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ABSTRACT. Let d > 2 be an integer. In [2], the second, third, and fourth
authors gave necessary and sufficient conditions for the infinite products

[T (1) 6=t oo T (155 6t

k=1 k=1
Uk #—a; Vi p#E—ag

to be algebraically dependent, where a,; are non-zero integers and U,, and
V,, are generalized Fibonacci numbers and Lucas numbers, respectively.
The purpose of this paper is to relax the condition on the non-zero
integers a1, ..., a, to non-zero real algebraic numbers, which gives new
cases where the infinite products above are algebraically dependent.

1. INTRODUCTION

Let a and S be real algebraic numbers with |a] > 1 and af = —1.
Then the generalized Fibonacci numbers and Lucas numbers are expressed,

respectively, as

a™ — p"
= P
If @ = (1 ++/5)/2, we have U,, = F,, and V,, = L,, (n > 0), where {F},},>0
and {L,},>o0 are the sequences of Fibonacci numbers and Lucas numbers
defined, respectively, by F,,.o = F,o1 + F, (n > 0), Fy, =0, F; = 1 and
by Lpyo = Lpi1 + Ly, (n > 0), Ly = 2, L; = 1. Let d > 2 be an integer.

In [2], the second, third, and fourth authors gave necessary and sufficient

(1.1) Un, and V,=a"+3" (n>0).

conditions for the infinite products

(1.2) ﬁ <1+(Zk) (i=1,...,m)

2010 Mathematics Subject Classification. Primary 11J85; Secondary 11J81, 11J91.
Key words and phrases. Algebraic dependence, Infinite products, Fibonacci numbers,
Lucas numbers, Mahler’s method.
1



2 H. KANEKO, T. KUROSAWA, Y. TACHIYA, AND T. TANAKA

or
(1.3) ﬁ<1+ ai) (i=1,...,m)
11 Vo
de¢7ai

to be algebraically dependent, where a; are non-zero rational integers. In this
paper, we relax the condition on the non-zero rational integers aq, ..., ay,
to non-zero real algebraic numbers, which gives new cases where the infinite
products (1.2) or (1.3) are algebraically dependent.

The algebraic independency of the infinite products above can be proved
by using Mahler’s method explained in Section 2; thereby, the algebraic de-
pendency of the infinite products (1.3) with non-zero distinct real algebraic
numbers aq, . . ., a,, is reduced to the problem of determining whether the set
of the roots of the quadratic polynomials 2% +a;z+1 (1 <7 < m) and 2°+1
includes subsets described by certain algorithm. If |a;| > 2 (1 <i < m), the
method used in this paper is essentially similar to that of [2] dealt with the
case where aq, . . ., a,, are rational integers. If ay, . . ., a,, are non-zero distinct
real algebraic numbers including those with |a;| < 2, it can arise that the
infinite products (1.3) which were not treated in [2] are algebraically depen-
dent (see Examples 2-6 below). In such a case, we establish the algorithm of
selecting d-th roots to find subsets mentioned above, whose elements distrib-
ute on the unit circle with certain symmetry. For this purpose, Lemmas 4.1
and 4.2 proved in Section 4 play a crucial role. The necessary and sufficient
conditions given in Theorems 1.1 and 1.3 of this paper are useful to obtain
explicit algebraic dependence relations among the infinite products (1.2) or
(1.3), whose transcendence degrees are just one less than the numbers of
the infinite products appearing in each relation (see Examples 1-6 below).

We introduce the following notation which will be needed throughout this
paper. Let d > 2 be a fixed integer. For 7 € C with |7| =1 and i =0,1,.. .,
define Q;(7) := {z eC d
any v € C we denote by 7 the complex conjugate of v. Moreover, for S C C
we denote S = {§ | v € S}. Let (,, = exp(2mv/—1/m). For any fixed
integer k > 1, let Sp(7) be a non-empty subset of {;(7) such that for any

7
Zd =T Orz

= ?}. Here and in what follows, for

v € Sk(7) the numbers {4y and 7 belong to S (7). Namely, Sy (7) satisfies

(1.4) Si(7) = CaSk(T) and  Si(7) = Si(7).

For example, if k =3, d =2, and 7 = 1, we have Q3(1) = { | 0<j < 7}
and we can choose S3(1) = {£(s, £(3}. Note that the following sets are
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determined depending only on Si(7):
Ai(T) = {de_i

D7) ={y € A7) [ 7" € Aia(MI\ A7) (1<i<k—1).

v e Sk(f)} C(r) (0<i<k-—1),

Define

&m:(Un@)U&m

and
E(r)U{r, 7} if 7 ¢ E(7),
fk(T) = { gkgrg \ {{7—, ?}} othefwisé. )

Note that & (7) = S1(7). The main results of this paper are as follows:
Theorem 1.1. Let {U, },>¢ be the sequence defined by (1.1) and d an integer

greater than 1. Let ay,...,a, be non-zero distinct real algebraic numbers.

Then the numbers

1+ Z> 1=1,...,m
I (e ) )
Udkifai
are algebraically dependent if and only if d is odd and there exist 71, 7o € C
with 71 # T, |11| = |12 = 1 and Fy, (11), Fry(12) with ki, ko > 1 such that
Fi, (1) 0 Fry(12) C {71,710, 72, T2} and {aq,...,an} contains
1 _
—a—_ﬁ(V +7)

for all v € (Fi, (1) U Fip(12)) \ {£V -1},

Corollary 1.2. For any integer d > 2 and for any real algebraic number
a # 0, the infinite product

> a
g (1+ Udk)

Udk' #—a

18 transcendental.

This follows from the fact that the algebraic dependence condition of Theo-
rem 1.1 requires two non-empty sets Fy, (11) and Fy, (72). The transcendency
of the numbers such as the infinite products in Corollary 1.2 was shown in

5].

Examples 1-6 below are obtained by using Theorems 1.1 and 1.3 of this
paper. For the details, see [3].
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Example 1. Let a be a non-zero real algebraic number. The transcendental

numbers
d a ad a
— 1 d = 1— —
a= 11 () w0 =T (1)
k=0 k=0
Fak#—a FSk;ﬁa

are algebraically dependent if and only if a = £1/3/5. If a = 1/\/5, then
3132_1 =2+ /5.

Theorem 1.3. Let {V, },>0 be the sequence defined by (1.1) and d an integer
greater than 1. Let ay,...,a, be non-zero distinct real algebraic numbers.

Then the numbers

(1.5) f1(1+;;> (i=1,...,m)

k=0
de #—a;

are algebraically dependent if and only if at least one of the following three
properties is satisfied:
(i) d = 2 and the set {ay,...,an} contains by,..., b (I > 3) with
by < —2 satisfying
by=—by, bj=0b_,—2 (j=3,....01—-1), b =-b,+2.

(ii) d =2 and there exist T € C with |7| = 1 and Fi(7) with k > 1 such
that {ay,...,an} contains

—(y+7)
for all v € Fi(t) \ {£v—1}.

(iii) d > 4 is even and there exist 71, 7o € C with 7y # 7o, |11| = || =1
and Fi, (1), Fry(T2) with ki, ko > 1 such that Fy, (11) N Fiy(12) C

{m,71, 72,2} and {ai,...,an} contains
—(v+7)
for all v € (Fr,(11) U Fry(12)) \ {£vV—1}.

