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Abstract. Let d ≥ 2 be an integer. In [2], the second, third, and fourth
authors gave necessary and sufficient conditions for the infinite products

∞∏
k=1

U
dk

̸=−ai

(
1 +

ai
Udk

)
(i = 1, . . . ,m) or

∞∏
k=1

V
dk

̸=−ai

(
1 +

ai
Vdk

)
(i = 1, . . . ,m)

to be algebraically dependent, where ai are non-zero integers and Un and
Vn are generalized Fibonacci numbers and Lucas numbers, respectively.
The purpose of this paper is to relax the condition on the non-zero
integers a1, . . . , am to non-zero real algebraic numbers, which gives new
cases where the infinite products above are algebraically dependent.

1. Introduction

Let α and β be real algebraic numbers with |α| > 1 and αβ = −1.

Then the generalized Fibonacci numbers and Lucas numbers are expressed,

respectively, as

(1.1) Un =
αn − βn

α− β
and Vn = αn + βn (n ≥ 0).

If α = (1 +
√
5)/2, we have Un = Fn and Vn = Ln (n ≥ 0), where {Fn}n≥0

and {Ln}n≥0 are the sequences of Fibonacci numbers and Lucas numbers

defined, respectively, by Fn+2 = Fn+1 + Fn (n ≥ 0), F0 = 0, F1 = 1 and

by Ln+2 = Ln+1 + Ln (n ≥ 0), L0 = 2, L1 = 1. Let d ≥ 2 be an integer.

In [2], the second, third, and fourth authors gave necessary and sufficient

conditions for the infinite products

(1.2)
∞∏
k=1

U
dk

̸=−ai

(
1 +

ai
Udk

)
(i = 1, . . . ,m)
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or

(1.3)
∞∏
k=1

V
dk

̸=−ai

(
1 +

ai
Vdk

)
(i = 1, . . . ,m)

to be algebraically dependent, where ai are non-zero rational integers. In this

paper, we relax the condition on the non-zero rational integers a1, . . . , am

to non-zero real algebraic numbers, which gives new cases where the infinite

products (1.2) or (1.3) are algebraically dependent.

The algebraic independency of the infinite products above can be proved

by using Mahler’s method explained in Section 2; thereby, the algebraic de-

pendency of the infinite products (1.3) with non-zero distinct real algebraic

numbers a1, . . . , am is reduced to the problem of determining whether the set

of the roots of the quadratic polynomials z2+aiz+1 (1 ≤ i ≤ m) and z2+1

includes subsets described by certain algorithm. If |ai| > 2 (1 ≤ i ≤ m), the

method used in this paper is essentially similar to that of [2] dealt with the

case where a1, . . . , am are rational integers. If a1, . . . , am are non-zero distinct

real algebraic numbers including those with |ai| ≤ 2, it can arise that the

infinite products (1.3) which were not treated in [2] are algebraically depen-

dent (see Examples 2–6 below). In such a case, we establish the algorithm of

selecting d-th roots to find subsets mentioned above, whose elements distrib-

ute on the unit circle with certain symmetry. For this purpose, Lemmas 4.1

and 4.2 proved in Section 4 play a crucial role. The necessary and sufficient

conditions given in Theorems 1.1 and 1.3 of this paper are useful to obtain

explicit algebraic dependence relations among the infinite products (1.2) or

(1.3), whose transcendence degrees are just one less than the numbers of

the infinite products appearing in each relation (see Examples 1–6 below).

We introduce the following notation which will be needed throughout this

paper. Let d ≥ 2 be a fixed integer. For τ ∈ C with |τ | = 1 and i = 0, 1, . . .,

define Ωi(τ) :=
{
z ∈ C

∣∣∣ zdi = τ or zd
i
= τ

}
. Here and in what follows, for

any γ ∈ C we denote by γ the complex conjugate of γ. Moreover, for S ⊂ C
we denote S := {γ | γ ∈ S}. Let ζm = exp(2π

√
−1/m). For any fixed

integer k ≥ 1, let Sk(τ) be a non-empty subset of Ωk(τ) such that for any

γ ∈ Sk(τ) the numbers ζdγ and γ belong to Sk(τ). Namely, Sk(τ) satisfies

(1.4) Sk(τ) = ζdSk(τ) and Sk(τ) = Sk(τ).

For example, if k = 3, d = 2, and τ = 1, we have Ω3(1) = {ζj8 | 0 ≤ j ≤ 7}
and we can choose S3(1) = {±ζ8,±ζ38}. Note that the following sets are
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determined depending only on Sk(τ):

Λi(τ) =
{
γdk−i

∣∣∣ γ ∈ Sk(τ)
}
⊂ Ωi(τ) (0 ≤ i ≤ k − 1),

Γi(τ) = {γ ∈ Ωi(τ) | γd ∈ Λi−1(τ)} \ Λi(τ) (1 ≤ i ≤ k − 1).

Define

Ek(τ) =

(
k−1∪
i=1

Γi(τ)

)∪
Sk(τ)

and

Fk(τ) =

{
Ek(τ) ∪ {τ, τ} if τ /∈ Ek(τ),
Ek(τ) \ {τ, τ} otherwise.

Note that E1(τ) = S1(τ). The main results of this paper are as follows:

Theorem 1.1. Let {Un}n≥0 be the sequence defined by (1.1) and d an integer

greater than 1. Let a1, . . . , am be non-zero distinct real algebraic numbers.

Then the numbers
∞∏
k=0

U
dk

̸=−ai

(
1 +

ai
Udk

)
(i = 1, . . . ,m)

are algebraically dependent if and only if d is odd and there exist τ1, τ2 ∈ C
with τ1 ̸= τ2, |τ1| = |τ2| = 1 and Fk1(τ1),Fk2(τ2) with k1, k2 ≥ 1 such that

Fk1(τ1) ∩ Fk2(τ2) ⊂ {τ1, τ1, τ2, τ2} and {a1, . . . , am} contains

− 1

α− β
(γ + γ)

for all γ ∈ (Fk1(τ1) ∪ Fk2(τ2)) \ {±
√
−1}.

Corollary 1.2. For any integer d ≥ 2 and for any real algebraic number

a ̸= 0, the infinite product

∞∏
k=0

U
dk

̸=−a

(
1 +

a

Udk

)

is transcendental.

This follows from the fact that the algebraic dependence condition of Theo-

rem 1.1 requires two non-empty sets Fk1(τ1) and Fk2(τ2). The transcendency

of the numbers such as the infinite products in Corollary 1.2 was shown in

[5].

Examples 1–6 below are obtained by using Theorems 1.1 and 1.3 of this

paper. For the details, see [3].
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Example 1. Let a be a non-zero real algebraic number. The transcendental

numbers

s1 =
∞∏
k=0

F
3k

̸=−a

(
1 +

a

F3k

)
and s2 =

∞∏
k=0

F
3k

̸=a

(
1− a

F3k

)

are algebraically dependent if and only if a = ±1/
√
5. If a = 1/

√
5, then

s1s
−1
2 = 2 +

√
5.

Theorem 1.3. Let {Vn}n≥0 be the sequence defined by (1.1) and d an integer

greater than 1. Let a1, . . . , am be non-zero distinct real algebraic numbers.

Then the numbers

(1.5)
∞∏
k=0

V
dk

̸=−ai

(
1 +

ai
Vdk

)
(i = 1, . . . ,m)

are algebraically dependent if and only if at least one of the following three

properties is satisfied:

(i) d = 2 and the set {a1, . . . , am} contains b1, . . . , bl (l ≥ 3) with

b1 < −2 satisfying

b2 = −b1, bj = b2j−1 − 2 (j = 3, . . . , l − 1), bl = −b2l−1 + 2.

(ii) d = 2 and there exist τ ∈ C with |τ | = 1 and Fk(τ) with k ≥ 1 such

that {a1, . . . , am} contains

−(γ + γ)

for all γ ∈ Fk(τ) \ {±
√
−1}.

(iii) d ≥ 4 is even and there exist τ1, τ2 ∈ C with τ1 ̸= τ2, |τ1| = |τ2| = 1

and Fk1(τ1),Fk2(τ2) with k1, k2 ≥ 1 such that Fk1(τ1) ∩ Fk2(τ2) ⊂
{τ1, τ1, τ2, τ2} and {a1, . . . , am} contains

−(γ + γ)

for all γ ∈ (Fk1(τ1) ∪ Fk2(τ2)) \ {±
√
−1}.

