir,nl(n)7£0 ti_1(n)]\/l o (l ’ ’T)

for any positive real number M.

1 The transcendence of the values of power se-
ries with bounded coefficients

We introduce notation which we use throughout this paper. Let N (resp. Z™)

be the set of nonnegative integers (resp. positive integers). For a real number

x, we denote the integral and fractional parts of = by |x| and {x}, respectively.

We use the Landau symbols o, O, and the Vinogradov symbols >, <« with their
regular meanings. For a sequence of integers t = ()2, put

S(t) == {n e N|t, £ 0}.

and
[t X) = itnX". (1.1)
n=0

Note that if ¢, > 0 for any n and if ¢,, € {0, 1} for any sufficiently large n, then
(1.1) is rewritten as

oo

fEX)=> X', (1.2)

m=0
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where (v,)2_ is a sequence of nonnegative integers satisfying vp,+1 > v, for
any sufficiently large m. Let A be a nonempty subset of N. Set

A(A; R) := Card{[0, R) N A} (1.3)

for any R > 1, where Card denotes the cardinality.

In this paper, we study arithmetical properties of the values x = f(¢; «) for
a fixed algebraic number o with 0 < |a| < 1. In this section, we review known
results of the transcendence of such values in the case where the coefficients are
bounded.

In particular, if « is a real number with 0 < o < 1, put 8 := o~ !. In this
paper, an infinite series of the form

= 8 = St
n=0

where t = (£,)52, is a sequence of integers, is called a S-representation of .
The S-expansion of x, introduced by Rényi [17], is a S-representation computed
by the greedy algorithm. Let T : [0,1) — [0, 1) be the S-transformation defined
by Ts(x) := {Bz} for x € [0,1). Then the S-expansion of z € [0,1) is denoted
by

T = Z tn(/g; m)ﬂinv
n=1

where t,(8;x) = LBTg_l(a:)J for n > 1.

In the rest of this section, v = (v,,)3o_, denotes an ultimately increasing
sequence of nonegative integers. Recall that 5 > 1 is a Pisot number if 3 is an
algebraic integer whose conjugates except itself have absolute value less than
1. In particular, any integer greater than 1 is a Pisot number. Moreover, an
algebraic integer 8 > 1 is a Salem number if the conjugates of 8 except itself
have absolute values not greater than 1 and if 5 has at least one conjugate with
absolute value 1.

Adamczewski [1] showed that if

Um+1

lim sup > 1,

m—oo  Um
then > 87"m is transcendental for any Pisot or Salem number 3. In the
case where « is a general algebraic number with 0 < |o| < 1, Corvaja and
Zannier [7] showed that if

Um+1

lim inf > 1,
m—00 Uy,
then Y~ am is transcendental.

However, it is difficult to study the transcendence in the case where

lim 274 (1.4)

m—0o U,

We review known results on the transcendence of certain values Y °_ 5~ "m
satisfying (1.4) in the case where 8 is a Pisot or Salem numbers. The results



are obtained by using the partial results on the normality of the S-expansions of
algebraic irrational numbers. For instance, consider the case where 8 = b is an
integer greater than 1. Then Borel [4] conjectured that all algebraic irrational
numbers are normal in base-b, which is still open. If Borel’s conjecture is true,
then we have the following: if

lim sup Im _ 00,
m—oo 1N
then Y~ b~ m is transcendental.

Let € [0,1) be an algebraic irrational number. For a positive integer N,
let p(b, z; N') be the number of nonzero digits in the first N digits of = in base-
b. In the case of b = 2, Bailey, Borwein, Crandall, and Pomerance [3] gave
lower bounds for u(2,z; N) with N > Ny, where Np is an ineffective positive
constant. Modifying the proof of the above results, Adamczewski, Faverjon [2],
and Bugeaud [5] independently gave effective versions of the lower bounds for
(b, z; N) with general integer b > 2. Lower bounds for the numbers of nonzero
digits in S-representations of real numbers were also studied [10, 11] in the case
where (3 is a Pisot or Salem number.

Using the lower bounds, we deduce for each Pisot or Salem number g that
it v = (v)50_, satisfies

. Um

hvgl—?;lop oy e (1.5)
for any positive real number A, then > >°_  37"m is transcendental (see Corol-
lary 2.4 in [10]). If 3 = b > 11is an integer, then the transcendence of 3 ~_ b~
was essentially proved by Bailey, Borwein, Crandall, and Pomerance [3]. Con-
sequently, we obtain the transcendence of > °_,A87m for certain classes of
oo B satisfying (1.4).

For instance, put, for any positive real v,

o1,,(m) := exp ((logm)' ) = mee™” (m =1,2,..)),
and let
oo(m) := exp(logmloglogm) = m'°81°8™ (m =3, 4,...).

For any Pisot or Salem number 3, we obtain the transcendence of

Z B lovv(m)] Z B~ Loza(m)] (1.6)
m=1 m=3

because (|01, (m)])2_; and (|o2(m)])>_5 fulfill (1.5).