Remark 1.4. In the case of d = 2, putting 71 = (3 = (¢, Si(n) =
{6, G G- @), = = —1, and Si(m) = {V—1,—V~1}, we have Fi(n) =
{6, €2} and Fi(7) = {—1,v/—1,—+/—1}. Hence, using (ii) in Theorem 1.3
and noting that —((s + ¢§) = —1 and —(—1 — 1) = 2, we see that the cor-
responding infinite products (1.5) are algebraic numbers. Indeed, we have

o0

1 ot —1 ad 2 a?+1
l—-— = d 1+— )= .
H( V2k> at+a?+1 o g( +V2k) a?—1

k=1
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Corollary 1.5. Let d > 2 be an integer and a # 0 be a real algebraic number
with (d,a) # (2,-1), (2,2). Then the infinite product

> a
()

de #—a

18 transcendental.

This corollary can be deduced from the following discussion: The case (iii)
of Theorem 1.3 requires two non-empty sets Fi, (71) and Fy,(72). Hence, if
d > 4, the infinite product in the corollary is transcendental. When d = 2,
the case (i) of Theorem 1.3 requires at least three numbers. Therefore only
the case (ii) has a possibility for the infinite product to be algebraic. If the
number of the elements in Fj(7) \ {£+/—1} is at most two, the infinite
product is algebraic as is shown in Remark 1.4 above. The transcendency
of the numbers such as the infinite products in the corollary was shown in

5].

Example 2. Let a # +1,+2 be a real algebraic number. The transcendental
numbers

= a = a
s1 = H <1+L2k) and Sy = H (1_L2k>
k=1 k=1
L2k7é7a L2k¢a
are algebraically dependent if and only if a = £v2. If a = £v/2, then
S§189 = \/5/3

Example 3. The transcendental numbers

- V3 - V3
81:H<1—L—4k>, 82:H<1—|—L—4k),

k=1

satisfy
49
81828384 = ]’

while trans. deggy Q(s1, 52, 83, 54) = 3.

Example 4. The transcendental numbers

a=Il(-g0) w=I(v ) =T (2

k=1
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satisfy
Vb

-1 —
5152835, S5 = 7,

while trans. degQ Q(s1, 52, 83, 54, 85) = 4.

Example 5. The transcendental numbers

= 1 =1,...,8),
s H( +L4k) (i )

k=1

where

a1 = —({ig + (g), az = —({s + (g) as = —({{g + () aa = — (G4 + Cot),
as = —(Cgs + Cox)r a6 = —(Cay + Coa)r a7 = —(G5) + (ir)r as = 2,

satisfy

25
(T—V2-V2)

while trans. degy Q(s1, s2,...,88) = 7.

8189+ -+ S7sg2 =

Example 6. The transcendental numbers

;= 1 =1,...,10),
s=II(1+ ) )

where
a1 = _§ Ao = ﬂ A2 = § as = _ﬂ ar = E
1 27 2 9 5 3 27 4 2 ) 5 167
4 2 4 2 14
g =——=, ar=—F7=, aAg=—F4—=, 0a9=——7—, 0ai9= ——,
6 \/5 7 \/5 8 \/5 9 \/5 10 25
satisfy 2004
313283543515(;187_158_189_1310 = ﬁ,

while trans. degy Q(s1, s2,...,510) = 9.

The proofs of Theorems 1.1 and 1.3 will be given in Section 5.

2. FUNCTIONAL EQUATIONS

In this section, we explain the Mahler’s method mentioned in the in-
troduction. Let K be an algebraic number field, K (z) the field of rational
functions over K, and K|[[z]] the ring of formal power series with coeffi-
cients in K. In what follows, let d be an integer greater than 1. We define
the subgroup H, of the multiplicative group K (z)* of non-zero elements of
K (z) by

(2.1) Hy = {g(zd)

g(2) € K(z)x} .
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The functions ¢;(2),...,cn(2) € K(2)* are called multiplicatively depen-
dent modulo Hy if there exist rational integers ey, ..., e,,, not all zero, such
that

ﬁ Ci(Z)ei < Hd.
i=1

If no such rational integers exist, then the functions ¢;(2), ..., ¢ (z) are said
to be multiplicatively independent modulo H,.

We use the following lemmas for proving the theorems.

Lemma 2.1 (Kubota [1, Corollary 8]). Let fi(2),..., fm(z) € K[[2]] \ {0}
satisfy the functional equations

(2.2) fi(zY) = ci(2)fi(2), c(z) e K(2)* (i=1,...,m).
Then f1(2), ..., fm(z) are algebraically independent over K (z) if and only if

the rational functions c1(2), ..., cn(2) are multiplicatively independent mod-
ulo Hy.

Lemma 2.2 (Kubota [1], see also Theorem 3.6.4 in Nishioka [4]). Suppose
that the functions f1(z2),..., fm(2) € K|[[2]] converge in |z] < 1 and satisfy
the functional equations (2.2) with ¢;(0) # 0. Let v be an algebraic number
with 0 < |y| < 1 such that ¢;(v*) are defined and non-zero for all k > 0.
If f1(2),..., fm(z) are algebraically independent over K (z), then the values
fi(7)s .-y fm(y) are algebraically independent.

Let { R, }n>0 be the sequence {U, }n>0 or {V,, },>0 defined by (1.1). Then

for any non-zero real algebraic numbers aq, ..., a,,, we put
[oe} dk
biz .
@AZ)ZH(l-Fm) (221,...,?71),
k=0
where
. _ ((Oé - 6>aia _<_1)d) Zf Rn = Un;
(23) (P b) = { (as, (~1)7) if R = V.
Taking an integer N > 1 such that |Rg| > max{|a1],...,|an|} forallk > N
and noting that af = —1, we have
o0 p'aidk
q)~<a—dN) _ H <1+2—>
v —2dk
P 1 + ba
- Di
= ] (t+ >
d* —1)d* gd*
11 (s
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so that
[e’s) a N-—1
2.4 14+ ) = @;(a " 1 =1,...,m).
24) I[ ( +de> (™) H ( +de> ((=1-..m)
=0 k=0
deyéfai deyéfai

Suppose that the numbers (2.4) are algebraically dependent. Then so

are the values ®1(a=%"),..., &, (™). Since ®(2),..., P, (2) satisfy the
functional equations
d 1+ b2?
(2.5)  @;(2%) = ¢;(2)P4(2), ci(z) = [
the functions ®4(z),...,®,,(z) are algebraically dependent over K(z) by
Lemma 2.2 with K = Q(«,ay,...,a,). Then by Lemma 2.1 the ratio-
nal functions ¢;(z2),...,c¢,(z) are multiplicatively dependent modulo Hy,
namely, there exist integers e, ..., e, not all zero, and g(z) € K(z)* such
that []7", ci(2)% = g(2%)/g(z). Then, renumbering the p;, we may assume
that there exist coprime polynomials A(z), B(z) € K|[z]\ {0} such that

(2.6) HP (1+b2%) H Pi(z

i=k+1
where k, e;, e are integers with k,e; > 1,e > 0 and Py(z) = 1 + piz + b2
We note that 2% e, =e+ 3

= k+1

We consider the functional equation (2.7) below, which is more gen-
eral than (2.6). Let P(2),Q(z) € Clz] \ {0} be coprime polynomials with
deg P(2)Q(z) > 0 satisfying

(2.7) A(=)B(2)P(z) = A(2) B(2")Q(2),

where d > 2 is an integer and A(z), B(z) € C[z] \ {0} are coprime. Note
that the degrees of P(z) and Q(z) are not necessarily the same.