Remark 1.4. In the case of d = 2, putting τ1 = ζ3 = ζ26 , S1(τ1) =

{ζ6, ζ26 , ζ46 , ζ56}, τ2 = −1, and S1(τ2) = {
√
−1,−

√
−1}, we have F1(τ1) =

{ζ6, ζ56} and F1(τ2) = {−1,
√
−1,−

√
−1}. Hence, using (ii) in Theorem 1.3

and noting that −(ζ6 + ζ56 ) = −1 and −(−1− 1) = 2, we see that the cor-

responding infinite products (1.5) are algebraic numbers. Indeed, we have

∞∏
k=1

(
1− 1

V2k

)
=

α4 − 1

α4 + α2 + 1
and

∞∏
k=1

(
1 +

2

V2k

)
=

α2 + 1

α2 − 1
.
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Corollary 1.5. Let d ≥ 2 be an integer and a ̸= 0 be a real algebraic number

with (d, a) ̸= (2,−1), (2, 2). Then the infinite product
∞∏
k=0

V
dk

̸=−a

(
1 +

a

Vdk

)
is transcendental.

This corollary can be deduced from the following discussion: The case (iii)

of Theorem 1.3 requires two non-empty sets Fk1(τ1) and Fk2(τ2). Hence, if

d ≥ 4, the infinite product in the corollary is transcendental. When d = 2,

the case (i) of Theorem 1.3 requires at least three numbers. Therefore only

the case (ii) has a possibility for the infinite product to be algebraic. If the

number of the elements in Fk(τ) \ {±
√
−1} is at most two, the infinite

product is algebraic as is shown in Remark 1.4 above. The transcendency

of the numbers such as the infinite products in the corollary was shown in

[5].

Example 2. Let a ̸= ±1,±2 be a real algebraic number. The transcendental

numbers

s1 =
∞∏
k=1

L
2k

̸=−a

(
1 +

a

L2k

)
and s2 =

∞∏
k=1

L
2k

̸=a

(
1− a

L2k

)

are algebraically dependent if and only if a = ±
√
2. If a = ±

√
2, then

s1s2 =
√
5/3.

Example 3. The transcendental numbers

s1 =
∞∏
k=1

(
1−

√
3

L4k

)
, s2 =

∞∏
k=1

(
1 +

√
3

L4k

)
,

s3 =
∞∏
k=1

(
1− 1

L4k

)
, s4 =

∞∏
k=1

(
1 +

2

L4k

)
satisfy

s1s2s3s
−1
4 =

5

8
,

while trans. degQ Q(s1, s2, s3, s4) = 3.

Example 4. The transcendental numbers

s1 =
∞∏
k=1

(
1− 1

L6k

)
, s2 =

∞∏
k=1

(
1 +

1

L6k

)
, s3 =

∞∏
k=1

(
1 +

2

L6k

)
,

s4 =
∞∏
k=1

(
1 +

√
3

L6k

)
, s5 =

∞∏
k=1

(
1−

√
3

L6k

)



6 H. KANEKO, T. KUROSAWA, Y. TACHIYA, AND T. TANAKA

satisfy

s1s2s3s
−1
4 s−1

5 =

√
5

2
,

while trans. degQ Q(s1, s2, s3, s4, s5) = 4.

Example 5. The transcendental numbers

si =
∞∏
k=1

(
1 +

ai
L4k

)
(i = 1, . . . , 8),

where

a1 = −(ζ116 + ζ1516 ), a2 = −(ζ516 + ζ1116 ), a3 = −(ζ716 + ζ916), a4 = −(ζ364 + ζ6164 ),

a5 = −(ζ1364 + ζ5164 ), a6 = −(ζ1964 + ζ4564 ), a7 = −(ζ2964 + ζ3564 ), a8 = 2,

satisfy

s1s2 · · · s7s−2
8 =

25

7(7−
√
2−

√
2)
,

while trans. degQ Q(s1, s2, . . . , s8) = 7.

Example 6. The transcendental numbers

si =
∞∏
k=1

(
1 +

ai
L4k

)
(i = 1, . . . , 10),

where

a1 = −3

2
, a2 =

√
7

2
, a3 =

3

2
, a4 = −

√
7

2
, a5 =

31

16
,

a6 = − 4√
5
, a7 =

2√
5
, a8 =

4√
5
, a9 = − 2√

5
, a10 =

14

25
,

satisfy

s1s2s3s4s
−1
5 s−1

6 s−1
7 s−1

8 s−1
9 s10 =

3024

3575
,

while trans. degQ Q(s1, s2, . . . , s10) = 9.

The proofs of Theorems 1.1 and 1.3 will be given in Section 5.

2. Functional equations

In this section, we explain the Mahler’s method mentioned in the in-

troduction. Let K be an algebraic number field, K(z) the field of rational

functions over K, and K[[z]] the ring of formal power series with coeffi-

cients in K. In what follows, let d be an integer greater than 1. We define

the subgroup Hd of the multiplicative group K(z)× of non-zero elements of

K(z) by

(2.1) Hd =

{
g(zd)

g(z)

∣∣∣∣ g(z) ∈ K(z)×
}
.
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The functions c1(z), . . . , cm(z) ∈ K(z)× are called multiplicatively depen-

dent modulo Hd if there exist rational integers e1, . . . , em, not all zero, such

that
m∏
i=1

ci(z)
ei ∈ Hd.

If no such rational integers exist, then the functions c1(z), . . . , cm(z) are said

to be multiplicatively independent modulo Hd.

We use the following lemmas for proving the theorems.

Lemma 2.1 (Kubota [1, Corollary 8]). Let f1(z), . . . , fm(z) ∈ K[[z]] \ {0}
satisfy the functional equations

(2.2) fi(z
d) = ci(z)fi(z), ci(z) ∈ K(z)× (i = 1, . . . ,m).

Then f1(z), . . . , fm(z) are algebraically independent over K(z) if and only if

the rational functions c1(z), . . . , cm(z) are multiplicatively independent mod-

ulo Hd.

Lemma 2.2 (Kubota [1], see also Theorem 3.6.4 in Nishioka [4]). Suppose

that the functions f1(z), . . . , fm(z) ∈ K[[z]] converge in |z| < 1 and satisfy

the functional equations (2.2) with ci(0) ̸= 0. Let γ be an algebraic number

with 0 < |γ| < 1 such that ci(γ
dk) are defined and non-zero for all k ≥ 0.

If f1(z), . . . , fm(z) are algebraically independent over K(z), then the values

f1(γ), . . . , fm(γ) are algebraically independent.

Let {Rn}n≥0 be the sequence {Un}n≥0 or {Vn}n≥0 defined by (1.1). Then

for any non-zero real algebraic numbers a1, . . . , am, we put

Φi(z) =
∞∏
k=0

(
1 +

piz
dk

1 + bz2dk

)
(i = 1, . . . ,m),

where

(2.3) (pi, b) =

{ (
(α− β)ai,−(−1)d

)
if Rn = Un,(

ai, (−1)d
)

if Rn = Vn.

Taking an integer N ≥ 1 such that |Rdk | > max{|a1|, . . . , |am|} for all k ≥ N

and noting that αβ = −1, we have

Φi(α
−dN ) =

∞∏
k=N

(
1 +

piα
−dk

1 + bα−2dk

)

=
∞∏

k=N

(
1 +

pi
αdk + b(−1)dkβdk

)

=
∞∏

k=N

(
1 +

ai
Rdk

)
(i = 1, . . . ,m),
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so that

(2.4)
∞∏
k=0

R
dk

̸=−ai

(
1 +

ai
Rdk

)
= Φi(α

−dN )
N−1∏
k=0

R
dk

̸=−ai

(
1 +

ai
Rdk

)
(i = 1, . . . ,m).

Suppose that the numbers (2.4) are algebraically dependent. Then so

are the values Φ1(α
−dN ), . . . ,Φm(α

−dN ). Since Φ1(z), . . . ,Φm(z) satisfy the

functional equations

(2.5) Φi(z
d) = ci(z)Φi(z), ci(z) =

1 + bz2

1 + piz + bz2
(i = 1, . . . ,m),

the functions Φ1(z), . . . ,Φm(z) are algebraically dependent over K(z) by

Lemma 2.2 with K = Q(α, a1, . . . , am). Then by Lemma 2.1 the ratio-

nal functions c1(z), . . . , cm(z) are multiplicatively dependent modulo Hd,

namely, there exist integers e1, . . . , em, not all zero, and g(z) ∈ K(z)× such

that
∏m

i=1 ci(z)
ei = g(zd)/g(z). Then, renumbering the pi, we may assume

that there exist coprime polynomials A(z), B(z) ∈ K[z] \ {0} such that

(2.6) A(zd)B(z)
k∏

i=1

Pi(z)
ei = (1 + bz2)eA(z)B(zd)

l∏
i=k+1

Pi(z)
ei ,

where k, ei, e are integers with k, ei ≥ 1, e ≥ 0 and Pi(z) = 1 + piz + bz2.

We note that
∑k

i=1 ei = e+
∑l

i=k+1 ei.

We consider the functional equation (2.7) below, which is more gen-

eral than (2.6). Let P (z), Q(z) ∈ C[z] \ {0} be coprime polynomials with

degP (z)Q(z) > 0 satisfying

(2.7) A(zd)B(z)P (z) = A(z)B(zd)Q(z),

where d ≥ 2 is an integer and A(z), B(z) ∈ C[z] \ {0} are coprime. Note

that the degrees of P (z) and Q(z) are not necessarily the same.

