ALGEBRAIC INDEPENDENCE OF REAL NUMBERS
WITH LOW DENSITY OF NONZERO DIGITS

HAJIME KANEKO

ABSTRACT. Let «a be an integer with a > 2. In this paper we will give
new criteria for algebraic independence of numbers £ = Y >° | a~wm),

where (w(n))$2, is a strictly increasing sequence of nonnegative integers.

Applying our criteria, we deduce algebraic independence of such £ also
for suitable sequences (w(n))>2 ; with lim,,_, . w(n+1)/w(n) = 1, which
was impossible by early methods. For instance, let [ be a positive real
number and put

— —Lfi(n)]
= o,
n=1
where [x] is the integral part of a real number x and

fi(n) = exp ((log n)IH) .
We prove, using Theorem 2.1, that the uncountable set {n; | { > 1} is
algebraically independent. Moreover, if h and [ are distinct positive real
numbers, then 7, and n; are algebraically independent.

1. INTRODUCTION

Let @« > 2 be an integer. A normal number in base « is a positive
number whose base-a digits show a uniform distribution. Namely, all finite
words with letters from the alphabet {0, 1,..., a—1} occur with the proper
frequency. Borel [3] showed that almost all positive numbers are normal in
each integral base. However, it is generally difficult to check whether a given
number is normal or not.

Borel [4] conjectured that all algebraic irrational numbers are normal in
every integral base. This conjecture is still open. There exists no algebraic
number that has been proven to be normal. Moreover, no counterexample is
known. If Borel’s conjecture is true, then nonzero digits in base-« expansions
of algebraic irrational numbers appear with average frequency tending to
(v — 1)/a. Consequently, for any irrational £, if Borel’s conjecture is true
and if nonzero digits of £ in base-a occur with average frequency tending
to 0, then ¢ is transcendental.

We now introduce known results about transcendency and algebraic in-
dependence of positive numbers whose densities of nonzero digits are low.
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In this paper, let N be the set of nonnegative integers and Z>; the set of
positive integers. Moreover, we denote the integral part of a real number ¢
by [£]. Let us use the Vinogradov symbols > and <, as well as the Landau
symbols O and o with their regular meanings. Recall that f < g, g > f
and f = O(g) are all equivalent and mean that |f| < ¢|g| holds with some
positive constant ¢. Moreover, f = o(g) (resp. f ~ g) implies that the ratio
f/g tends to zero (resp. 1). All implied constants may depend on the given
data.
We consider the number

a/—w(n)’

(L1) =

n

=1
where o > 2 is an integer and (w(n))o2, is a strictly increasing sequence
of nonnegative integers. Liouville [9, 10] first showed the existence of tran-
scendental numbers in 1844. He obtained the transcendency of the num-
ber > o™ by proving what is nowadays called Liouville’s inequality.
Schmidt [16] generalized this inequality and showed the numbers 71,72, . . .

defined by
M= Zof(l”)’ (1=1,2,...)
n=1

are algebraically independent. Durand [7] verified for each real algebraic
number z with 0 < z < 1 that the uncountable set

{Ch = Zz[h"” | h > 0}

n=0
is algebraically independent. Shiokawa [17] established algebraic indepen-
dence of the values of gap series at algebraic points containing those ap-
peared in [7] and [16]. However, we can not apply Liouville’s method in the
case of

, w(n+1)

lim sup —————= < o0.

noo  w(n)

Let k > 2 be an integer. Mahler [11] verified that the number Y >2  a™" is
transcendental. More generally, he proved for each algebraic number z with
0 < |z] < 1 that ®4(z) = > o7, 2" is transcendental by using the functional
equation

(1.2) Dp(2F) = Op(2) — 2.

Using the Schmidt Subspace Theorem, Corvaja and Zannier [5] generalized

o0

Mabhler’s results above as follows: Assume that (w(n))S2, is lacunary, that
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is, satisfies

(1.3) lim inf win+1)

> 1.

Then, for every algebraic z with 0 < |2| < 1, the number Y2 2*™ is tran-
scendental. Mahler’s method is also applicable to algebraic independence
theory. Using (1.2), Nishioka [12] showed for each algebraic number z with
0 < |z| < 1 that the values ®4(2), P3(2), ... are algebraically independent.
For detailed information concerning Mahler’s method for transcendence and
algebraic independence, see [13].

Now we return to the base-a expansions of algebraic numbers. For posi-
tive numbers £ and R, let A(«, &, R) be the number of nonzero digits among
the first (1 + [R]) digits of the base-a expansion of . Namely,

Ma, &, R) = Card{n € N | n < [R],[€a"] — a[éa™ 1] # 0},

where Card denotes the cardinality. Assume that o = 2. Bailey, Borwein,
Crandall, and Pomerance [1] showed for any algebraic irrational £ that there

exists a positive computable constant C'(§) depending only on ¢ satisfying
(1.4) A(2,€, N) > C() N/ ez

for all sufficiently large N. With a suitable positive C(«, £) in place of C(&)
we can prove (1.4) for any integral base o > 2 in the same way.