Let 6 be a complex number and {6, },>1 a sequence of non-real numbers.
We call {6,},>1 a compatible non-real sequence of roots of § if §¢ = 0,
6., =0, for any n > 1, and if the set {6, | n > 1} is infinite. In particular,
we have 09" = 0 for any n > 1.

Lemma 2.3. Assume that P(z) and Q(z) satisfy (2.7). Let 6 € C.

(i) Suppose that there exists a compatible non-real sequence {0, },>1 of
roots of 0 satisfying Q(6,) # 0 (resp. P(0,) # 0) for any n > 1.
Then A(0) # 0 (resp. B(0) # 0).

(ii) Let I be a positive integer. Assume that Q(0Y") # 0 for any n with
1 <n <l and that B(6%) = 0. Then we have B(6%") = 0 for any n
with 1 <n <[+ 1.
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(iii) Suppose that Q(64") # 0 for any n > 1 and that the set {64 | n >
1} is infinite. Then B(6%) # 0.

Proof. For the proof of statement (i) we only check the case of

(2.8) Q0n) #0 (n=1)

since that of P(6,,) # 0 (n > 1) is proved by the symmetry of (2.7). Suppose
on the contrary that A(f) = 0. By (2.8) and the fact that A(z) and B(z)
are coprime, B(0)Q(6,) # 0. Thus, substituting z = 6; into (2.7), we get
A(0;) = 0 because 0 = 6. Next we suppose that A(6,) = 0 for some n > 1.
In the same way as above, B(6,,)Q(0,+1) # 0. Since 6%,, = 6,, putting
2z = Opy1 into (2.7), we see that A(6,.1) = 0. Hence A(f,) = 0 for any
n > 1, which is impossible since the set {6, | n > 1} is infinite and A(z) is
a polynomial. This completes the proof of statement (i).

Next we show statement (ii) by induction on n. The case of n = 1 is
trivial. Suppose that B(6?") = 0 for some n with 1 < n < [. Then we have
A(07)Q(0") # 0 since A(z) and B(z) are coprime. Thus, substituting
z =07 into (2.7), we get B(#¥""") = 0, and statement (ii) is proved.

Statement (iii) follows from (ii) since B(z) is a polynomial. O

3. THE CASE WHERE P(z) AND (J(z) ARE THE PRODUCTS OF
QUADRATIC POLYNOMIALS

Let K C R be an algebraic number field. In this section, we consider
the special case of P(z) and Q(z) involving (2.6), namely, P(z), Q(z) are

expressed as
s t

(31) P(z) =[]t +piz+02"), Q(z)= [ Q@+ qz+02%

i=1 j=s+1
with b = £1 and p; # ¢; for all i,j and P(z), Q(z) satisty the functional
equation (2.7) with A(z), B(z) € K|z] \ {0}. Note that py,...,ps are not
necessarily distinct and so are ¢s.1,...,¢q. First we show b = 1 in Lemma
3.2 below, and then we investigate the properties of P(z) and Q(z) under
the different situations (see Subsections 3.1 and 3.2).

Suppose that P(z)Q(z) has real roots. Let a; be one of the real roots
of P(2)Q(z) with the largest absolute value among its real roots, namely,
a; € R satisfies P(a1)Q(aq) = 0 and

(3.2) lan| = max{ |y| [ v € R, P(y)Q(y) = 0}.

Then, exchanging A(z) and B(z) in (2.7) if necessary, we may assume that

P(Oél) =0.
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Then by (3.1), 81 := (bay)~! satisfies P(3;) = 0 and the absolute value of
f1 is the smallest among those of the real roots of P(z)Q(z). Comparing
the orders at z = 1 of both sides of (2.7), we obtain P(1)Q(1) # 0, which

yields Oél,ﬁl 7é 1.

Lemma 3.1. Let P(z) and Q(z) be polynomials of the form (3.1) which sat-
isfy (2.7). If the roots of P(z)Q(z) are real, then A(z)B(z) has no negative
root.

Proof. For any negative number 6, there exists a compatible non-real se-
quence {6, },>1 of roots of §. We see that P(6,)Q(6,) # 0 for any n > 1
by the assumption of the lemma. Thus A(#)B(#) # 0 by statement (i) of
Lemma 2.3. Since 6 is any negative number, the lemma is proved. O

Lemma 3.2. If b = —1, then there are no polynomials A(z) and B(z) of
the form (3.1) which satisfy (2.7).

Proof. Since b < 0, the roots of P(z)Q(z) are real. By the definition of
aq and (1, we have a8 = —1. Hence we have a; < —1 or —1 < 5; < 0
because ay, 3; # 1. Suppose that a; < —1. Then we see that Q(ad") # 0 for
any n > 1 by (3.2). Substituting z = «a; into (2.7), we get A(a;)B(ad) =0,
which is a contradiction since A(a;) # 0 by Lemma 3.1 and B(a¥) # 0 by
statement (iii) of Lemma 2.3. Similarly we deduce a contradiction also in
the case of —1 < (31 < 0, using the fact that |f;] is the smallest modulus
among the roots of P(2)Q(z). O

By Lemma 3.2, we have b = 1. Hence we only have to consider the

equation
(3.3) A(z)B(2)P(2) = A(2) B(z")Q(=),
where A(z), B(z) € K|[z] \ {0} are coprime and

S

P(z) =[] +pz+7"), Q)= ] 0+g¢z+2"

i=1 j=s+1
with p; # ¢; for all 4, j.

3.1. The case where d =2 and P(z)Q(z) has real roots. In this sub-
section, we consider the equation (3.3) with d = 2 and P(2)Q(z) has real

roots.

Lemma 3.3. Let P(z) and Q(z) be polynomials satisfying (3.3) with d = 2.
Suppose that P(z)Q(z) has a real root ay < 0 with (3.2). Then oy = —1.
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Proof. First we note that the non-real roots of P(2)Q(z) are of absolute
value 1, since P(z)Q(z) is the product of quadratic self-reciprocal polynomi-
als. Assume that a; # —1. Since a; < 0and B, = o', we get |ay| > 1 > |5]
and so Q(a?") # 0 for any n > 0 by (3.2) and the fact that P(z) and Q(z)
are coprime. Substituting z = «; into (3.3), we have A(ay) = 0, because
B(a?) # 0 by statement (iii) of Lemma 2.3.