Let θ be a complex number and {θn}n≥1 a sequence of non-real numbers.

We call {θn}n≥1 a compatible non-real sequence of roots of θ if θd1 = θ,

θdn+1 = θn for any n ≥ 1, and if the set {θn | n ≥ 1} is infinite. In particular,

we have θd
n

n = θ for any n ≥ 1.

Lemma 2.3. Assume that P (z) and Q(z) satisfy (2.7). Let θ ∈ C.
(i) Suppose that there exists a compatible non-real sequence {θn}n≥1 of

roots of θ satisfying Q(θn) ̸= 0 (resp. P (θn) ̸= 0) for any n ≥ 1.

Then A(θ) ̸= 0 (resp. B(θ) ̸= 0).

(ii) Let l be a positive integer. Assume that Q(θd
n
) ̸= 0 for any n with

1 ≤ n ≤ l and that B(θd) = 0. Then we have B(θd
n
) = 0 for any n

with 1 ≤ n ≤ l + 1.
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(iii) Suppose that Q(θd
n
) ̸= 0 for any n ≥ 1 and that the set {θdn | n ≥

1} is infinite. Then B(θd) ̸= 0.

Proof. For the proof of statement (i) we only check the case of

(2.8) Q(θn) ̸= 0 (n ≥ 1)

since that of P (θn) ̸= 0 (n ≥ 1) is proved by the symmetry of (2.7). Suppose

on the contrary that A(θ) = 0. By (2.8) and the fact that A(z) and B(z)

are coprime, B(θ)Q(θ1) ̸= 0. Thus, substituting z = θ1 into (2.7), we get

A(θ1) = 0 because θd1 = θ. Next we suppose that A(θn) = 0 for some n ≥ 1.

In the same way as above, B(θn)Q(θn+1) ̸= 0. Since θdn+1 = θn, putting

z = θn+1 into (2.7), we see that A(θn+1) = 0. Hence A(θn) = 0 for any

n ≥ 1, which is impossible since the set {θn | n ≥ 1} is infinite and A(z) is

a polynomial. This completes the proof of statement (i).

Next we show statement (ii) by induction on n. The case of n = 1 is

trivial. Suppose that B(θd
n
) = 0 for some n with 1 ≤ n ≤ l. Then we have

A(θd
n
)Q(θd

n
) ̸= 0 since A(z) and B(z) are coprime. Thus, substituting

z = θd
n
into (2.7), we get B(θd

n+1
) = 0, and statement (ii) is proved.

Statement (iii) follows from (ii) since B(z) is a polynomial. □

3. The case where P (z) and Q(z) are the products of

quadratic polynomials

Let K ⊂ R be an algebraic number field. In this section, we consider

the special case of P (z) and Q(z) involving (2.6), namely, P (z), Q(z) are

expressed as

P (z) =
s∏

i=1

(1 + piz + bz2), Q(z) =
t∏

j=s+1

(1 + qjz + bz2)(3.1)

with b = ±1 and pi ̸= qj for all i, j and P (z), Q(z) satisfy the functional

equation (2.7) with A(z), B(z) ∈ K[z] \ {0}. Note that p1, . . . , ps are not

necessarily distinct and so are qs+1, . . . , qt. First we show b = 1 in Lemma

3.2 below, and then we investigate the properties of P (z) and Q(z) under

the different situations (see Subsections 3.1 and 3.2).

Suppose that P (z)Q(z) has real roots. Let α1 be one of the real roots

of P (z)Q(z) with the largest absolute value among its real roots, namely,

α1 ∈ R satisfies P (α1)Q(α1) = 0 and

(3.2) |α1| = max{ |γ| | γ ∈ R, P (γ)Q(γ) = 0}.

Then, exchanging A(z) and B(z) in (2.7) if necessary, we may assume that

P (α1) = 0.
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Then by (3.1), β1 := (bα1)
−1 satisfies P (β1) = 0 and the absolute value of

β1 is the smallest among those of the real roots of P (z)Q(z). Comparing

the orders at z = 1 of both sides of (2.7), we obtain P (1)Q(1) ̸= 0, which

yields α1, β1 ̸= 1.

Lemma 3.1. Let P (z) and Q(z) be polynomials of the form (3.1) which sat-

isfy (2.7). If the roots of P (z)Q(z) are real, then A(z)B(z) has no negative

root.

Proof. For any negative number θ, there exists a compatible non-real se-

quence {θn}n≥1 of roots of θ. We see that P (θn)Q(θn) ̸= 0 for any n ≥ 1

by the assumption of the lemma. Thus A(θ)B(θ) ̸= 0 by statement (i) of

Lemma 2.3. Since θ is any negative number, the lemma is proved. □

Lemma 3.2. If b = −1, then there are no polynomials A(z) and B(z) of

the form (3.1) which satisfy (2.7).

Proof. Since b < 0, the roots of P (z)Q(z) are real. By the definition of

α1 and β1, we have α1β1 = −1. Hence we have α1 < −1 or −1 < β1 < 0

because α1, β1 ̸= 1. Suppose that α1 < −1. Then we see that Q(αdn

1 ) ̸= 0 for

any n ≥ 1 by (3.2). Substituting z = α1 into (2.7), we get A(α1)B(αd
1) = 0,

which is a contradiction since A(α1) ̸= 0 by Lemma 3.1 and B(αd
1) ̸= 0 by

statement (iii) of Lemma 2.3. Similarly we deduce a contradiction also in

the case of −1 < β1 < 0, using the fact that |β1| is the smallest modulus

among the roots of P (z)Q(z). □

By Lemma 3.2, we have b = 1. Hence we only have to consider the

equation

(3.3) A(zd)B(z)P (z) = A(z)B(zd)Q(z),

where A(z), B(z) ∈ K[z] \ {0} are coprime and

P (z) =
s∏

i=1

(1 + piz + z2), Q(z) =
t∏

j=s+1

(1 + qjz + z2)

with pi ̸= qj for all i, j.

3.1. The case where d = 2 and P (z)Q(z) has real roots. In this sub-

section, we consider the equation (3.3) with d = 2 and P (z)Q(z) has real

roots.

Lemma 3.3. Let P (z) and Q(z) be polynomials satisfying (3.3) with d = 2.

Suppose that P (z)Q(z) has a real root α1 < 0 with (3.2). Then α1 = −1.
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Proof. First we note that the non-real roots of P (z)Q(z) are of absolute

value 1, since P (z)Q(z) is the product of quadratic self-reciprocal polynomi-

als. Assume that α1 ̸= −1. Since α1 < 0 and β1 = α−1
1 , we get |α1| > 1 > |β1|

and so Q(α2n

1 ) ̸= 0 for any n ≥ 0 by (3.2) and the fact that P (z) and Q(z)

are coprime. Substituting z = α1 into (3.3), we have A(α1) = 0, because

B(α2
1) ̸= 0 by statement (iii) of Lemma 2.3.

On the other hand, there exists a compatible non-real sequence {θn}n≥1

of roots of α1 by α1 < 0. Hence we see that Q(θn) ̸= 0 for any n ≥ 1 by

|θn| > 1. By statement (i) of Lemma 2.3 we get A(α1) ̸= 0, which is a

contradiction. Therefore α1 = β1 = −1. □

Lemma 3.4. Let P (z) and Q(z) be polynomials satisfying (3.3) with d = 2.

Suppose that P (z)Q(z) has a real root α1 > 0 with (3.2). Then there exist

k ≥ 1 and α, β ∈ R with α1 = α2k and β = α−1 such that P (z), Q(z), and

A(z) are divisible by

(3.4)

(z − α2k)(z − β2k), (z − α)(z − β)
k−1∏
i=0

(z + α2i)(z + β2i),

and
k∏

i=1

(z − α2i)(z − β2i),

respectively.

Proof. In the proof of the lemma, we take the positive 2j-th roots α2−j

1 , β2−j

1

for any integer j ≥ 1. We note that α1 > 1. We first show that A(−α2−j

1 ) ̸= 0

for any j ≥ 1. Suppose on the contrary that A(−α2−j

1 ) = 0 for some j ≥ 1.

Then there exists an integer l ≥ 1 such that, for θ := (−α2−j

1 )2
−l ∈ C \ R,

A(θ2) = 0 and A(θ) ̸= 0 since A(z) is a polynomial. Substituting z = θ

into (3.3) with d = 2, we have Q(θ) = 0, which is impossible by |θ| > 1,

since Q(z) is the product of quadratic self-reciprocal polynomials and so its

non-real roots are of absolute value 1.

Suppose that there exists an integer i ≥ 1 satisfying Q(α2−i

1 ) = 0. Then,

for such an i, we denote the minimal value by k. Otherwise, let k = ∞. We

verify

A(α2−j

1 ) = 0 (0 ≤ j ≤ k − 1)

by induction on j, which implies that k < ∞ since A(z) is a polynomial.