Theorem 1.1. Let o be an integer greater than 1 and & > 0 an algebraic
wrrational number. Then there exist effectively computable positive constants
C(a, &) and C'(«, &) depending only on o and & such that, for any integer
N with N > C'(«a,§),

(1.5) Ma, &, N) > C(a, ) N/(deed),

The idea of the proof of Theorem 1.1 was inspired by the paper of Knight
8]. Let ApXP + Ap 1 XP~1 4 ...+ Ay € Z[X] be the minimal polynomial
of & where Ap > 0. In the rest of this section, C(«, §) and Cy(a, &) denote
effectively computable positive constants depending only on a and £&. We
have

(1.6) ApEP + Ap &P 1 4.+ Ay =0.

We explain the notion of nonzero islands introduced by Knight for another
proof of the transcendency of & = > 2 a~?". Let D/, A, A}, ..., A, be
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integers with D’ > 1 and A’,, > 1. We show that
D/
W= Z Agl 0.
k=0

For any k with 1 < k < D’ we have

[e.o]

&=> t(mk)a™m,

m=0
where 7(m, k) denotes the number of ways that m can be written as a sum
of k powers of 2. Let b be a sufficiently large integer. Put N = (27" —1)2°.
Let m be an integer with

N-2"141<m<N+20—1.

Then Lemma 1 in [8] implies that

(m k’):{ D' (ifmzNandk:D’),

' 0 (otherwise).
Hence, considering the carries of the base-a expansion of D''A%,a™V we
deduce the following: there exists an integer m with N < m < N+0O(1) such
that the m-th digit of the base-a expansion of w is not zero. In particular,
w # 0. Knight used the term nonzero islands to refer nonzero digits which
occur from the carries of the base-o expansion of D'!A%,a~N.

In [1], the Thue-Siegel-Roth theorem [15] was used in order to find
nonzero islands. However, the Thue-Siegel-Roth theorem is ineffective. So,
in this paper we use Liouville’s inequality instead of the Thue-Siegel-Roth
theorem. As a consequence, we obtain the effective lower bounds C’(a, &)
in Theorem 1.1.

We give a sketch of the proof of Theorem 1.1 without technical details.
For simplicity, assume that 1 < ¢ < 2 and write the a-ary expansion of &
by

£ = Z t(&,m)a™™.
m=0

Note that ¢(£,0) = 1. For any k with 1 < k < D,

A7) & =>"a™™ > (i) t& i) = > a "p(k,m).

i1 ,eeesify >0 m=0
i1 tip=m

Let k > 2. Then, putting i, = 0, we get

i1eensify_1>0
it tig_g=m
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Let N be a positive integer. In the same way as the proof of Theorem 7.1 in
[1], we can show that there exists an interval I = [Uy, Us) C [0, N) satisfying
the following four conditions:

(1) p(D—1,U;) > 0.
(2) If Uy < N, then p(D —1,Us) > 0.
(

3)
(1.9) p(D—1,m)=0
for any m with Uy < m < Us.
(4)
(1.10) 11| > Ci(a, §)NP,

where |I| = Uy — Uy is the length of 1.
Using (1.8) and (1.9), we get
(1.11) p(k,m) =0,
where k£ and m are integers with 1 < £k < D —1 and U; < m < Us.
Liouville’s inequality implies the following: By (1.10), if N > Cy(«, &), then

there exists an my satisfying ¢(£, mp) > 0 and
1 D+1

praflsmes prsll
In fact, suppose that t(&,m) = 0 for any m with
1 D+1
praflsms 5l
Put
my = max{meN‘m< ! VIRASS m);éO}
D+2""7 ’
my = min{m € N | my > my,t({,m) # 0}.

Then we have

Let

mi
p = Z t(&,m)a™ ™™ g = a™.
m=0
Then p and ¢ are integers. Thus,
p - .
g - 5 = Z t(gv m)a
m=msy

< alvme < Q- (D+)mi agPt
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which contradicts Liouville’s inequality in the case of N > Cy(«v, &) because
we have (1.10).
Hence, putting U := U; + mg, we obtain

1 D+1
. _— < < _
(1.12) U1+D+2|]|_U_U1+D+2|]|
and
(1.13) p(D,U) = p(D —1,U1)t(§,mg) > 0.

In what follows, we observe the a-ary expansion of the left-hand side of
(1.6), using (1.7). Note that (1.7) is not generally the a-ary expansion of &
because a~ " p(k, m) causes carry, O(log p(k, m)) to the higher digits. Recall
that Ap > 0. Combining (1.10), (1.11), (1.12), and (1.13), we conclude that
positive digits left in the a-ary expansion of (1.6), which is a contradic-
tion. To explain the details of remaining positive digits, Bailey, Borwein,
Crandall, and Pomerance [1] introduced BBP tails. Note that the concept
of BBP tails is defined in the paper [2] in order to give rapid algorithms for
the computation of the n-th digits of certain transcendental numbers.