In what follows, we study the algebraic independence over Q of values f(t; @)
for a fixed algebraic number a with 0 < |a| < 1 and distinct sequences t. We
also investigate the case where t is unbounded. In Section 2, we introduce known
results on the algebraic independence of the values of power series satisfying cer-
tain lacunary assumption. In Section 3, we give main criterion for the algebraic
independence in the case of @ = 87!, where 3 is a Pisot or Salem number. Using
our criterion, we deduce the algebraic independence of real numbers including
the values (1.6), which gives new examples of algebraic independence. We prove
our criterion in Section 4.



2 Algebraic independence of the values of lacu-
nary series

Let t = (t,)52, be a sequence of integers such that ¢, # 0 for infinitely many
n’s. Put

{neN|t, #0} = {we(0) <we(l) <---}.
We say that f(¢; X) is a gap series if

i 2emt1)

m—oo W (m)

For instance, > -, X™ is a gap series. Moreover, we say that f(t; X) is
lacunary if

lim inf 7wt(m +1)

> 1.
m—s oo wt(m)

For instance,

oo

or(X) = Z Xk

m=0

is lacunary for any integer k£ > 2. In this section we introduce known results
on the algebraic independence of the values of gap series, and lacunary series
satisfying functional equations of Mahler type, respectively. In the rest of this
section, o denotes an algebraic number with 0 < || < 1.

We consider the algebraic independence of the values of gap series. We
first study the case where f(¢;X) has the form (1.2). Shiokawa [19] gave a
criterion for the algebraic independence of gap series at algebraic points. Using
his criterion, we obtain for each « that the set

{ i atFmt | = 1,2,...}

m=0
is algebraically independent, which generalizes the result by Schmidt [18].
Next we consider the case where t = (¢,)52, is unbounded. In particular,
we study the algebraic independence of the set

{f<z)(t;a)‘1:o71,...},

where f()(t; X) denotes the I-th derivative of f(t; X). For any m € N, let
Ap, = max{1,[t,] | 0 <n < wi(m)}

and let R be the convergence radius with 0 < R < 1. Then Cijsouw and
Tijdeman [6] showed for any « with |a| < R that if

we(m + 1)

LA 2.1
mgnoo Wy (m) =+ log A"L o0 ( )



then f(¢;a) is transcendental. Nishioka [15] showed for each o with |a] < R
that if (2.1) holds, then the set

{f<l)(t;a)’1:o,1,...}

is algebraically independent.

Next, we investigate the algebraic independence of the values of lacunary
series satisfying functional equations of Mahler type. For instance, if k is an
integer greater than 1, then the series ¢ (X) satisfy the following:

er(XF) =Y XM =D XFT — X = gp(X) - X
m=1

m=0

Using the above relation, Mahler [12] showed the transcendence of ¢y () for
any «. In the rest of this section we introduce results on algebraic independence
proved by Mahler’s method.

Nishioka [13] proved for any « that the set

{or(a) | k=2,3,...}

is algebraically independent. More generally, Tanaka [20] showed for any pos-
itive real numbers wy, ..., w, linearly independent over Q and any a that the
set

o0
{ 3 alwk)

m=0

izl,...,r,k:2,3,...}

is algebraically independent.

We now consider the case where t = (¢,)52 is unbounded. We call a se-
quence (wy, )22, of integers a linear recurrence if there exist > 1 and ¢y, ..., ¢, €
C with ¢, # 0 such that, for any n € N,

Wptr = ClWptr—1 + C2Wptr—2 + -+ + CpWhy.

Nishioka [16] verified for any integer k > 2 and any « that the set

{ap,(cl)(a)‘l = 0,1,...}

is algebraically independent, using her criterion for algebraic independence in
[14]. Considering the operator X (d/dX), we see that that the set

{iklmakm l:(),l,...}

m=0
is also algebraically independent. More generally, let r be a positive integer and
let s = (51(m))_y,...,8") = (s.(m))X_, be linearly independent linear
recurrences of integers. Using the same criterion in [14] as above, Nishioka [16]

showed for any integer £ > 2 and any « that the numbers

oo

Z si(m)a®” (i=1,...,r)

m=0



are algebraically independent.

Tanaka [21] studied necessary and sufficient conditions for the algebraic inde-
pendence of the values of Y °_ X“ and their derivatives, where v = (v,,,)5%_¢
are distinct linear recurrences satisfying certain assumptions. For instance, let
F,, (m =0,1,...) be the Fibonacci sequence defined by Fy = 0, F; = 1, and
Foyo=Fpy1+ Fy, forany m=0,1,.... Put

oo
pr(X):= Z X
m=0

Then, for any «, the set

is algebraically independent.