For the case of j = 0 we substitute z = α1 into (3.3) with d = 2. Then

A(α1) = 0 because B(α2
1) ̸= 0 by (3.2) and statement (iii) of Lemma 2.3.

Next we show that A(α2−j

1 ) = 0 for 1 ≤ j ≤ k − 1 under the assumption
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that A(α2−(j−1)

1 ) = 0. Then B(α2−j+1

1 ) ̸= 0 and by the minimality of k we

have Q(α2−j

1 ) ̸= 0. Substituting z = α2−j

1 into (3.3), we obtain A(α2−j

1 ) = 0.

We see that k is the minimal integer such that Q(β2−k

1 ) = 0 since β1 =

α−1
1 and Q(z) is self-reciprocal. In the same way as the preceding paragraph,

we obtain A(β2−j

1 ) = 0 for 0 ≤ j ≤ k − 1. Letting α := α2−k

1 and β :=

α−1 = β2−k

1 , we see that P (z) and A(z) are divisible by the corresponding

polynomials in (3.4). For any 1 ≤ j ≤ k, substituting z = −α2−j

1 into (3.3),

we get Q(−α2−j

1 ) = 0 since A(α2−j+1

1 ) = 0, B(α2−j+1

1 ) ̸= 0, and A(−α2−j

1 ) ̸=
0 by the first paragraph of the proof. Observing that Q(α2−k

1 ) = 0 and that

β1 = α−1
1 and Q(z) is self-reciprocal, we verified the lemma. □

Remark 3.5. Let P (z) and Q(z) be polynomials satisfying (3.3) with d = 2

and α, β as in Lemma 3.4. Then P (z) and Q(z) are divisible by

z2 + bk+2z + 1 and
k+1∏
i=1

(z2 + biz + 1),

respectively, where k ≥ 1 and

b1 = −(α + β) < −2
√

αβ = −2,

b2 = α + β = −b1,

bi = α2i−2

+ β2i−2

= (α2i−3

+ β2i−3

)2 − 2 = b2i−1 − 2 (3 ≤ i ≤ k + 1),

bk+2 = −(α2k + β2k) = −b2k+1 + 2.

3.2. The case where d ≥ 3 or P (z)Q(z) has no real roots. In this sub-

section, we consider the equation (3.3) in the case where d ≥ 3 or P (z)Q(z)

has no real roots. First we treat the latter case. Since P (z)Q(z) is the

product of quadratic self-reciprocal polynomials, the roots of P (z)Q(z) are

included in the set

(3.5) M := {ω ∈ C | |ω| = 1, ω ̸= 1}.

In the case of d ≥ 3 we have the following:

Lemma 3.6. Let P (z) and Q(z) be polynomials satisfying (3.3). If d ≥ 3,

then the roots of P (z)Q(z) are included in M.

Proof. Suppose that P (z)Q(z) has real roots and let α1(̸= 1) be a real root

of P (z) as in (3.2). Assume that α1 ̸= −1. Then we get |α1| > 1 > |β1|. In
the same way as in the proof of Lemma 3.3 we deduce a contradiction by

d ≥ 3 since there exists a compatible non-real sequence {θn}n≥1 of roots of

α1. □
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In any case stated above, the roots of P (z)Q(z) are included in M. In

the next section we investigate such a case for more general polynomials

P (z) and Q(z).

4. The case where P (z)Q(z) has roots included in M

Let P (z) and Q(z) be non-zero coprime polynomials with complex coef-

ficients satisfying (2.7). We note that P (z) and Q(z) are not necessarily the

products of quadratic polynomials. In this section, assume that P (z)Q(z)

has roots included in M. Let α ∈ C with |α| = 1 be the root of P (z)Q(z)

having the smallest positive argument among its roots in M. Without loss

of generality, we may assume that P (α) = 0 and Q(α) ̸= 0. Substituting

z = α into (2.7), we get A(α)B(αd) = 0. Taking a compatible non-real se-

quence {θn}n≥1 of roots of α satisfying 0 < arg(θn) < arg(α) for any n ≥ 1,

we get Q(θn) ̸= 0 and so A(α) ̸= 0 by statement (i) of Lemma 2.3. Therefore

(4.1) B(αd) = 0.

In this section we calculate the factors of B(z), P (z), and Q(z). First we

consider the case where Q(αdm) = 0 for some m ≥ 1, which corresponds

to Lemma 4.1 below. Next we treat the case where Q(αdm) ̸= 0 for any

integer m ≥ 1, which corresponds to Lemma 4.2. We introduce the following

notation. For τ ∈ C with |τ | = 1, put

Θi(τ) = {γ ∈ C | γdi = τ} (i = 0, 1, . . .).

We note that if ±1 ∈ Θi(τ) for some i ≥ 0, then τ = ±1.

Let k ≥ 1 be an integer and Mk(τ) a subset of Θk(τ) satisfying Mk(τ) =

ζdMk(τ). For any given Mk(τ) the following sets are uniquely determined:

Ni(τ) =
{
γdk−i

∣∣∣ γ ∈ Mk(τ)
}
⊂ Θi(τ) (0 ≤ i ≤ k − 1),

Mi(τ) =
{
γ ∈ Θi(τ) | γd ∈ Ni−1(τ)

}
\Ni(τ) (1 ≤ i ≤ k − 1),

Ẽk(τ) =
k∪

i=1

Mi(τ),

and

F̃k(τ) =

{
Ẽk(τ) ∪ {τ} if τ /∈ Ẽk(τ),
Ẽk(τ) \ {τ} otherwise.

We note that

(4.2) N0(τ) = {τ}.

Moreover, we use the notation

N
1/d
i (τ) := {γ ∈ C | γd ∈ Ni(τ)}

in the proof of Lemmas 4.1 and 4.2.
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Let F (τ)(z) be a polynomial defined by

F (τ)(z) =
∏

γ∈M1(τ)

(z − γ) · · ·
∏

γ∈Mk(τ)

(z − γ).

Lemma 4.1. Let P (z) and Q(z) satisfy (2.7). Let α ∈ C with |α| = 1 be

the root of P (z)Q(z) with the smallest positive argument among its roots in

M. Assume that P (α) = 0 and Q(αdm) = 0 for some integer m ≥ 1. Then

there exist k ≥ 1, τ ∈ C with |τ | = 1, and Mk(τ) with τ /∈ Ẽk(τ) such that

P (z) and Q(z) are divisible by F (τ)(z) and z − τ , respectively.

Proof. Let s ≥ 1 be an integer such that Q(αds) = 0 and Q(αdj) ̸= 0 for

j = 0, . . . , s−1. Then we have B(αdj+1
) = 0 for j = 0, . . . , s−1 by (4.1) and

statement (ii) of Lemma 2.3. Putting τ = αds , we have |τ | = 1, B(τ) = 0,

and A(τ) ̸= 0. We give an algorithm how to find Mk(τ), defining Mi(τ) and

Ni(τ) below for i = 1, 2, . . . , k inductively.

Let

B1(z) :=
B(z)

z − τ
∈ C[z] and Q1(z) :=

Q(z)

z − τ
∈ C[z].

Then we get

(4.3) A(zd)B1(z)P (z) = (zd − τ)A(z)B1(z
d)Q1(z).

Define

N1(τ) := {γ ∈ Θ1(τ) | B1(γ) = 0} and M1(τ) := {γ ∈ Θ1(τ) | B1(γ) ̸= 0}.

Note that Θ1(τ) = N1(τ)∪M1(τ) and N1(τ)∩M1(τ) = ϕ. Substituting z =

γ ∈ Θ1(τ) into (4.3), we have B1(γ)P (γ) = 0 because A(γd) = A(τ) ̸= 0.

Hence, putting

B2(z) :=
B1(z)∏

γ∈N1(τ)
(z − γ)

and P1(z) :=
P (z)∏

γ∈M1(τ)
(z − γ)

∈ C[z],

we see

A(zd)

B2(z)
∏

γ∈N1(τ)

(z − γ)

P1(z)
∏

γ∈M1(τ)

(z − γ)

(4.4)

= (zd − τ)A(z)

B2(z
d)

∏
γ∈N1(τ)

(zd − γ)

Q1(z).

Noting that ∏
γ∈N1(τ)

(z − γ)
∏

γ∈M1(τ)

(z − γ) = zd − τ
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and dividing both sides of (4.4) by zd − τ , we get

(4.5) A(zd)B2(z)P1(z) = A(z)B2(z
d)Q1(z)

∏
γ∈N1(τ)

(zd − γ).

If N1(τ) = ϕ, then Θ1(τ) = M1(τ) and hence M1(τ) = ζdM1(τ). Otherwise,

for any γ ∈ N
1/d
1 (τ), we have B1(γ

d) = 0 and hence A(γd) ̸= 0. Then,

substituting z = γ ∈ N
1/d
1 (τ) into (4.5), we have B2(γ)P1(γ) = 0. Define

N2(τ) :=
{
γ ∈ N

1/d
1 (τ)

∣∣∣ B2(γ) = 0
}

andM2(τ) :=
{
γ ∈ N

1/d
1 (τ)

∣∣∣ B2(γ) ̸= 0
}
.