On the other hand, there exists a compatible non-real sequence {6, },>1
of roots of a; by a3 < 0. Hence we see that Q(6,,) # 0 for any n > 1 by
|0,] > 1. By statement (i) of Lemma 2.3 we get A(ay) # 0, which is a

contradiction. Therefore oy = f; = —1. O

Lemma 3.4. Let P(z) and Q(z) be polynomials satisfying (3.3) with d = 2.
Suppose that P(z)Q(z) has a real root oy > 0 with (3.2). Then there exist
k>1 and o, f € R with o = o and 8 = a! such that P(z), Q(z), and
A(z) are divisible by

k

|
—

(z—a®)(z = %), (z—a)(z—B) [[(z+a)(z+5%),

—

(3.4) L =0
and [ - o®)(z - 87),
i=1
respectively.
Proof. In the proof of the lemma, we take the positive 2/-th roots o2 *, 2
for any integer j > 1. We note that a; > 1. We first show that A(—a2™”) # 0

for any j > 1. Suppose on the contrary that A(—a%fj) = 0 for some 5 > 1.
Then there exists an integer [ > 1 such that, for 6 := (—a2”’)2"" € C\ R,
A(6?) = 0 and A(F) # 0 since A(z) is a polynomial. Substituting z = 6
into (3.3) with d = 2, we have Q(0) = 0, which is impossible by |0] > 1,
since QQ(z) is the product of quadratic self-reciprocal polynomials and so its
non-real roots are of absolute value 1.

Suppose that there exists an integer ¢ > 1 satisfying Q(a%_i) = 0. Then,
for such an i, we denote the minimal value by k. Otherwise, let k = co. We
verify

Ala?)=0 (0<j<k-1)

by induction on j, which implies that k& < oo since A(z) is a polynomial.
For the case of j = 0 we substitute z = «; into (3.3) with d = 2. Then
A(ay) = 0 because B(a?) # 0 by (3.2) and statement (iii) of Lemma 2.3.
Next we show that A(a?’) =0 for 1 < j < k — 1 under the assumption
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that A(a2 “"") = 0. Then B(a2 ™) # 0 and by the minimality of k we
have Q(a?™’) # 0. Substituting z = a2’ into (3.3), we obtain A(a?’) = 0.

We see that k is the minimal integer such that Q(82 ") = 0 since 3, =
oy ' and Q(z) is self-reciprocal. In the same way as the preceding paragraph,
we obtain A(B27) = 0 for 0 < j < k — 1. Letting a := o2 " and 8 =
ot = 27" we see that P(z) and A(z) are divisible by the corresponding
polynomials in (3.4). For any 1 < j < k, substituting z = —a? "’ into (3.3),
we get Q(—a2 ) =0 since A(a2” ) =0, B(a27") #0, and A(—a? ) #
0 by the first paragraph of the proof. Observing that Q(a%fk) = 0 and that

B = a; ' and Q(z) is self-reciprocal, we verified the lemma. U

Remark 3.5. Let P(z) and Q(z) be polynomials satisfying (3.3) with d = 2
and «, § as in Lemma 3.4. Then P(z) and Q(z) are divisible by

k+1
2%+ bpoz +1 and H(22 + bz + 1),

i=1
respectively, where £ > 1 and

by = —(a+p0) <—-2vaf=-2,

by = a+pB=—b,

by = o+ =+ —2=02, -2 3<i<k+1),
bz = —(a” +B%) = b}, +2

3.2. The case where d > 3 or P(z)Q(z) has no real roots. In this sub-
section, we consider the equation (3.3) in the case where d > 3 or P(2)Q(2)
has no real roots. First we treat the latter case. Since P(z)Q(z) is the
product of quadratic self-reciprocal polynomials, the roots of P(z)Q(z) are
included in the set

(3.5) M ={weC||lw=1w#1}.
In the case of d > 3 we have the following:

Lemma 3.6. Let P(z) and Q(z) be polynomials satisfying (3.3). If d > 3,
then the roots of P(2)Q(z) are included in M.

Proof. Suppose that P(z)Q(z) has real roots and let a;(# 1) be a real root
of P(z) as in (3.2). Assume that ay # —1. Then we get |ay| > 1 > |51]. In
the same way as in the proof of Lemma 3.3 we deduce a contradiction by
d > 3 since there exists a compatible non-real sequence {6, },>1 of roots of
Q. |
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In any case stated above, the roots of P(z)Q(z) are included in M. In
the next section we investigate such a case for more general polynomials

P(z) and Q(2).
4. THE CASE WHERE P(z)Q(z) HAS ROOTS INCLUDED IN M

Let P(z) and Q(z) be non-zero coprime polynomials with complex coef-
ficients satisfying (2.7). We note that P(z) and @(z) are not necessarily the
products of quadratic polynomials. In this section, assume that P(z)Q(z)
has roots included in M. Let o € C with |a| = 1 be the root of P(2)Q(z)
having the smallest positive argument among its roots in M. Without loss
of generality, we may assume that P(a) = 0 and Q(«) # 0. Substituting
z = « into (2.7), we get A(a)B(a?) = 0. Taking a compatible non-real se-
quence {0, },>1 of roots of « satisfying 0 < arg(6,,) < arg(a) for any n > 1,
we get Q(6,,) # 0 and so A(a) # 0 by statement (i) of Lemma 2.3. Therefore

(4.1) B(a®) = 0.

In this section we calculate the factors of B(z), P(z), and Q(z). First we
consider the case where Q(a?") = 0 for some m > 1, which corresponds
to Lemma 4.1 below. Next we treat the case where Q(a?") # 0 for any

integer m > 1, which corresponds to Lemma 4.2. We introduce the following

notation. For 7 € C with || = 1, put
O,(r)={yeC|+ =71} (i=0,1,...).

We note that if £1 € ©;(7) for some i > 0, then 7 = +1.
Let k& > 1 be an integer and My(7) a subset of ©(7) satistying My (1) =
CaMy(7). For any given My (7) the following sets are uniquely determined:

Ny(r) = {7dk_i = Mk(f)} cOr) (0<i<k—1),
Mi(r) ={y € 6i(r) | v € Nia(M)}\ Ni(r) (1<i<k—1),

En(r) = U M;(T),

and

O

w(r)U{r} if 7 ¢ gk<7'>,
»(7)\ {7} otherwise.

;r]z
S
Il
—
™

We note that
(4.2) No(1) = {7}
Moreover, we use the notation

N(7) = {y € C |7 € Ni(r)}

2

in the proof of Lemmas 4.1 and 4.2.
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Let F((z) be a polynomial defined by

FO = I G=v- [ G-
YEM; (T) YEMy(T)
Lemma 4.1. Let P(z) and Q(z) satisfy (2.7). Let o € C with |a| = 1 be
the root of P(z)Q(z) with the smallest positive arqgument among its roots in
M. Assume that P(a) = 0 and Q(a®) = 0 for some integer m > 1. Then
there exist k > 1, 7 € C with |7| = 1, and My () with T ¢ E,(t) such that
P(2) and Q(z) are divisible by F(™)(2) and z — 7, respectively.

Proof. Let s > 1 be an integer such that Q(a?) = 0 and Q(a®) # 0 for
j=0,...,5—1. Then we have B(a®" ) =0for j =0,...,s—1by (4.1) and
statement (ii) of Lemma 2.3. Putting 7 = o, we have |7| = 1, B(r) = 0,
and A(7) # 0. We give an algorithm how to find My(7), defining M;(7) and
N;(7) below for i = 1,2,..., k inductively.

Let
Bi(z) i= fﬂ €Clz] and Qi(z) := % € C[2.
Then we get
(4.3) A2 By (2)P(2) = (4 = 7)A(2) By (D) Qu (2).
Define

Ni(7) :={y € ©1(7) | Bi(y) =0} and My(7) :={y € ©:(7) | Bi(y) # 0}.