3 Main results

Let 8 be a Pisot or Salem number and t = ()52, a sequence of nonnegative
integers such that ¢, # 0 for infinitely many n’s. In this section we study
criteria for the algebraic independence of f(¢; 371) in the case where f(t; X) is
not generally a lacunary series. Note that we do not use functional equations
for the criteria.

Let A be a nonempty subset of N and k € N. Then set

e (o) (it k=0,
' {s1+ - +sk]|s1,...,50 €A} (iff k>1).

Recall that A(A; R) is defined by (1.3). Moreover, (o1, (m))s°_; for a positive
real number v and (o2(m))S°_, are defined in Section 1.

We first consider the case where t = (£,)5, is bounded. Using criteria for
algebraic independence in [9], we obtain the following:

THEOREM 3.1 ([9]). Let 8 be a Pisot or Salem number.
(1) The continuum set

{ i B Lovv(m)]

m=1

v eR, VZI}

is algebraically independent.
(2) Let v and n be distinct positive real numbers. Then the two numbers

S prlonm] gpg 3 grloatm)
m=1 m=1

are algebraically independent.
(3) Let v be a positive real number. Then the two numbers

i Blonnm) gng i g-loa(m)]
m=1 m=3

are algebraically independent.



Note that if § = b is an integer greater than 1, then the first and second
statements of Theorem 3.1 were obtained in [8].

In what follows, we introduce our main results. We now give a new criterion
for algebraic independence applicable to some special cases, where t = (t,,)22,
is unbounded.

THEOREM 3.2. Let A be a set of nonnegative integers satisfying the following
two assumptions:

1. There exists a positive constant C1 > 1 such that

[R,C1R)NA# 0 (3.1)
for any sufficiently large R.
2. For an arbitrary positive €,
lim inf % =0. (3.2)
Let t0) = (t1(n))S%, ..., t7) = (t,(n))S, be sequences of nonnegative integers
with
S(t(l)) B S(t(r)) =4 (3.3)
satisfying the following two assumptions:
1. There exists a constant 0 < Cy < 1 such that, for eachi=1,...,r,
log® t;(n) = o (nlfCZ) (3.4)

as n tends to infinity, where logt x = logmax{1,z} for a real number x.

2. Let M be an arbitrary positive real number. Then, fori=2,...,r,

. ti(n)
1 = 0. .
nE.Al,gl—)oo ti,l(n)M > (3 5)

Let 8 be a Pisot or Salem number. Then the numbers f(t(V; =), ..., f(#");5~1)
are algebraically independent.

Theorem 3.2 implies that if a set A of nonnegative integers satisfying (3.1)
and (3.2) is given, then we can deduce examples of algebraically independent
real numbers, changing sequences t(V), ... (") of coefficients. Theorem 3.2 is
applicable even if t() ... t(") are not linear recurrences.

We give examples of coefficients for a fixed infinite set A of nonnegative
integers. Let t = (1,)52 be a sequence of integers. Put

falt; X) =)t X"

neA
Let © be the subset of R? defined by

0 :={(u,v) eR*|0< p < 1}U{(0,v) € R?* | v > 0}.

Moreover, for any (u,v) € ©, we define the sequence r,,, = (7., (n))2Z, by

P (n) = {exp ((n + 2)“(log(n + 2))V)J :



COROLLARY 3.3. Let A be a subset of N satisfying (3.1) and (3.2). Then,
for any Pisot or Salem number 3, the continuum set

g(A) = {fA(r,u,u;ﬂil) | (/va) € @}

is algebraically independent.

Corollary 3.3 is easily seen by Theorem 3.2. In fact, any element f4(r,.;57!)
of G(A) satisfies (3.4) by p < 1. Moreover, let fa(r,,;87") and fa(ry ,;87")
be any distinct two elements of G(A). Suppose that u > p/, or p = p/ and
v > /. Then we see for any positive real number M that

lim M — lim exp ((n+2)"(log(n+2))”>

M v’ = OO)
n—o00 1, (1) N0 oD (M(n + 2)H ( log(n + 2)) )
which implies that (3.5) is also fulfilled.

Various sets A of nonnegative integers satisfy (3.1) and (3.2). Consider the
case where A is denoted as

A= {vy | m>me}, (3.6)
where my is a nonnegative integer and (vy,)55—,,, is an ultimately increasing
sequence of nonnegative integers. We see that if (v, )55—,,, satisfies (1.5) and

lim sup Umil 00, (3.7)

m—oo  Um

then the set A defined by (3.6) fulfills (3.1) and (3.2). In fact, let € be an
arbitrary positive real number. Using (1.5) with A = 1/e, we see for any
positive real number y that there exist infinitely many positive integers m with
vm > yY/#m!/e. Thus, we obtain that

A A; yt/emb/e)  Card([0,yY/=m!/¢) N A) <1
(yl/sml/a)e - ym “y

and that \A )
lim inf MAR) <=,
R—o0 € Yy
which implies (3.2) because y is an arbitrary positive real number.