We note that N
1/d
1 (τ) = N2(τ) ∪ M2(τ) and N2(τ) ∩ M2(τ) = ϕ. Hence,

putting

B3(z) :=
B2(z)∏

γ∈N2(τ)
(z − γ)

and P2(z) :=
P1(z)∏

γ∈M2(τ)
(z − γ)

∈ C[z],

we have

A(zd)

B3(z)
∏

γ∈N2(τ)

(z − γ)

P2(z)
∏

γ∈M2(τ)

(z − γ)

(4.6)

= A(z)

B3(z
d)

∏
γ∈N2(τ)

(zd − γ)

Q1(z)
∏

γ∈N1(τ)

(zd − γ).

Dividing both sides of (4.6) by∏
γ∈N2(τ)

(z − γ)
∏

γ∈M2(τ)

(z − γ) =
∏

γ∈N1(τ)

(zd − γ),

we get

A(zd)B3(z)P2(z) = A(z)B3(z
d)Q1(z)

∏
γ∈N2(τ)

(zd − γ).

If N2(τ) = ϕ, then N
1/d
1 (τ) = M2(τ) and hence ζdM2(τ) = M2(τ). Other-

wise, in the same way as above, we have

A(zd)B4(z)P3(z) = A(z)B4(z
d)Q1(z)

∏
γ∈N3(τ)

(zd − γ).

We repeat this process, which terminates in a finite number of steps since

B(z) is a polynomial. Namely, there exists k ≥ 1 such that Nk(τ) = ϕ, and

so N
1/d
k−1(τ) = Mk(τ). This implies Mk(τ) = ζdMk(τ) and

A(zd)Bk+1(z)Pk(z) = A(z)Bk+1(z
d)Q1(z).

Since P (z) and Q(z) are coprime and Q(τ) = 0, we deduce τ /∈ Ẽk(τ). This
completes the proof of the lemma. □
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Lemma 4.2. Let P (z) and Q(z) satisfy (2.7). Let α ∈ C with |α| = 1 be

the root of P (z)Q(z) with the smallest positive argument among its roots in

M. Assume that P (α) = 0 and Q(αdm) ̸= 0 for any integer m ≥ 1. Then

there exist k ≥ 1, τ ∈ C with |τ | = 1, and Mk(τ) with τ ∈ Ẽk(τ) such that

P (z) is divisible by F (τ)(z)/(z − τ).

Proof. We give an algorithm how to find Mk(τ), defining Mi(τ) and Ni(τ)

below for i = 1, 2, . . . , k inductively. We see that B(αdm) = 0 for any m ≥ 1

by (4.1) and statement (ii) of Lemma 2.3. Hence there exist integers r, s with

1 ≤ r < s such that αdr = αds , since B(z) is a polynomial. We take the

smallest l = s− r ≥ 1. Note that B(αdr+1
) = B(αdr+2

) = · · · = B(αds) = 0.

Put τ := αdr = αds . Since Q(τ) ̸= 0, we need the following discussion

different from the proof of Lemma 4.1.

Set

B0(z) := B(z), B1(z) :=
B(z)

z − τ
∈ C[z], and P †

0 (z) := (z − τ)P (z).

For i = 1, . . . , l− 1 we define the sets Ni(τ),Mi(τ) ⊂ Θi(τ) and the polyno-

mials Bi+1(z) and P †
i (z), which are factors of B(z) and (z− τ)P (z), respec-

tively. Hence A(z) and Bi(z) are coprime for i = 0, 1, . . . , l. To proceed the

inductive steps, we simultaneously check the following for i = 0, 1, . . . , l−1.

(i) For any γ ∈ Ni(τ) we have

(4.7) Bi(γ) = 0.

(ii) We have

(4.8) αds−i ∈ Ni(τ).

In particular, Ni(τ) ̸= ϕ.

(iii) It follows that

(4.9) A(zd)Bi+1(z)P
†
i (z) = A(z)Bi+1(z

d)Q(z)
∏

γ∈Ni(τ)

(zd − γ).

Then (4.7) and (4.8) with i = 0 is clear by (4.2). By (2.7) we have

A(zd)B1(z)P
†
0 (z) = A(z)B1(z

d)Q(z)(zd − τ),

which implies (4.9) with i = 0.

Suppose that there exists an integer j with 1 ≤ j ≤ l−1 such that Ni(τ),

Bi+1(z), and P †
i (z) satisfy (4.7), (4.8), and (4.9) for i = 0, 1, . . . , j − 1. Set

Nj(τ) :=
{
γ ∈ N

1/d
j−1(τ)

∣∣∣ Bj(γ) = 0
}

and Mj(τ) :=
{
γ ∈ N

1/d
j−1(τ)

∣∣∣ Bj(γ) ̸= 0
}
.

Then (4.7) holds for i = j. Since N
1/d
j−1(τ) ⊂ Θj(τ) by Nj−1(τ) ⊂ Θj−1(τ),

we get Nj(τ),Mj(τ) ⊂ Θj(τ). For any γ ∈ N
1/d
j−1(τ), we have Bj−1(γ

d) = 0
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by (4.7) with i = j − 1 and so A(γd) ̸= 0 since Bj−1(z) and A(z) are

coprime. Thus, substituting z = γ ∈ N
1/d
j−1(τ) into (4.9) with i = j − 1, we

get Bj(γ)P
†
j−1(γ) = 0. In particular, all the elements of the set Mj(τ) are

the roots of P †
j−1(z). Put

Bj+1(z) :=
Bj(z)∏

γ∈Nj(τ)
(z − γ)

∈ C[z] and P †
j (z) :=

P †
j−1(z)∏

γ∈Mj(τ)
(z − γ)

∈ C[z].

Note that αds−j ∈ N
1/d
j−1(τ) by (4.8) with i = j − 1 and

Bj(z) =
B(z)∏j−1

i=0

∏
γ∈Ni(τ)

(z − γ)
.

Recall that B(αds−j
) = 0. For the proof of (4.8) with i = j, it suffices to

show that αds−j ̸∈ Nh(τ) for any h = 0, 1, . . . , j−1. Suppose on the contrary

that αds−j ∈ Nh(τ) ⊂ Θh(τ). Then αds−j+h
= τ = αds , which contradicts the

minimality of l. Hence we showed (4.8) with i = j. We rewrite (4.9) with

i = j − 1 as

A(zd)

Bj+1(z)
∏

γ∈Nj(τ)

(z − γ)

P †
j (z)

∏
γ∈Mj(τ)

(z − γ)


= A(z)

Bj+1(z
d)

∏
γ∈Nj(τ)

(zd − γ)

Q(z)
∏

γ∈Nj−1(τ)

(zd − γ).

Dividing both sides of this equality by∏
γ∈Nj(τ)

(z − γ)
∏

γ∈Mj(τ)

(z − γ) =
∏

γ∈Nj−1(τ)

(zd − γ),

we get

A(zd)Bj+1(z)P
†
j (z) = A(z)Bj+1(z

d)Q(z)
∏

γ∈Nj(τ)

(zd − γ),

which implies (4.9) with i = j. Therefore, we have defined Ni(τ),Mi(τ),

Bi+1(z), and P †
i (z) for i = 1, . . . , l − 1.

We show that z − τ divides both
∏

γ∈Nl−1(τ)
(zd − γ) and

P †
l−1(z) =

(z − τ)P (z)∏l−1
i=1

∏
γ∈Mi(τ)

(z − γ)
.

First by (4.8) with i = l − 1 we have

(4.10) τ d = αdr+1

= αds−(l−1) ∈ Nl−1(τ).

Hence z−τ divides
∏

γ∈Nl−1(τ)
(zd−γ). Next if P †

l−1(τ) ̸= 0, then τ ∈ Mi(τ) ⊂
Θi(τ) for some i with 1 ≤ i ≤ l − 1 and so τ d

i
= τ , which contradicts the
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minimality of l. Dividing both sides of (4.9) with i = l − 1 by z − τ and

putting Pl−1(z) := P †
l−1(z)/(z − τ), we have

(4.11) A(zd)Bl(z)Pl−1(z) = A(z)Bl(z
d)Q(z)

∏
γ∈Nl−1(τ)

(zd − γ)

z − τ
.

Define

Nl(τ) :=
{
γ ∈ N

1/d
l−1(τ) \ {τ}

∣∣∣ Bl(γ) = 0
}

and

Ml(τ) :=
{
γ ∈ N

1/d
l−1(τ) \ {τ}

∣∣∣ Bl(γ) ̸= 0
}∪

{τ}.