Note that ©1(7) = Ny(7) UM, (1) and Ny(7) N M,(7) = ¢. Substituting z =
v € O,(7) into (4.3), we have B;i(y)P(y) = 0 because A(y4) = A(r) # 0.
Hence, putting

BI(Z)
H’VGNl(T) (Z - 7)

P ]
and Pj(z) := Moo= € Clz],

By(z) ==

we see

(4.4) A [ Ba(2) T] G- ) [AGe II G-

YEN1(T) YEM:(T)

Noting that

I[ G=» Il G=n=2'~7

~YEN1(T) ~YEM;(T)
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and dividing both sides of (4.4) by 2? — 7, we get
(4.5) A(z")Ba(2)Pi(2) = A(2) Ba(z")@i(2) [ (=" =)
~YEN1(T)

If Ni(7) = ¢, then ©4(7) = M;(7) and hence M, (1) = (4M;(7). Otherwise,
for any v € Nf/d(T), we have Bi(y?) = 0 and hence A(y?) # 0. Then,
substituting z = v € Nll/d(T) into (4.5), we have By(y)Pi(y) = 0. Define

Nao(r) = {5 € NIM(7) | Balr) = 0} and My (r) i= {7 € N(7) | Bat) # 0}
We note that Nll/d(T) = Ny(7) U My(7) and Ny(7) N My(7) = ¢. Hence,
putting

BQ(Z)
HweNg(T)(Z -7)

Bs(z) := and  Py(z) := — € C[z],

we have

(4.6) AN Bsz) T G- | [P II G-

YEN2(T) yEM>(T)

= Al [Bz) [ =)@ [T -

YEN2(T) YEN1(T)
Dividing both sides of (4.6) by
II G=» I == ][] .
1ENS(7) +EMa(r) HEN(7)

we get

A(z)Bs(2)Pa(2) = A(2)Bs(z)Qu(2) J] (= —).

YEN2(7)
If Nao(7) = ¢, then N;/*(7) = My(7) and hence (;Ma(7) = Ma(7). Other-
wise, in the same way as above, we have
Al Bi(2)Ps(2) = A(2)Ba(z)Q1(2) [ "=,
YEN3(T)
We repeat this process, which terminates in a finite number of steps since

B(z) is a polynomial. Namely, there exists k& > 1 such that Ni(7) = ¢, and
SO N,iidl(r) = My(7). This implies My(7) = (4My(7) and

A(2)) B (2) Pi(2) = A(2) B (2)Qu (2).

Since P(z) and Q(z) are coprime and Q(7) = 0, we deduce 7 ¢ &,(7). This
completes the proof of the lemma. O
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Lemma 4.2. Let P(z) and Q(z) satisfy (2.7). Let o € C with || =1 be
the root of P(2)Q(z) with the smallest positive argument among its roots in
M. Assume that P(a) = 0 and Q(a?") # 0 for any integer m > 1. Then
there exist k > 1, 7 € C with |7| = 1, and My(7) with T € E(T) such that
P(2) is divisible by F)(2)/(z — 7).

Proof. We give an algorithm how to find M (7), defining M;(7) and N;(7)
below for i = 1,2, ...,k inductively. We see that B(a®") = 0 for any m > 1
by (4.1) and statement (ii) of Lemma 2.3. Hence there exist integers r, s with
1 < r < s such that o = o, since B(z) is a polynomial. We take the
smallest [ = s —r > 1. Note that B(a? ") = B(a? ") =--- = B(a®) = 0.
Put 7 := o = o?. Since Q(7) # 0, we need the following discussion
different from the proof of Lemma 4.1.
Set
B(z)

Z—T

By(z) :== B(z), Bi(z):= € Clz], and Pl(2):=(z —1)P(2).

Fori=1,...,1—1 we define the sets N;(7), M;(7) C ©;(7) and the polyno-
mials Bj,1(z) and P/ (z), which are factors of B(z) and (z —7)P(z), respec-
tively. Hence A(z) and B;(z) are coprime for ¢ = 0,1,...,1. To proceed the
inductive steps, we simultaneously check the following for + = 0,1,...,[—1.

(i) For any v € N;(7) we have

(4.7) B;(7) = 0.
(ii) We have
(4.8) o e Ny(r).

In particular, N;(7) # ¢.
(iii) It follows that
(4.9)  AGEDBim(2)P(2) = A(2)Bin(z90Q(z) [ ).
YEN;(T)

Then (4.7) and (4.8) with i = 0 is clear by (4.2). By (2.7) we have
A(2")Bi(2) R (2) = A(2) Bi(z1)Q(=2) (=" = 7),

which implies (4.9) with ¢ = 0.
Suppose that there exists an integer j with 1 < j < [—1 such that N;(7),

Bi1(2), and PJ(z) satisfy (4.7), (4.8), and (4.9) for i = 0,1,...,j — 1. Set
Ni(r) = {7 € Ni(r) | Bi(7) =0} and My(r) = {5 € NJ/S(7) | Biy) £ 0}

Then (4.7) holds for i = j. Since leﬁ(T) C ©;(7) by N;_1(1) C O;_1(7),
we get N;(7), M;(1) C ©,(). For any v € leﬁ(T), we have B;_;(y%) = 0
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by (4.7) with i = j — 1 and so A(y?) # 0 since B;j_1(z) and A(z) are
coprime. Thus, substituting z = v € lefcll (1) into (4.9) with i = j — 1, we
get B; (V)P]TA(V) = 0. In particular, all the elements of the set M;(7) are
the roots of PjT_l(z). Put

B;(z) € C[z] and Pl(z):= PjT_l(z)
HyeNj(T)(Z ) ! HyeMj(T)(Z —)
Note that o® ™’ € leﬁ(T) by (4.8) with i = j — 1 and

B(z)
H H'yeN )(Z - ’Y).
Recall that B(a® ) = 0. For the proof of (4.8) with i = j, it suffices to
show that a®” & N, (7) forany h = 0,1,...,5—1. Suppose on the contrary
that a® " € Ny (1) C O4(7). Then a® """ = 7 = o which contradicts the
minimality of /. Hence we showed (4.8) with i = j. We rewrite (4.9) with

Biia(2) == € C[2).

Bj(z) =

1=7—1as

4G [ B T ( =)
= A(2) | Bjz1(z%) H (27 =7) | Q=) (24 = 7).
YEN;(T) YEN;_ 1(7')

Dividing both sides of this equality by
e II == I -

’YENJ‘(T) ’YEMJ'(T) ’YENjfl(T)

we get
A(2) B (2)Pf(2) = A(2)Bin(:9Q(2) [] (=" =),
YEN;(T)
which implies (4.9) with ¢ = j. Therefore, we have defined N;(7), M;(T),
Bi1(2), and P/ () fori=1,...,1—1.
We show that z — 7 divides both HyeNH(T)(Zd — ) and
(z—71)P(2)

Hi;i H’YGMZ'(T) (Z - 7)
First by (4.8) with ¢ = [ — 1 we have

PZT—1(z) =

qr+1 ds—(

(4.10) M=o =" e Ny (7).