Recall that vy, := [o1,,(m)] (m > 1) satisfies (1.5) and (1.4) for any positive
real number v. Thus, A; := {o1,,(m) | m > 1} satisfies (3.1) and (3.2). Hence,
A; is applicable to Theorem 3.2 or Corollary 3.3. In particular, Corollary 3.3
implies that

G(A1) = {fa, (rus 871) | (n,v) € O}
is algebraically independent. Note for any nonnegative integer n that roo(n) =
2. Thus, we see

oo

(o 87 = Y gLl ¢ ()

m=1



because (|o1,,(m)])20_; is ultimately increasing. Therefore, we deduce the al-

gebraic independence of real numbers including the value

(oo}

Z B Loy (m)]

m=1

Similarly, {o2(m) | m > 3} also fulfills (3.1) and (3.2).

Moreover, we note that if (v,,)5_,,, satisfies

Uerl Uerl

1 < lim inf < lim sup

m—oo U m—oo  Um

< 00,

then (1.5) and (3.7) are satisfied. In particular, the set {|wn™] | m > 0} for
real numbers w > 0,1 > 1, and the set {F,,, | m > 0} for the Fibonacci sequence
(Fm)ee_ fulfill (3.1) and (3.2).

In the last of this section we also deduce the algebraic independence of certain
two numbers related to the derivatives of functions as follows:

COROLLARY 3.4. Let A be a subset of N satisfying (3.1) and (3.2). Let
t = (t(n))s%y be a bounded sequence of positive integers. Let B be a Pisot or
Salem number. Then, for any positive integer I, the numbers fa(t; 3~ 1) and

fﬁ)(t; B~Y) are algebraically independent.

Proof. Let v := fa(t:871) and 72 := B~ f (8,871 + 3oy nen 87", where

’yg=Zn(n—1)-~-(n—l+l)tn,87”—|— Z g
n=lI n<l,neh

=: Z ta(n)B8™".
n=0

Then two sequences t(1) := (t(n))5%, and t2) := (t5(n))22, satisfy (3.3), (3.4),
and (3.5) because t(!) is bounded. Thus, we obtain from Theorem 3.2 that v,
and o are algebraically independent, which implies the corollary. O

4 Proof of Theorem 3.2

We introduce notation. Let k be a positive integer and m = (my, ..., m;) € N*,
X = (X1,...,Xk). Put

Im|:=my + -+ my, X™ =X X
For convenience, if k = 0, then set
|m|:=0, X™:=1.
We write by 4,4 the graded reverse lexicographical order on N" as follows: Let
k= (ki,..., k), k' = (ki,...,k.) be distinct elements of N". Then k >, k' if
and only if |k| > ||, or |k| = |K| and kj, > kj,, where

h=max{1<i<r|k #k}.



In particular, we have
(0,...,0,1) >4 (0,...,0,1,0) >grs -~ >gm (1,0,...).

Put f;(X) := f(t@; X) and & := f;(B~") for i = 1,...,7. Set 0:= (0,...,0) €
N"and £ := (&1, . ..,&). In what follows, we show that P(€) # 0 for any nonzero
polynomial P(X) whose coefficients are integers. Let D be the total degree of
P(X). Throughout the proof of Theorem 3.2, we consider the set (D — 1)B,
where B is defined later. However, (D — 1)B is defined only if D —1 > 1. For
simplicity, we may assume that D > 2. In fact, if D = 1, then it suffices to show
that the polynomial X;P(X) does not vanish at X = £. Let

P(X) =: Ao + Z ApX*,
keA

where A is a nonempty subset of N"\{0}, 4g € Z, and A € Z\{0} for any
k € A. We write by g = (g1, - - -, gr) the maximal element of A with respect to
—gri. Without loss of generality, we may assume that Ag > 0. Set

Ay = {k € A\{g} | |[k| = D}, Ay :={k € A\{g} | |k| < D}.
Then we have
A:{g}UAl UAQ.

In what follows, the implied constants in the symbols < and > and C3,Cy, ...
are positive constants depending only on fi(X),..., f(X), 8, and P(X). Set

B 2(DY)
Cs:= max{l, Ag <1+ Z |Ak|>}

keA:

By (3.5), there exists a positive integer Cy such that if n is an element of A
with n > C4, then

tu(n) > CPt,(n)" (4.1)

for any integers u,v with 1 < v < u < r. For simplicity, we consider n; =
©i(B71) instead of & for i = 1,...,7, where

Pi(X) =D si(n)X" =1+ Y t:(n)X". (4.2)
n=0 n=Cy

Then we see 394(¢; —n;) € Z[f]. Observe for each k = (ki,...,k,) € A that

BOP Ak = O (P=IFD 4, H (B9 (& —mi) + 504772‘)]%

i=1

is a polynomial of 7 = (n1,...,7,) whose coefficients are elements of Z[3]. Ex-
panding B¢4P P(¢) by the relation above, we see that

BUPPE) = Q(n) = Bo+ »_ Bin®, (4.3)

kel

10



where Q(X) € Z[B][ X1, ..., X,] has total degree D(> 2), I is a nonempty subset
of N"\{0}, By € Z[3], and By € Z[B]\{0} for any k € I'. By the definition of
Q(X), the maximal element of I' with respect to >4, is g. Similarly, putting

Iyi= {k € T\{g} | [k = D}, Ty = {k € T\{g} | [k| < D},
we get I'y = Ay and
By, = B94P Ay (4.4)
for any k € {g} UT'y. In particular, we have Bg > 0. Note that
I ={g}Ul, UD,.