If γ ∈ N
1/d
l−1(τ) \ {τ}, then A(γd) ̸= 0 by (4.7) with i = l − 1. Substituting

z = γ into (4.11), we have Bl(γ)Pl−1(γ) = 0. Hence, putting

Bl+1(z) :=
Bl(z)∏

γ∈Nl(τ)
(z − γ)

∈ C[z] and Pl(z) :=
Pl−1(z)∏

γ∈Ml(τ)\{τ}(z − γ)
∈ C[z]

and dividing both sides of (4.11) by∏
γ∈Nl(τ)

(z − γ)
∏

γ∈Ml(τ)\{τ}

(z − γ) =

∏
γ∈Nl−1(τ)

(zd − γ)

z − τ
,

we have

(4.12) A(zd)Bl+1(z)Pl(z) = A(z)Bl+1(z
d)Q(z)

∏
γ∈Nl(τ)

(zd − γ).

Since τ ∈ N
1/d
l−1(τ) by (4.10), if Nl(τ) = ϕ, then N

1/d
l−1(τ) = Ml(τ) and hence

Ml(τ) = ζdMl(τ). Then we put k = l, which implies the lemma because

Pl(z) =
(z − τ)P (z)∏l

i=1

∏
γ∈Mi(τ)

(z − γ)
∈ C[z].

If Nl(τ) ̸= ϕ, for i (≥ l + 1), we define inductively

Ni(τ) :=
{
γ ∈ N

1/d
i−1(τ)

∣∣∣ Bi(γ) = 0
}
, Mi(τ) :=

{
γ ∈ N

1/d
i−1(τ)

∣∣∣ Bi(γ) ̸= 0
}
,

Bi+1(z) :=
Bi(z)∏

γ∈Ni(τ)
(z − γ)

, and Pi(z) :=
Pi−1(z)∏

γ∈Mi(τ)
(z − γ)

unless Ni−1(τ) is empty. Note that Bi+1(z), Pi(z) ∈ C[z], since for any γ ∈
N

1/d
i−1(τ) we have Bi(γ)Pi−1(γ) = 0 by (4.12) and A(γd) ̸= 0. By the same

way as above, we have

A(zd)Bl+2(z)Pl+1(z) = A(z)Bl+2(z
d)Q(z)

∏
γ∈Nl+1(τ)

(zd − γ).

We repeat this process, which terminates in a finite number of steps since

B(z) is a polynomial. Thus there exists an integer k ≥ l such that

A(zd)Bk+1(z)Pk(z) = A(z)Bk+1(z
d)Q(z)
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and Nk(τ) = ϕ, which implies N
1/d
k−1(τ) = Mk(τ) and hence Mk(τ) =

ζdMk(τ). □

Remark 4.3. The case where τ = −1 and d is even corresponds to Lemma

4.1. The case where τ = −1 and d is odd and that of τ = 1 correspond to

Lemma 4.2. We also note that the case where −1 ∈ F̃k(τ) occurs when d is

even and τ = ±1.

Let H(τ)(z) be a polynomial defined by

H(τ)(z) =
∏

γ∈Nk−1(τ)

(z − γ) · · ·
∏

γ∈N0(τ)

(z − γ),

where Ni(τ) (0 ≤ i ≤ k − 1) are defined in the proof of either Lemma 4.1

or 4.2.

Lemma 4.4. The polynomial B(z) is divisible by H(τ)(z) and by factoring

out we have an equation of the same form as (2.7), namely,

A(zd)B†(z)P †(z) = A(z)B†(zd)Q†(z),

where

P †(z) =
P (z)

F (τ)(z)
, Q†(z) =

Q(z)

z − τ
, and B†(z) =

B(z)

H(τ)(z)

if τ /∈ Ẽk(τ), or

P †(z) =
P (z)

F (τ)(z)/(z − τ)
, Q†(z) = Q(z), and B†(z) =

B(z)

H(τ)(z)

if τ ∈ Ẽk(τ).
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Proof. We see that B(z) is divisible by H(τ)(z) as is shown in the proof of

Lemma 4.1 or 4.2. By the definition of the sets therein, we have

F (τ)(z)(4.13)

=
∏

γ∈Mk(τ)

(z − γ)
∏

γ∈Mk−1(τ)

(z − γ) · · ·
∏

γ∈M1(τ)

(z − γ)

=
∏

γ∈Nk−1(τ)

(zd − γ)
∏

γ∈N1/d
k−2(τ)\Nk−1(τ)

(z − γ) · · ·
∏

γ∈N1/d
0 (τ)\N1(τ)

(z − γ)

=
∏

γ∈Nk−1(τ)

zd − γ

z − γ

∏
γ∈Nk−2(τ)

(zd − γ)
∏

γ∈N1/d
k−3(τ)\Nk−2(τ)

(z − γ)

· · ·
∏

γ∈N1/d
0 (τ)\N1(τ)

(z − γ)

=
∏

γ∈Nk−1(τ)

zd − γ

z − γ

∏
γ∈Nk−2(τ)

zd − γ

z − γ
· · ·

∏
γ∈N0(τ)

zd − γ

z − γ

∏
γ∈N0(τ)

(z − γ)

=
H(τ)(zd)

H(τ)(z)
(z − τ).

Hence the lemma is proved by dividing both sides of (2.7) byH(τ)(z)F (τ)(z) =

H(τ)(zd)(z − τ) in the case of Lemma 4.1 and by H(τ)(z)F (τ)(z)/(z − τ) =

H(τ)(zd) in the case of Lemma 4.2. □

5. Proof of the theorems

Lemma 5.1 (Nishioka [4, Lemma 2.3.3]). Let L be a subfield of C and

suppose that

f(z) ∈ C[[z]] ∩L(z).

If f(z) converges at z = α, then f(α) ∈ L(α).

Proof of Theorem 1.3. First we check the necessary conditions for al-

gebraic dependence. Assume that the values Φ1(α
−dN ), . . . ,Φm(α

−dN ) in

Section 2 are algebraically dependent. Then there exist coprime polynomi-

als A(z), B(z) ∈ K[z] \ {0} satisfying the functional equation (2.6) with

b = 1 by Lemma 3.2. We define P (z) :=
∏k

i=1 Pi(z)
ei and Q(z) :=

(1 + z2)e
∏l

i=k+1 Pi(z)
ei as in (2.6). We note that degP (z) = degQ(z).

If γ ∈ C is a zero of P (z)Q(z), then γ = ±
√
−1 or −(γ+ γ) ∈ {a1, . . . , am}

by (2.3).

First we consider the case of d = 2. If P (z) or Q(z) has a real root,

we take a real root α1 of P (z)Q(z) with the largest absolute value among

its real roots, namely, α1 satisfies (3.2). Exchanging the above definition of

P (z) and Q(z) if necessary, we may assume that P (α1) = 0. If α1 is positive,
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then the case (i) of Theorem 1.3 holds by Lemma 3.4 and Remark 3.5. If

α1 is negative, then we have α1 = −1 by Lemma 3.3, namely, P (−1) = 0.

Thus we see that ai = 2 for some i and the case (ii) of Theorem 1.3 holds

(see the latter case of Remark 1.4).

Next we suppose that P (z)Q(z) has non-real roots, which are included

in the set M defined by (3.5) as is shown in Subsection 3.2. Exchanging the

above definition of P (z) and Q(z) if necessary, we may assume that P (z)

has the non-real root with the smallest positive argument among the roots

of P (z)Q(z) in M. Then the assumptions of either Lemma 4.1 or Lemma

4.2 are satisfied. Putting Ek(τ) := Ẽk(τ) ∪ Ẽk(τ), we have

Ek(τ) = Γ1(τ) ∪ · · · ∪ Γk−1(τ) ∪ Sk(τ),

where Sk(τ) = Mk(τ) ∪ Mk(τ), Λi(τ) = Ni(τ) ∪ Ni(τ) (0 ≤ i ≤ k − 1),

and Γi(τ) = Mi(τ) ∪ Mi(τ) (1 ≤ i ≤ k − 1). Using the conditions on

Mi(τ) (1 ≤ i ≤ k), we see that the assumptions on Ek(τ) stated in the

introduction of this paper are satisfied. In what follows, we show that the set

of the roots of P (z)Q(z) contains Fk(τ). Note that if γ ∈ C is a zero of P (z)

(resp. Q(z)), then γ is also a zero of P (z) (resp. Q(z)). If the assumptions

in Lemma 4.1 are satisfied, then the set of the roots of P (z) (resp. Q(z))

contains Ek(τ) (resp. {τ, τ}). Since P (z) and Q(z) are coprime, τ ̸∈ Ek(τ)
and so Fk(τ) = Ek(τ)∪{τ, τ}. Thus the set of the roots of P (z)Q(z) contains

Fk(τ) in this case. On the other hand, if the assumptions of Lemma 4.2 are

satisfied, then we get Ek(τ) ⊃ {τ, τ} and Fk(τ) = Ek(τ)\{τ, τ}. Moreover,

the set of the roots of P (z) contains Fk(τ). Hence the case (ii) of Theorem

1.3 holds in both cases.