Hence z—7 divides HwGNl,l(T)<Zd_7>‘ Next if PlT_l(T) # 0, then T € M;(1) C
O;(7) for some ¢ with 1 < i <1 —1 and so 7¥ = 7, which contradicts the
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minimality of [. Dividing both sides of (4.9) with i = — 1 by z — 7 and
putting P_1(z) := P/ ,(2)/(z — 7), we have

HWEN[,l(T) (Zd - f}/)

zZ—T

(4.11) A(z)Bi(2)Pi-1(2) = A(2) Bi(2")Q(2)

Define

Nir) = {7 e MA@\ 7} | Bily) =0}

and
Mi(r) = {7 e N\ {r} | Bity) 20} Uir:

If v e Nllff(T) \ {7}, then A(y?) # 0 by (4.7) with 4 = [ — 1. Substituting
z =y into (4.11), we have B;(y)P_1(v) = 0. Hence, putting

B(z P_4(z
Bl—i—l(z) — l( ) l 1( )
Hyezvl(f)(z i) HweMz(r)\{T}(z =)
and dividing both sides of (4.11) by

2% —
II ¢-» 11 (z—v)znveNz_lm( 7)’

€ Clz] and F(z) := € C[z]

zZ—T
YEN(T) yeM(T)\{}
we have
(412)  AEYBa(:)R() = A)Ba(90¢) [ " - .
YEN;(T)

Since 7 € Nll_/(lj(T) by (4.10), if N;(7) = ¢, then Nll_/f(T) = M,(7) and hence
M;(1) = (aM;(7). Then we put k = [, which implies the lemma because
z—T1)P(2

ITies H'yEMi(T)<Z =)
If Ni(7) # ¢, for i (> 1+ 1), we define inductively
Nir)i= {7 e NI | Bita) =0}, Mi(r) = {5 € NVi(r) | Baly) £ 0},

BZ(Z) PZ'_1<Z)

HyeNi(T)(Z —-7)’ H'yGMi(T)(Z —)
unless N;_1(7) is empty. Note that B;11(2), P;(z) € C|z], since for any v €
NM(7) we have Bi(7)P_1(y) = 0 by (4.12) and A(y%) # 0. By the same

71—

Bii(z) ==

and P(z) :=

way as above, we have
A Bria(2)Pia (=) = A(2)Bua(z9Q(z) [ "= 7).
'YGNH»l(T)
We repeat this process, which terminates in a finite number of steps since
B(z) is a polynomial. Thus there exists an integer k£ > [ such that

A=) Biss(2)Pel2) = A(2) Bt (2)Q(2)
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and Ni(7) = ¢, which implies N,iﬁ(T) = My(7) and hence M;(T)
Cde(T).

19

O

Remark 4.3. The case where 7 = —1 and d is even corresponds to Lemma

4.1. The case where 7 = —1 and d is odd and that of 7 = 1 correspond to

Lemma 4.2. We also note that the case where —1 € F(7) occurs when d is

even and 7 = +1.

Let H((z) be a polynomial defined by

HO(:)= I G- 1] -

YENK_1(T) YEN(T)

where NV;(7) (0 < i < k — 1) are defined in the proof of either Lemma 4.1

or 4.2.

Lemma 4.4. The polynomial B(z) is divisible by H™)(z) and by factoring

out we have an equation of the same form as (2.7), namely,

A(z") BN (2)PY(2) = A(2) B'(:)Q'(2),

where

Pl = pogy @O =T el BI6) = o
if T ¢ ffk(T), or
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Proof. We see that B(z) is divisible by H(™(z) as is shown in the proof of
Lemma 4.1 or 4.2. By the definition of the sets therein, we have

(4.13)  F7(2)

= JI c=» I G=»- 11 -

YEMy(T) YEMp_1(T) ~YEM;(T)
= JI &=-» I G-»- I ¢-»
VEN—1(7) YENL % (T\Ni_1(7) YN 4 (r)\N1(7)
d
24—
= H R H (2% =) H (z =)
YENk_1(7) YENK-2(7) YEN (D) \Nje—2(7)
I G-
YENy *(T)\N1(7)
28—~ 24—~ 24—~
SR R =
z— z— z—
YEN-1(T) YEN—2(T) YENo(T) YENo(T)
H™(»d
_HOGY
H™(z)

Hence the lemma is proved by dividing both sides of (2.7) by H™ (2)F(")(z) =
H™ (2% (2 — 1) in the case of Lemma 4.1 and by H™ (2)F()(2)/(z — 7)
H™(z%) in the case of Lemma 4.2.

O

5. PROOF OF THE THEOREMS

Lemma 5.1 (Nishioka [4, Lemma 2.3.3]). Let L be a subfield of C and
suppose that

f(z) € ClIZlI N L(2).
If f(z) converges at z = «, then f(«a) € L(a).

Proof of Theorem 1.3. First we check the necessary conditions for al-
gebraic dependence. Assume that the values ®;(a~4"),..., ®,n(a~%") in
Section 2 are algebraically dependent. Then there exist coprime polynomi-
als A(z), B(z) € K|z] \ {0} satisfying the functional equation (2.6) with
b = 1 by Lemma 3.2. We define P(z) := HlePi(z)ei and Q(z) =
(14 22)° Hli:kHPZ-(z)ei as in (2.6). We note that deg P(z) = degQ(z).
If v € Cis a zero of P(2)Q(2), then v = £v/~1 or —(v+7) € {ai,...,amn}
by (2.3).

First we consider the case of d = 2. If P(z) or (z) has a real root,
we take a real root oy of P(z)Q(z) with the largest absolute value among
its real roots, namely, oy satisfies (3.2). Exchanging the above definition of

P(z) and Q(2) if necessary, we may assume that P(a;) = 0. If o is positive,
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then the case (i) of Theorem 1.3 holds by Lemma 3.4 and Remark 3.5. If
oy is negative, then we have o = —1 by Lemma 3.3, namely, P(—1) = 0.
Thus we see that a; = 2 for some ¢ and the case (ii) of Theorem 1.3 holds
(see the latter case of Remark 1.4).

Next we suppose that P(z)Q(z) has non-real roots, which are included
in the set M defined by (3.5) as is shown in Subsection 3.2. Exchanging the
above definition of P(z) and Q(z) if necessary, we may assume that P(z)
has the non-real root with the smallest positive argument among the roots
of P(2)Q(z) in M. Then the assumptions of either Lemma 4.1 or Lemma
4.2 are satisfied. Putting & (7) := E,(7) U Ek(7), we have

E(T) =T1(1)U---UT_1(7) U Sk(7),

where Si(7) = M(7) U Mg(7), Ai(7) = Ni(1) UN;(7) (0 <@ < k—1),
and I';(7) = M;(7) U M;(7) (1 < ¢ < k —1). Using the conditions on
M;(1) (1 < i < k), we see that the assumptions on & (7) stated in the
introduction of this paper are satisfied. In what follows, we show that the set
of the roots of P(z)Q(z) contains F (7). Note that if v € C is a zero of P(z)
(resp. Q(z)), then 7 is also a zero of P(z) (resp. Q(z)). If the assumptions
in Lemma 4.1 are satisfied, then the set of the roots of P(z) (resp. Q(2))
contains & (7) (resp. {7,7}). Since P(z) and Q(z) are coprime, 7 & E(7)
and so Fy(7) = E(7)U{7, T}. Thus the set of the roots of P(2)Q(z) contains
Fi(7) in this case. On the other hand, if the assumptions of Lemma 4.2 are
satisfied, then we get & (1) D {7,7} and Fi(7) = E(7)\{7,7}. Moreover,
the set of the roots of P(z) contains Fj(7). Hence the case (ii) of Theorem
1.3 holds in both cases.