We check that the power series ¢1(X),...,p,(X) with nonnegative integral
coefficients satisfy the assumptions of Theorem 3.2. In particular, we get

S(p1) = =S(er)
{0} U ([Cs,00) N A) =: B

by (3.3), (4.2), and so
[R,C1RYNB#D (4.5)
for any sufficiently large R by (3.1). Moreover, putting
A(B; R) =: M(R), C :=C5/2
for simplicity, we see for an arbitrary positive real € that

lim inf A(R)

=0
R—oo RE

by (3.2). By considering the case of € = C/(2D — 1), there exists an infinite set
F of nonnegative integers such that

47VEP=I(1 4 ¢y~ EPED Nc);gzj\;)il)
for any N € F. Thus, we get for any N € F that
N€ > 4(1 4+ C)NN)?P~1, (4.6)
We see by (3.4) that
log™ si(n) = o (nl_zc) (4.7)

as n tends to infinity, where 0 < 2C < 1. Moreover, using (4.1) and (4.2), we
get

su(n) > CPs,(n)P (4.8)

for any integers u,v with 1 < v < u < r and any n € B\{0}.

11



We now calculate Qk for k € T'. Let k be a positive integer and m =
(mq,...,my) € N¥. Fori=1,...,r, put

si(m) := s;(mq) -+ - s;(myg). (4.9)

For convenience, if k£ = 0, then we set s;(m) := 1. For a positive integer m, we

denote by B™ the mth Cartesian power of B. Moreover, put B° := {0}. For
any ﬂk with k = (kla .. '7kr) S F, we see

T

r ki
- H(Zsi<m)ﬂ m) =TI X sitmap

i=1 \meB i=1 \m,;ecBki

I3
Il

B Z s1(ma)- "Sr(mr)ﬁ—(|m1\+"~+|mr\)

miEBFL,... m,.cBkr

Y B pksm), (4.10)
m=0

where

p(k;m) = Z s1(mq) -+ sp(m;)

mieBkl,.., myeBkr
|my|+-+|mp|=m

is a nonnegative integer. Substituting (4.10) into (4.3), we get

BELP(E) = Q) = Bo+ Y. Bun®

kel
=Bo+ ) Buy 5 "p(k;m).
kel m=0

Let R be a nonnegative integer. Then

BRTCLP(E) = BoBR+ Y Bi Y B "p(kim+R).

kel m=—R

Put

Yr = Z By Z B~ p(k;m + R),

kel m=1

0
Zp=Bof"+> Bi Y B "p(kim+R).

kel m=—R

Then we have

BRHCDP(¢) = Yi + Zn. (4.11)

Note that Zr € Z[5] because By, € Z[f] for any k € {0} UT.
We now introduce a sketch of the proof of Theorem 3.2. We first show for
any nonnegative integer R that

RI—ZC

ZRZOOI‘ |ZR|ZC55_ .

12



in Lemma 4.2. Next, we show that there exists a positive integer R satisfying
0<Yr< C5ﬁ_R172C (4.12)
in Lemma 4.6. Therefore, (4.11) implies that

P(§) # 0.

Since P(X) is any non-constant polynomial whose coefficients are elements in
Z[f], we deduce that &1,...,&, are algebraically independent.
We now give upper bounds for p(k;m).

LEMMA 4.1. For any k € ', we have
log™ p(k;m) = o (m'~%).

In particular, there exists a positive constant Cg satisfying the following: for
any k €T’ and m € N,

plk;m) < Cﬁﬁml_Zc.
Proof. Let k € T'. Using (4.9) and the definition of p(k;m), we get

1<i<r
0<n<m

ki4-+kp
p(k;m) < (m 4 1)k Fthe ( max SZ(TL))

D
<(m+ 1)D ( max sz(n)> .

0<n<m
Taking the logarithm of the inequality above, we obtain, by (4.7),
log™ p(k;m) = o (mlfQC)

as m tends to infinity. Moreover, the second assertion also holds because I' is a
finite set. O

LEMMA 4.2. There exists a positive constant C satisfying the following: For
any nonnegative integer R, we have

ZR =0 or |ZR| Z C5ﬁ_R172c.

Proof. Put d := deg 8. Let 71, ..., m4 be the conjugate embeddings of Q(8) into
C, where 71 () = for any v € Q(8). Set

C7 := max {|m;(Bg)| | i=1,....,d,ke{0}UT}.