We now consider the case of d ≥ 3. By (2.3) and Lemma 3.2, we get

b = 1 and so d is even. By Lemma 3.6, the roots of P (z)Q(z) are included

in M. By Lemma 4.1 or Lemma 4.2, there exist τ1 ∈ C with |τ1| = 1 and

Ẽk1(τ1) with k1 ≥ 1 such that

(i) τ1 /∈ Ẽk1(τ1) and P (z), Q(z) are divisible by F (τ1)(z), z − τ1, respec-

tively, or

(ii) τ1 ∈ Ẽk1(τ1) and P (z) is divisible by F (τ1)(z)/(z − τ1).

Dividing (2.7) by these terms, by Lemma 4.4 we have

A(zd)B†(z)P †(z) = A(z)B†(zd)Q†(z),

which is the same form as (2.7). For the later convenience, denote η(1)(z) :=

P †(z) and ξ(1)(z) := Q†(z). Since the number of the elements in Ẽk1(τ1)
is not less than d > 2, we have deg η(1)(z) < deg ξ(1)(z). In particular,

deg η(1)(z)ξ(1)(z) > 0. Let α(1) ∈ C with |α(1)| = 1 be the root of η(1)(z)ξ(1)(z)
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having the smallest positive argument among its roots. If ξ(1)(α(1)) ̸= 0, then

η(1)(α(1)) = 0. We apply Lemma 4.4 with P (z) = η(1)(z) and Q(z) = ξ(1)(z).

We write the polynomials corresponding to P †(z) and Q†(z) therein as

η(2)(z) and ξ(2)(z), respectively. Then we see deg η(2)(z) < deg ξ(2)(z). Re-

peating this process, we can define η(i)(z), ξ(i)(z), and α(i) (i = 2, 3, . . .)

inductively whenever ξ(i−1)(α(i−1)) ̸= 0. This process terminates in a finite

number of steps since P †(z) is a polynomial. Thus there exists an integer

k ≥ 1 such that ξ(k)(α(k)) = 0. Since η(k)(z) and ξ(k)(z) are the factors

of P †(z) and Q†(z), respectively, Lemma 4.1 or 4.2 implies the following:

There exist τ2 ∈ C with |τ2| = 1 and Ẽk2(τ2) with k2 ≥ 1 such that

(i) τ2 /∈ Ẽk2(τ2) and Q†(z), P †(z) are divisible by F (τ2)(z), z − τ2, re-

spectively, or

(ii) τ2 ∈ Ẽk2(τ2) and Q†(z) is divisible by F (τ2)(z)/(z − τ2).

We note that τ1 ̸= τ2, since B(τ1) = A(τ2) = 0 and since A(z) and B(z)

are coprime. For j = 1, 2, we put Ekj(τj) := Ẽkj(τj) ∪ Ẽkj(τj). In the same

way as in the case where d = 2 and P (z)Q(z) has non-real roots, we see

that the set of the roots of P (z) (resp. Q(z)) contains Ek1(τ1)\{τ1, τ1} (resp.

Ek2(τ2)\{τ2, τ2}) both in the case of Lemmas 4.1 and 4.2. Since P (z) and

Q(z) are coprime, we obtain

(Ek1(τ1)\{τ1, τ1}) ∩ (Ek2(τ2)\{τ2, τ2}) = ϕ

and so

Fk1(τ1) ∩ Fk2(τ2) ⊂ (Ek1(τ1) ∩ Ek2(τ2)) ∪ {τ1, τ1, τ2, τ2}

⊂ {τ1, τ1, τ2, τ2}.

Hence we obtain the case (iii) of Theorem 1.3.

In what follows, we show that Φ1(α
−dN ), . . . ,Φm(α

−dN ) are algebraically

dependent under the assumption that the case (i), (ii), or (iii) in Theorem

1.3 holds. Recall by (2.3) that pi = ai (i = 1, . . . ,m) and b = 1 since d is

even in every case. It suffices to show that there exist a non-empty subset

I of {1, . . . ,m} and non-zero integers ei (i ∈ I) satisfying

(5.1)
∏
i∈I

ci(z)
ei =

∏
i∈I

(
z2 + 1

z2 + aiz + 1

)ei

∈ Hd,

where Hd is the subgroup of the multiplicative group K(z)× defined by

(2.1), or there exists a g(z) ∈ K(z)× such that∏
i∈I

ci(z)
ei =

g(zd)

g(z)
.
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Here, if z = 0 is a zero or a pole of g(z), then it is a zero or a pole of

g(zd)/g(z), respectively. Hence g(0) ̸= 0 because ci(0) = 1 (i ∈ I). Then

we see by (2.5) that F (z) := g(z)−1
∏

i∈I Φi(z)
ei ∈ K[[z]] satisfies F (zd) =

F (z), which holds only if F (z) = λ ∈ K. In fact, if l (≥ 1) is the lowest

degree of the non-constant terms of F (z), then that of F (zd) is dl, which

contradicts F (zd) = F (z). Hence∏
i∈I

Φi(z)
ei = λg(z) ∈ K[[z]] ∩K(z).

By Lemma 5.1 we have ∏
i∈I

Φi(α
−dN )ei ∈ K,

which implies that Φ1(α
−dN ), . . . ,Φm(α

−dN ) are algebraically dependent and

thus we only have to prove (5.1).

Note that, for any h ≥ 1 and g(z) ∈ K(z)×,

(5.2)
g(zd

h
)

g(z)
=

g(zd)

g(z)

g(zd
2
)

g(zd)
· · · g(zd

h
)

g(zdh−1)
∈ Hd.

If d = 2, then, for the proof of (5.1), it suffices to check that

(5.3)
∏
i∈I

(z2 + aiz + 1)ei ∈ H2

because

(5.4) z2 + 1 =
z4 − 1

z2 − 1
∈ H2.

First we suppose that the case (i) of Theorem 1.3 holds. Since b1 = −b2, we

have

(z2 + b1z + 1)(z2 + b2z + 1) = z4 − (b22 − 2)z2 + 1

and then

(5.5) (z2+ b1z+1)(z2+ b2z+1)
l−1∏
j=3

(z2
j−1

+ bjz
2j−2

+1) = z2
l−1

+ blz
2l−2

+1

by bj = b2j−1 − 2 (j = 3, . . . , l − 1) and bl = −b2l−1 + 2. Thus by (5.2) and

(5.5) we obtain

(z2 + blz + 1)−1

l−1∏
j=1

(z2 + bjz + 1)

=
z2

l−1
+ blz

2l−2
+ 1

z2 + blz + 1

l−1∏
j=3

(
z2 + bjz + 1

z2j−1 + bjz2
j−2 + 1

)
∈ H2,

which implies (5.3).
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Here we suspend the proof of the theorem and investigate the properties

of the sets defined in Section 1. For the later convenience, denote Γk(τ) :=

Sk(τ). Then Ek(τ) = ∪k
i=1Γi(τ).

Lemma 5.2. Let τ ∈ C with |τ | = 1, k ≥ 1, and Sk(τ) ⊂ Ωk(τ) satisfy

(1.4). Suppose that τ ∈ Ek(τ). Then we have

Card{i | 1 ≤ i ≤ k, τ ∈ Γi(τ)} = Card{i | 1 ≤ i ≤ k, τ ∈ Γi(τ)} = 1,

where Card denotes the cardinality.

Proof. Since Γi(τ) = Γi(τ) for i = 1, . . . , k, it suffices to show

(5.6) Card{i | 1 ≤ i ≤ k, τ ∈ Γi(τ)} = 1.

For x, y ∈ C, we write x ∼ y if x = y or if x = y. Noting that τ ∈
Ek(τ) ⊂ ∪k

i=1Ωi(τ), we take l := min{i ≥ 1 | τ di ∼ τ} (≤ k). Suppose that

τ ∈ Γj(τ) ⊂ Ωj(τ) for some j ≥ 1. Put j = ql+r, where q and r are integers

with q ≥ 0 and 0 ≤ r ≤ l − 1. Then we get τ ∼ τ d
j
= τ d

ql+r ∼ τ d
r
and so

r = 0 by the minimality of l. We take b := min{q ≥ 1 | τ ∈ Γql(τ)}. For the
proof of (5.6), it suffices to show that τ ̸∈ Γbl+cl(τ) for any c ≥ 1.

Suppose on the contrary that τ ∈ Γbl+cl(τ). Then τ d ∈ Λbl+cl−1(τ). Note

that for any i, j with i ≥ j, if γ ∈ Λi(τ), then γdi−j ∈ Λj(τ). Thus τ ∼
τ d

cl
= (τ d)d

cl−1 ∈ Λbl(τ). Since Λbl(τ) = Λbl(τ), we obtain τ ∈ Λbl(τ), which

contradicts the fact that Γbl(τ) ∩ Λbl(τ) = ϕ. This completes the proof of

the lemma. □

Put

(5.7) gγ(z) = (z − γ)(z − γ)

for γ ∈ C.