We now consider the case of d > 3. By (2.3) and Lemma 3.2, we get
b =1 and so d is even. By Lemma 3.6, the roots of P(z)Q(z) are included
in M. By Lemma 4.1 or Lemma 4.2, there exist 7y € C with |7;| = 1 and
&, (11) with k; > 1 such that

(i) 71 ¢ &, (1) and P(2),Q(2) are divisible by F(™)(z), z — 71, respec-
tively, or
(i) 7 € &, (71) and P(z) is divisible by F(™)(2)/(z — ).

Dividing (2.7) by these terms, by Lemma 4.4 we have

A(z")B1(2)P'(2) = A(2) B'(:))Q"(»),

which is the same form as (2.7). For the later convenience, denote " (z) :=
Pt(z) and €M (2) := QY(2). Since the number of the elements in &, (1)
is not less than d > 2, we have degn™(z) < degéW(z). In particular,
deg ™M (2)¢M(z) > 0. Let oY) € C with |aM| = 1 be the root of nM) (2)¢W(2)
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having the smallest positive argument among its roots. If £ (a(l)) # 0, then
M (aM) = 0. We apply Lemma 4.4 with P(z) = nM(2) and Q(z) = €W (2).
We write the polynomials corresponding to PT(z) and QT(z) therein as
n®(z) and @) (2), respectively. Then we see degn®(z) < degé®@(z). Re-
peating this process, we can define 7 (z),£@(2), and o (i = 2,3,...)
inductively whenever £~V (a("=1) #£ 0. This process terminates in a finite
number of steps since P'(z) is a polynomial. Thus there exists an integer
k > 1 such that £®(a®) = 0. Since ™ (2) and £®(z) are the factors
of PT(z) and Q'(2), respectively, Lemma 4.1 or 4.2 implies the following:
There exist 7, € C with |75| = 1 and &, (72) with ky > 1 such that

(i) 7 ¢ &, () and Qf(2), P1(2) are divisible by F(™)(2), 2z — 7, re-

spectively, or

(ii) 7 € &, (2) and Qf(2) is divisible by F(™)(2)/(z — 7).
We note that 7 # 7, since B(7y) = A(m2) = 0 and since A(z) and B(z)
are coprime. For j = 1,2, we put & (7;) := ékj(Tj) U m In the same
way as in the case where d = 2 and P(z)Q(z) has non-real roots, we see
that the set of the roots of P(z) (resp. Q(z)) contains &, (71)\{71, 71} (resp.
Ek, (12)\{72,72}) both in the case of Lemmas 4.1 and 4.2. Since P(z) and
Q(z) are coprime, we obtain

(ks (1) \{71,71}) N (€ (2)\ {72, T2}) = ¢

and so

"Tkl (Tl) N ‘Fk2 (T2) - (gkl (Tl) N gkz(TQ)) U {7_1’7__17 7_277__2}

- {7-177—_177—2a7—_2}'

Hence we obtain the case (iii) of Theorem 1.3.

In what follows, we show that ®1(a=4"),..., ®,,(a~%") are algebraically
dependent under the assumption that the case (i), (ii), or (iii) in Theorem
1.3 holds. Recall by (2.3) that p; = a; (i = 1,...,m) and b = 1 since d is
even in every case. It suffices to show that there exist a non-empty subset

I of {1,...,m} and non-zero integers e; (i € I) satisfying
22+1 “

5.1 (2)5 = 2T ) emy,

5.0 [Tt g(%mzﬂ) ;

where H, is the subgroup of the multiplicative group K(z)* defined by
(2.1), or there exists a g(z) € K(z)* such that

[Leio) =220

9(2)
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Here, if z = 0 is a zero or a pole of g(z), then it is a zero or a pole of
g(2%)/g(2), respectively. Hence g(0) # 0 because ¢;(0) = 1 (i € I). Then
we see by (2.5) that F(z) := g(z) ' [[;c; Pi(2)% € K[[z]] satisfies F(z%) =
F(z), which holds only if Fi(z) = A € K. In fact, if [ (> 1) is the lowest
degree of the non-constant terms of F(z), then that of F(z?) is dI, which
contradicts F'(z?) = F(z). Hence
[[2i2) 9(z) € K[[2]] N K(z).
el
By Lemma 5.1 we have
[[@ia ") e K,
iel
which implies that &, (o~ %), ..., ®,,(a~*") are algebraically dependent and
thus we only have to prove (5.1).

Note that, for any h > 1 and g(z) € K(z)*,

dh d? dh

52 o) g g o)
9(z)  9(z) 9(z9)  g(z""")
If d = 2, then, for the proof of (5.1), it suffices to check that
(5.3) [z +aiz+ 1) € Hy
iel
because
4
9 2 =1
(5.4) z+1_z2_1€H2.
First we suppose that the case (i) of Theorem 1.3 holds. Since by = —by, we
have
(2 4+ bz +1) (22 bz +1) =2 — (b3 —-2)22+1

and then

- 2l2

-1
(55) (Z2+biz+1)(22+boz+1) [[ (2 +0;27 7 +1) =22 +h22 41
7j=3

by b; = 55_1 —2(j=3,...,1—1) and b = —b? | + 2. Thus by (5.2) and
(5.5) we obtain
-1
(2* + bz +1) 1Hz + bz +1
7j=1
=

2171 212 2
z + bz 2+ bjz+1
= : H J—1 J—2 €H2’
z2+blz+1 P 2P 4 b;2Y T + 1

which implies (5.3).
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Here we suspend the proof of the theorem and investigate the properties
of the sets defined in Section 1. For the later convenience, denote I'y(7) :=
Sk(7). Then &,(7) = UL T(7).

Lemma 5.2. Let 7 € C with |7| = 1, k > 1, and Sk(1) C Qu(7) satisfy
(1.4). Suppose that T € E,(T). Then we have

Card{i | 1<i<k teTy(r)} = Card{i|1<i<k 7eli(r)}=1,

where Card denotes the cardinality.

Proof. Since I';(7) = I';(7) for i = 1,..., k, it suffices to show
(5.6) Card{i | 1 <i<k, Teliy(n)} =1

For z,y € C, we write x ~ y if x = y or if T = y. Noting that 7 €
En(T) C U Q4(7), we take [ := min{i > 1| 7% ~ 7} (< k). Suppose that
T e I'j(1) C Q;(7) for some j > 1. Put j = ¢gl+7, where ¢ and r are integers
with ¢ > 0 and 0 < r <[ — 1. Then we get 7 ~ ¥ = 747 L 747 and so
r = 0 by the minimality of [. We take b := min{qg > 1|7 € I';(7)}. For the
proof of (5.6), it suffices to show that 7 & L'y (7) for any ¢ > 1.