Setting m;(8) =: B; for i = 2,...,d, we have

R
7i(Zr) = mi(Bo)BE + > mi(Br) Y Bp(k; —m + R).
kel m=0

13



Recall that |3;| < 1 because S is a Pisot or Salem number. Thus,

|m:(ZR)| < C7 + ;07(1% +1) og}w?%{R p(k;m).
€

Using Lemma 4.1, we get, for i =2,...,d,
log”* |mi(Zr)| = 0 (R'72¢)
as R tends to infinity. Hence, we see for any sufficiently large R that

d

> log* |mi(Zr)| < R'"*log B,
=2

and so
d 1—-2C
[T Im(Zr)| < 8.
i=2
Assume that Zg # 0. Since Zp is an algebraic integer, we obtain

d

1< |Zg| [] Imi(ZR))-
i=2

Therefore, we deduce for any sufficiently large R that

Rl—2C

|Zr| > B~

In what follows, we consider lower bounds for Yg.

LEMMA 4.3. Let k €T and let m be a nonnegative integer. Then p(k;m) is
positive if and only if m € |k|B.

Proof. We observe that p(k;m) is positive if and only if there exist m; €
Bk ... ,m, € B such that m = Y., |m;|. Thus, p(k;m) is positive if
and only if there exists an n € B¥ x ... x B* such that m = |n|, that is,
|n| € |k|B because B¥ = {0} for any 1 <4 < r with k; = 0. O

Since 0 € B, we get

Bc2BC---CDB. (4.13)

Let k € Tand n = (n(1),...,n(|k|)) € N*l. We divide n into r parts as follows:

n (n(l),...,n(kl),n(kl+1),...,n(k1+k2),...,

n(kl+"'+kr71+1)7"'an(kl+"'+kr71+kr))

=: (n(k,1),n(k,2),...,n(k,r)),

14



where

fori=1,...,r. Let
s(k;m) := H si(n(k, 1)), (4.15)
i=1

where s; (n(k,i)) is defined by (4.9).
LEMMA 4.4. Let m be any nonnegative integer with m ¢ (D — 1)B. Then

1
Y. [Belp(ksm) < 5 Bgp(gim). (4.16)
keT\{g}

Proof. Without loss of generality, we may assume that m € DB. In fact, if
m ¢ DB, then we see that both-hand sides of (4.16) are 0 by Lemma 4.3 and
(4.13).

Using Lemma 4.3, we see for any k € T’y that p(k;m) = 0 by (4.13) and
m & (D —1)B. Thus,

Y [Bilo(kim) = > |Bk|p(k;m). (4.17)

ker\{g} kel

Hence, we may assume for the proof of Lemma 4.4 that I'; is not empty. In
particular, we have » > 2. Note for any k € {g} UT; that p(k;m) > 0 by
Lemma 4.3 and |k| = D.

Put

(1]

= {n=(n(1),...,n(D)) € B” | [n| =m} (#0).

We apply notation (4.14) and (4.15) to k € {g} UT; and n € = C NI¥I. Then
we see for any k € {g} UT'; that

p(k;m) = Z s1(n(k,1)) - sy (n(k,r)) = Z s(k;n). (4.18)

neBP |n|=m nes

We first show for any fixed k = (k1,...,k;) € 'y that

D!

p(k;m) < ap(g;m)- (4.19)
Put
l:=max{i > 1[k; # g;}.
Since |k| = |g| = D, we have | > 2 because there exists an integer a with a <1

satisfying g, < k.. Moreover, setting

Ti=D— (ki kit k) =kt ke oo ki

15



we see that 7 > 0.
Let n = (n(1),...,n(D)) € E. Take an integer b with 1 < b < 7 satisfying

su(n(b)) = max si(n(7)). (4.20)
There exists a permutation o of the set {1,...,7} such that
o(t)=1b
Let
(p(1), ..., p(7)) := (n(o(1)),...,n(a(7)))
and

p = (p(l)vp(Q)v ce ,p(T),TL(T + 1); TL(T + 2)a v an(D)) (421)

It is clear that p € = because p is obtained by a permutation of the components
of n. Note that p is determined by k € I'y and n € Z. Recall that

n) = Hs (n(k,i)), s(g;p) = Hs (p(g.1)

where n(k,i) € B¥ and p(g,i) € B for i = 1,...,r. By the definition of p,
the last (D — 7)-th components of n and p coincide. Observing that g; = k; for
any ¢ > [+ 1, we see

n(k,i) = p(g,1) (4.22)

for each i > [+1 because k414 - -+k, < D—r by the definition of 7. Moreover,
since g; > ki, we see that n(k,l) and p(g,!l) are denoted as

n(k,l) = (n(r+1),...,n(1 + k),
p(g,1) = (p(r —h+1),....p(T),n(r + 1),...,n(T + ki),

respectively, where h = g; — k; > 0. Thus, we have

si(p(g.1)) = si(n p(r+1—7)). (4.23)