Lemma 5.3. Let τ ∈ C with |τ | = 1, k ≥ 1, and Sk(τ) ⊂ Ωk(τ) satisfy

(1.4). Then there exists a mapping e : Fk(τ) → Z \ {0} such that

(5.8) e(γ) = e(γ)

for any γ ∈ Fk(τ) and

(5.9)
∏

γ∈Fk(τ)

gγ(z)
e(γ) ∈ Hd,

where Hd is the subgroup of K(z)× defined by (2.1). In particular, there

exists an integer p such that

(5.10) (z2 + 1)p
∏

γ∈Fk(τ)\{±
√
−1}

gγ(z)
e(γ) ∈ Hd.
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Proof. It suffices to show (5.9) because g√−1(z) = g−
√
−1(z) = z2 + 1. Set

Λ
1/d
i (τ) = {γ ∈ C | γd ∈ Λi(τ)} for i = 0, 1, . . . , k − 2 and

g(Ek(τ); z) =
∏

γ∈Sk(τ)

gγ(z)
∏

γ∈Γk−1(τ)

gγ(z) · · ·
∏

γ∈Γ1(τ)

gγ(z).

In the same way as (4.13), noting that Sk(τ) = Λ
1/d
k−1(τ) by Sk(τ) = Mk(τ)∪

Mk(τ), Mk(τ) = N
1/d
k−1(τ), and Λk−1(τ) = Nk−1(τ) ∪Nk−1(τ), we see that

g(Ek(τ); z)

=
∏

γ∈Λk−1(τ)

gγ(z
d)

∏
γ∈Λ1/d

k−2(τ)\Λk−1(τ)

gγ(z) · · ·
∏

γ∈Λ1/d
0 (τ)\Λ1(τ)

gγ(z)

=
∏

γ∈Λk−1(τ)

gγ(z
d)

gγ(z)

∏
γ∈Λk−2(τ)

gγ(z
d)

∏
γ∈Λ1/d

k−3(τ)\Λk−2(τ)

gγ(z) · · ·
∏

γ∈Λ1/d
0 (τ)\Λ1(τ)

gγ(z)

=
∏

γ∈Λk−1(τ)

gγ(z
d)

gγ(z)

∏
γ∈Λk−2(τ)

gγ(z
d)

gγ(z)
· · ·

∏
γ∈Λ0(τ)

gγ(z
d)

gγ(z)

∏
γ∈Λ0(τ)

gγ(z).

Since Λ0(τ) = {τ, τ}, we obtain

(5.11) g∗(z) := g(Ek(τ); z)
∏

γ∈{τ,τ}

gγ(z)
−1 ∈ Hd.

Note that for γ ∈ C,

(5.12) γ ∈ Ek(τ) if and only if g(Ek(τ); γ) = 0.

Suppose first that τ ̸∈ Ek(τ). Then (5.7) and (5.11) imply (5.8) and (5.9)

because Fk(τ) = Ek(τ)∪{τ, τ}. Noting that τ ̸∈ Ek(τ) by Ek(τ) = Ek(τ), we
get e(γ) ̸= 0 for any γ ∈ Fk(τ) by (5.12). Next assume that τ ∈ Ek(τ). Then
Lemma 5.2 implies that g∗(z) is a polynomial with g∗(τ) ̸= 0 and g∗(τ) ̸= 0.

Thus (5.7) and (5.11) implies (5.8) and (5.9) by Fk(τ) = Ek(τ)\{τ, τ}.
Moreover, e(γ) ̸= 0 for any γ ∈ Fk(τ) by (5.12). □

Continuation of the proof of Theorem 1.3. Suppose that the case

(ii) of Theorem 1.3 holds. Namely, for any γ ∈ Fk(τ)\{±
√
−1} we have

ai(γ) = −(γ + γ) for some 1 ≤ i(γ) ≤ m. Using (5.4) and (5.10), we obtain∏
γ∈Fk(τ)\{±

√
−1}

(z2 + ai(γ)z + 1)e(γ) ∈ H2, e(γ) ̸= 0,

which implies (5.3) with a non-empty subset I of {1, . . . ,m} and integers

ei (i ∈ I). Note that for γ, η ∈ Fk(τ)\{±
√
−1}, ai(γ) = ai(η) if and only if

γ ∼ η. Moreover, if γ ∼ η, then e(γ) = e(η) by (5.8). Hence ei ̸= 0 for any

i ∈ I.

Next suppose that the case (iii) of Theorem 1.3 holds. Then, for any γ ∈
Fk1(τ1)\ {±

√
−1} (resp. γ ∈ Fk2(τ2)\{±

√
−1}), we have ai(γ) = −(γ + γ)
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for some i(γ) (resp. aj(γ) = −(γ + γ) for some j(γ)). Combining (2.5) and

(5.10), we get

(z2+1)q1
∏

γ∈Fk1
(τ1)\{±

√
−1}

ci(γ)(z)
e(γ) ∈ Hd, (z2+1)q2

∏
γ∈Fk2

(τ2)\{±
√
−1}

cj(γ)(z)
e′(γ) ∈ Hd,

where q1, q2, e(γ) = e(Fk1(τ1); γ), and e′(γ) = e(Fk2(τ2); γ) are integers with

e(γ), e′(γ) ̸= 0.

We show that (5.1) is satisfied with a non-empty subset I of {1, . . . ,m}
and integers ei (i ∈ I). The case where q1 = 0 or q2 = 0 is clear. If q1 ̸= 0

and q2 ̸= 0, then (5.1) follows from∏
γ∈Fk1

(τ1)\{±
√
−1}

ci(γ)(z)
−q2e(γ)

∏
γ∈Fk2

(τ2)\{±
√
−1}

cj(γ)(z)
q1e′(γ) ∈ Hd.

By (5.8), to prove the existence of the subset I such that ei ̸= 0 (i ∈ I), we

only have to show that

(5.13) Fk1(τ1)\{±
√
−1} ̸= Fk2(τ2)\{±

√
−1}.

Suppose on the contrary

(5.14) Fk1(τ1)\{±
√
−1} = Fk2(τ2)\{±

√
−1}.

Thus, using (5.14) and the assumptions on Fki(τi) for i = 1, 2, we get

Eki(τi) ⊂ Fki(τi) ∪ {τi, τi} ⊂ (Fk1(τ1) ∩ Fk2(τ2)) ∪ {τi, τi,
√
−1,−

√
−1}

⊂ {τ1, τ1, τ2, τ2,
√
−1,−

√
−1}.(5.15)

Suppose that there exists an i ∈ {1, 2} such that τi ̸∈ R. Then Eki(τi)
contains at least 2d ≥ 8 elements by (1.4). This contradicts (5.15). Hence

we see τ1, τ2 ∈ {1,−1} by |τ1| = |τ2| = 1 and so τh = −1 for some h ∈ {1, 2}
by τ1 ̸= τ2. Therefore Ekh(−1) ⊂ {1,−1,

√
−1,−

√
−1} by (5.15). Since

Ekh(−1) contains at least d ≥ 4 elements by (1.4), we obtain Ekh(−1) =

{1,−1,
√
−1,−

√
−1}, which is impossible because 1 ̸∈ Ωi(−1) for any i ≥ 1.

This completes the proof of the theorem. □

Proof of Theorem 1.1. If the values Φ1(α
−dN ), . . . ,Φm(α

−dN ) in Section

2 are algebraically dependent, then we see that b = 1 and d is odd by (2.3)

and Lemma 3.2. The theorem can be proved by a similar way to the proof of

Theorem 1.3 only except the following: We show that the sets Fk1(τ1) and

Fk2(τ2) satisfy (5.13). Suppose on the contrary that (5.13) does not hold.

Then

(5.16) Fk1(τ1)\{±
√
−1} = Fk2(τ2)\{±

√
−1}.
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Thus, using (5.16) and the assumptions on Fki(τi) for i = 1, 2, we get

Ski(τi) ⊂ Fki(τi) ∪ {τi, τi} ⊂ (Fk1(τ1) ∩ Fk2(τ2)) ∪ {τi, τi,
√
−1,−

√
−1}

⊂ {τ1, τ1, τ2, τ2,
√
−1,−

√
−1}.(5.17)

Suppose that there exists an i ∈ {1, 2} such that τi ̸∈ R. By the assumptions

on Ski(τi) we see that Ski(τi) contains at least 2d elements. Thus (5.17)

implies that d = 3 and

Ski(τi) = {τ1, τ1, τ2, τ2,
√
−1,−

√
−1}.

Hence we get
√
−1

3ki
= τi or

√
−1

3ki
= τi.

Consequently, we obtain τi =
√
−1 or τi = −

√
−1, and so 6 ≤ CardSk(τi) ≤

4 by (5.17), a contradiction.

We now assume that τ1, τ2 ∈ R. Since |τ1| = |τ2| = 1, (5.17) implies that,

for i = 1, 2,

Ski(τi) ⊂ {1,−1,
√
−1,−

√
−1},

which contradicts the fact that Ski(τi) = ζdSki(τi) since d is odd. This

completes the proof of (5.13) and the theorem is proved. □
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