Suppose on the contrary that 7 € (7). Then 7¢ € Ay y_1(7). Note
that for any 4,7 with i > j, if v € Ay(7), then 4%’ € A;(7). Thus 7 ~
74 = (714" € Ay (7). Since Ay (1) = Ay(7), we obtain 7 € Ay(7), which
contradicts the fact that I'y(7) N Ay(7) = ¢. This completes the proof of

the lemma. O

Put
(5.7) 91(2) = (z=7)(z=7)
for v € C.

Lemma 5.3. Let 7 € C with |7| = 1, k > 1, and Sk(1) C Qu(7) satisfy
(1.4). Then there exists a mapping e : Fi(7) — Z \ {0} such that

(5.8) e(y) = e(¥)

for any v € F(1) and

(5.9) II 9" € H,,
YEF(T)

where Hy is the subgroup of K(z)* defined by (2.1). In particular, there

exists an integer p such that

(5.10) (22 +1)P 11 9,(2)°) € Hy.
YEF(T\{EVT}
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Proof. It suffices to show (5.9) because g —(z) = g_=1(2) = 2* + 1. Set
Ai/d<7') ={yeC|~y?eA(r)} fori=0,1,...,k—2 and
H 9+(2) H 9+(2 H 94(2
YESK(T) YET,—1(7) Y€T1(7)

In the same way as (4.13), noting that Si(7) = Ak/_d1 (1) by Sk(T) = Mi(T)U
My(1), My(7) = N,idl(r), and Ag_1(7) = Ng_1(7) U Np_1(7), we see that

9(Ex(7); 2)

= Il ¢ II o II &
YA e S\ e (A ()

= H g H 9y (2 H gy(2) -+ H 9+(2)
veinn ) i TEN G\ 2(T) A TP\ ()

9,(2%) g

SRR I e

yeAk-1(r) TV yeo(r) 7T veMo(r) TN yeho(r)

Since Ao(7) = {7, 7}, we obtain

(5.11) g°(2) = g(&(r);2) ] 9,(2)7" € Ha
ve{r7}

Note that for v € C,

(5.12) v € E(7) if and only if g(E(7);y) = 0.

Suppose first that 7 € Ex(7). Then (5.7) and (5.11) imply (5.8) and (5.9)
because Fi (1) = E (1)U {7, 7}. Noting that 7 ¢ E.(7) by E(1) = E(7), we
get e(y) # 0 for any v € Fr(7) by (5.12). Next assume that 7 € & (7). Then
Lemma 5.2 implies that ¢*(z) is a polynomial with g*(7) # 0 and g*(7) # 0.
Thus (5.7) and (5.11) implies (5.8) and (5.9) by Fi(7) = & (7)\{7,7}.
Moreover, e(y) # 0 for any v € Fi(7) by (5.12). d

Continuation of the proof of Theorem 1.3. Suppose that the case
(ii) of Theorem 1.3 holds. Namely, for any v € Fr(7)\{£+v/—1} we have
ai(yy = — (v +7) for some 1 < i(y) < m. Using (5.4) and (5.10), we obtain

H (22 + @iz + 1)° € Hy, e(y) # 0,
YEFR(T\{£V-1}
which implies (5.3) with a non-empty subset I of {1,...,m} and integers
e; (i € I). Note that for v,n € Fp(7)\{£V—1}, i) = @i if and only if
v ~ n. Moreover, if v ~ 7, then e(y) = e(n) by (5.8). Hence e; # 0 for any
1e 1.
Next suppose that the case (iii) of Theorem 1.3 holds. Then, for any v €

Fie (0)\ {£V/=1} (resp. v € Fi, (12)\{£v/=1}), we have a;;) = —(7 +7)
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for some i(7) (resp. ajy = —(y +7) for some j(7)). Combining (2.5) and
(5.10), we get

40 [ ™ eHs,  Erne J] amk)? e H,,
YEFy, (T1)\{£V-1} YEFy (T2)\{£V-T1}

where g1, g2, €(7) = e(Fiy (1);7), and ¢'(7) = e(Fy, (72); 7) are integers with

e(v), ¢'(v) # 0.
We show that (5.1) is satisfied with a non-empty subset I of {1,...,m}

and integers e; (i € I). The case where ¢ = 0 or g = 0 is clear. If ¢; # 0
and g # 0, then (5.1) follows from

H City) (2) 720 H ¢jin (2)"¢) € Hy.
VEFk, (T)\{£V -1} VEFky (r2)\{£V =1}

By (5.8), to prove the existence of the subset I such that e; # 0 (i € I), we
only have to show that

(5.13) Fi ()\{EV -1} # Fip () \{£V -1}
Suppose on the contrary
(5.14) Fiy () \{£V =1} = Fi, () \{£V~1}.

Thus, using (5.14) and the assumptions on Fy, (7;) for i = 1,2, we get

gkz(TZ> - fk2<7—l) U {T%Fi} - (‘Fkl (Tl) n sz(TQ)) U {7_1'7?2'7 \/__7 _\/__1}
(515) C {’7'1,7'—177'2,7'_2, \/—_,—\/—_1}

Suppose that there exists an i € {1,2} such that 7; ¢ R. Then &, (1)
contains at least 2d > 8 elements by (1.4). This contradicts (5.15). Hence
we see 71, T € {1, —1} by |7| = || =1 and so 7, = —1 for some h € {1,2}
by 71 # 7. Therefore &, (—1) C {1,—1,v/=1,—v/—1} by (5.15). Since
&k, (—1) contains at least d > 4 elements by (1.4), we obtain &, (—1) =
{1,—1,v/—1, —/—1}, which is impossible because 1 ¢ Q;(—1) for any i > 1.
This completes the proof of the theorem. O

Proof of Theorem 1.1. If the values ®;(a~%"),..., ®,,(a~%") in Section
2 are algebraically dependent, then we see that b = 1 and d is odd by (2.3)
and Lemma 3.2. The theorem can be proved by a similar way to the proof of
Theorem 1.3 only except the following: We show that the sets Fy, (m1) and
Fi, (1) satisty (5.13). Suppose on the contrary that (5.13) does not hold.
Then

(5.16) Fia ()\{£V =1} = Fiy () \ {£V-1}.
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Thus, using (5.16) and the assumptions on Fy, (7;) for i = 1,2, we get
Sk‘z(TZ> - ]:kz(Tl) U {Tivfi} - (fkl(Tl) n ‘Fk2(7_2)) U {Tiﬂfi’ V=1, —v _1}
(517) C {7'1,7'_177'2,7'_2, V —17—\/—1}.

Suppose that there exists an i € {1,2} such that 7; ¢ R. By the assumptions
on Sk, (7;) we see that S, (7;) contains at least 2d elements. Thus (5.17)
implies that d = 3 and

Skz(Tz) - {7—177-_17 7—277—_27 \% _17 -V _]-}
Hence we get

k; k;
\/—13 = T; Or \/—13 =T.

Consequently, we obtain 7; = v/—1 or 7; = —v/—1, and so 6 < CardSk(7;) <
4 by (5.17), a contradiction.

We now assume that 7, 75 € R. Since |71| = |72| = 1, (5.17) implies that,
fori=1,2,

Si (1) € {1, —1,v/—1, —/—1},

which contradicts the fact that Sk, (7;) = (4Sk(7:) since d is odd. This
completes the proof of (5.13) and the theorem is proved. i
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