I\Er

Hence, combining (4.22) and (4.23), we obtain

T

Hsz >Sz( (gal)) H Si(p(gai))
i=l+1

T

p(r+1—7)) H si(n(k, 1))

i=l+1

p(r+1—7) Hsl ) = si(p(1)) H si(n(k,i)). (4.24)
i=l

||::¢
u’:]w
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Note that n(j) > 0 for any 1 < j < D. In fact, if n(jo) = 0 for some 1 < jo < D,

then
m=lnl= 3 n(j)e(D- 1B,

1<j<D
J#jo

which contradicts the assumption of Lemma 4.4.
We now let i, 7 be integers with 1 <4 <]—1and 1 < j < 7. Applying (4.8)
with u =1, v =4, and n = n(j) € B\{0}, we see
Cy54(n(j)) < si(n()VP < si(n(b)V/P
= si(p(m)"/"

by (4.20) and p(7) = n(o(7)) = n(b). In particular, we get

€5 max si(n(@))7 < s(p(r)? < s(p(r))

by 1 <7< D, and so

CgHS (k,1)) <C’3H11£1ja<xrs ki
<0f max si(n(i))" < si(p(r)) (4.25)
1<i<i—1

by C3 > 1. Combining (4.24) and (4.25), we obtain

-1

s(g;p) > Cs [ [ si(n(k, ) Hsz = Css(k;n). (4.26)

=1

Let n,n’ € . We write n ~ n/ if n is translated to n’ by a permutation of the
components. Note that p ~ n for any n € =, where p is defined by (4.21). We
write p =: p(n) in order to emphasize that p depends on n. We denote the set
of equivalence classes of = with respect to ~ by Z/ ~. Using (4.18) and (4.26),

we obtain
pllim) =Y s(kin)= > > s(kin)

ne= Q€E/~MEQ

> > s(gsp(n)

a€E/~nEQ
Observe for any o € =/ ~ that
Card oo < D!.

Moreover, if n € a, then p(n) € «. Hence,

1
plk;m) < — D!mgxs(g;n)
3 ae’—/,\, nco
D! D!
Z >_slgin) = & > slgin) = plgim)
ae_/w nea neE 3
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by (4.18), which implies (4.19).
Recall that I'y = Ay and Ag > 0. Applying (4.17), (4.4), (4.19), the defini-
tion of C3, we deduce that

D!
> IBrlp(kim) = Y B | Aglp(k;m) < B 1A (g m)
ke {g} keA, ke, 3

D!
= B8%Pplgim) - 5= D |4l
3 keA,

1
< B%Pp(g;m) - 5

1
Ag = 5Bgplgim),
which implies Lemma 4.4. O
Let k£ be a positive integer. Then, for any positive integer IV,

A(kB; N) = Card(kBN [0, N)) < Card(BN [0, N))* = A(N)F. (4.27)

For any interval T = [z,y) C R with 2 < y, we denote its length by |I| .=y — .
Let N be a sufficiently large element of F. Set

O,N)N(D—-1)B={0=j1 <jo <+ <jr}s
and ji4, := N. Recall that D > 2. Applying (4.27) with k = D —1 > 1, we see
k< AN)PL (4.28)

Observe that j, € (D — 1)B for any 1 < a < k and that

K

> (jita — ja) = N. (4.29)

a=1

There exists a p with 1 < p < k such that

Ji4p —Jp = 1@3§n{j1+a — Ja}-

Let Ji := [Jp, j1+p) C [0, N). Combining (4.28), (4.29), and the definition of p,
we get for any N € F that

A _ L max {ji+a — ja} = 7 A
1+01 1+Cl 1<a<k ta al = (1+Cl):‘<&

S N
T 1+ CHAN)PT

(4.30)

and that

> N'=¢ (4.31)

by (4.6). Thus, we see for any sufficiently large N € F that there exists a 6

with
b € [ | /1] 01J1|> "B

1+C'14+C4

18



by (4.5). Put

| /1]

M = M(N) := 4, + 0 ]
(N):=jp+6€ ]p+1+01

Jp +

C1)J1]
1+C4

and
Jo = []p,M) C Ji.
Consequently, we get that M € DB by j, € (D —1)B and 6y € B.

LEMMA 4.5. Assume that N € F is sufficiently large. Then, for any R € Js,
we have

Yr > 0.

Proof. We verify Lemma 4.5 by induction on R. First we show that Y3;_1 > 0.
Observe that

Yvu_1= ZBk’ Z Bfmp(k:;m + M — 1)
kel m=1
j1+p*M
= > B> Brplkim+M 1)
m=1 kel

+Y Be Y., B plkim+M—1)

kel m=1+j14p—M
S+ 5 (4.32)

We give upper bounds for |S3|. By the definition of M and (4.31), we have

C1|J1] | /1] 1-¢
_ — N
1+C4 1+ C ”

j1+p -M 2 j1+p _jp

for any sufficiently large NV € F. For simplicity, put, for a nonnegative integer
n’

1—2C
Cn = ﬁn .
Thus, using Lemma 4.1 and M < N, we get
Sol <D Bkl Y B"p(kim M —1)
kel m=14j14p—M
< Z | Bk | Z B Gt m—1
kel m=14j14p—M
< Z Bimgm-&-M—l S Z /Bim<m+N-
m>N1-¢ m>N1-¢
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Since

lim ((m+ -2 — m1_2c) =0

m—r o0

by 0 < 2C < 1 and the mean value theorem, we have

lim Cmt1

m—r o0

=1

m
In particular, if m is sufficiently large, then

<m+1 B+1
Cm < 72 .

(4.33)

Hence,

|So] < BN C2N25 (ﬁ+1>

< BV =o1)
as N € F tends to infinity because we see
_lec + (2N)172C < _N172C

for any sufficiently large N € F. In particular, if N € F is sufficiently large,
then

1
|Sa| < 539571 (4.34)

by By > 0.

On the other hand, we see for any 1 < m < ji4, — M that m+M —1 ¢
(D—-1)Bby m+M—1¢€ (jp,ji+p) and the definition of ji,...,ji4.. Using
Lemma 4.4, we obtain

]1+P
Sy > Z B | Bgp(gsm+M —1)— Y |Bylp(k;m + M — 1)
ker\{g}
]1+P 1 1
> fB Z B"plgim+ M — 1) > S BgB~" p(g; M) > 5Bgff™" (4.35)

by M € DB. Therefore, combining (4.32), (4.34), and (4.35), we deduce for any
sufficiently large N € F that

Yy—1>0.

Next we assume that Yz > 0 for certain R € (j,, M). Then

Yr_1 = ZBk Z B~ p(k;m+ R —1)

kel m=1
BZkak:R ZBkZB M=V p(k;m — 1+ R)
kel kEF m=2
= S+ 55, (4.36)
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Lemma 4.4 implies that S{ > 0 because R ¢ (D — 1)B by R € (jp,j1+p)-
Moreover, it is easily seen that

Sty = %ZBk f: B~ ™p(k;m + R) = %YR > 0.
kel m=1
Hence, (4.36) implies that Yr_; > 0. Therefore, we proved Lemma 4.5. O
Applying (4.27), we get
Card(Jo N DB) < A(N)”.
Put
(J2 1 DB)U{jp} = {jp = i1 < iz < -+ < i},
where
w <1+ AN)P <20(N)P (4.37)
Let 414, := M. Then there exists a ¢ with 1 < ¢ < w such that
U14q =g = WAX {i14p —in}
Put I := [ig, t144) C Jo. For any k with 1 <k <D
(igsi14q) NEB C (ig,i144) N DB =10 (4.38)
by (4.13).

We now estimate lower bounds for |I;]. By the definition of ¢, we see

| J2]

I pr— ) _. >7.
|11 121}?§w{11+h iny > -

Combining (4.37), the definition of M, and (4.30), we obtain for any sufficiently
large N € F that

1 ) 1 |J1]

1| > (M — > .

= 2A(IN)D

S N
= 2(1+ CA(N)2DT

> 2N1=¢ (4.39)
by (4.6).

For the proof of Theorem 3.2, it suffices to show that there exists a positive
integer R satisfying (4.12). Thus, we only have to show the following:

LEMMA 4.6. Assume that N € F is sufficiently large. Then, for any R with
1
iq§R<iq—|—§|Il|, (4.40)

we have

0<Yr< C5B_R172c.
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Proof. By Lemma 4.5 it suffices to show that |Yg| < CsB~ R for any R
satisfying (4.40) under the assumption that N is sufficiently large. In fact, if R
satisfies (4.40), then R € J,.

For an integer R with (4.40), we estimate upper bounds for

(o ]
Ye|=|>_ Bk Y_ p "plkim+R)|.
kel’ m=1

Let k € I'. Take an integer m with 1 <m <144 — R. Then we have m + R €
(ig,%144). Thus, (4.38) implies that p(k;m + R) = 0 for such an m. Using
Lemma 4.1 and R < N, we get

Ye| <Y [Bel > B7"p(k;m+R)
R

kel m=i14q—

<<Z|Bk\ Z B Cmrr K Z BT CmaN-

ker m=i14q—R m=i14q—R
We see by (4.40) and (4.39) that

i14q — R > i11q —ig — %|Il| = %|Il| > N'=¢
and that

Vel < D B "Gnin-

m>N1-¢€

Consequently, using (4.33), we obtain

_pNl-¢ > n B+1 " _gN1-2¢C
|Yr| < B Con 2;05 <2 <p )
Namely, there exists a Cg independent of R and N satisfying
[Yr| < Csf™2N
In particular, if N € F is sufficiently large, then
Vil < G~ < opp T,

which implies Lemma 4.6. O
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