In the case of @ = 2, Rivoal [14] improved the constant C'(§) for certain
classes of algebraic irrational £. For example, let € be an arbitrary positive
number and & = 0.558 . .. the unique positive zero of the polynomial 8X3 —
2X?% +4X — 3. Theorem 7.1 in [1] implies for any sufficiently large N that

AM2,€,N) > (1 —e)167/3N/3,
On the other hand, using Corollary 2 in [14], we obtain
/\<27§/7 N) > (]‘ - 6)N1/3

for all sufficiently large V.
Let us consider applications of Theorem 1.1. For each real number k£ with
k> 1, put

v, = i o,
n=0

Let d be a natural number with 2 < d < k. (1.5) implies that v is not
an algebraic number of degree at most d. Moreover, using Theorem 1.1, we

deduce criteria for transcendence.

Corollary 1.2. Let a be an integer greater than 1 and & a positive irrational

number. Assume for an arbitrary positive number € that
(1.14) Ma, &, N) = o(N9).

Then & s transcendental.
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For instance, the numbers

S e

n=1 n=0
are transcendental by Corollary 1.2 because these numbers fulfill (1.14).
Moreover, for positive numbers [ and z with = > 1, let

fiz) = exp ((log :E)1+l) )

Then the number

n=1

is transcendental by Corollary 1.2 because n; satisfies (1.14). In fact, it is
easily seen that, for any ¢ > 0,

Mo )~ exp (log R0
= o(exp(clog R)) = o (R")
as [t tends to infinity. Note that 7 does not satisfy inequality (1.3). Thus,

we cannot prove, using the result of Corvaja and Zannier, that the number
7, is transcendental. In fact, for a real number x with x > 1, we have
filz + 1)) 141 141
log (— = (log(x + 1)) — (log z)"*".
fi(z)
By the mean value theorem, there exists o = o(l,x) € (0,1) such that
1 1 !
fl(l') T +o

Since the right-hand side of the equality above converges to zero as z tends
to infinity, we obtain

lim M =1.

w00 fi(z)
The main purpose of this paper is to deduce algebraic independence of
certain classes of numbers & which satisfy (1.14). We will introduce criteria
for algebraic independence in Theorem 2.1. We prove this theorem in Section
4. Our method is quite flexible because we do not use functional equation.
As a consequence of Theorem 2.1 we deduce algebraic independence of the

values 7, for real numbers [ with [ > 1.

Theorem 1.3. The uncountable set {m; | | > 1} is algebraically indepen-
dent.

We can not prove, using Theorem 2.1, that the uncountable set {n; | [ >
0} is algebraically independent. However, we deduce that any two elements

of this set are algebraically independent.
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Theorem 1.4. Let h and [ be distinct positive real numbers. Then n, and
n are algebraically independent.

We verify Theorems 1.3 and 1.4 in Section 3.

2. CRITERIA FOR ALGEBRAIC INDEPENDENCE

Let @ > 2 be an integer and £ a positive number. For each integer m,

put
e, m) = [€a™] — al€a™ ] € {0,1,...,a — 1}.
Note that ¢(§, —m) = 0 for all sufficiently large m € N. Then ¢ is written as

oo

E= ) tEma™,

m=—0Q

which is the a-ary expansion of . Set
S(6) = {m € N[ (&, m) # 0},
Recall for R > 0 that
Mo, &, R) = Card{n € S(§) | n < R}.
Note that if 1 < & < «, then 0 € S(§). For each positive integer a, let
aS(€) ={m+---+n.|ni,....,n, € 5}

For convenience, let 05({) = {0}. Moreover, for any positive numbers

&1, ..., & and nonnegative integers aq,...,a,, let
Zazs(gz) = {51 + -+ S ‘ S; € CLZS(&) for 1 S 7 S 7’}.
i=1

For a nonempty subset A of N, let us define the function 6(R;.A) by
0(R; A) = max{n € A|n < R},
where R is a real number with
R > min{n € A}.

Assume that 1 < &;,...,& < a. Let (ay,...,a,),(a},...,a.) € N, where

)

a; > a for every i with 1 < ¢ <r. Then we have

Z a;S(&) O Za;S@-)

because S(&1),...,5(&) 2 0. We now state criteria for algebraic indepen-
dence.

Theorem 2.1. Let &,...,&, be positive irrational numbers. Suppose that

these numbers satisfy the following three assumptions:
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(1) For an arbitrary positive €, we have
M, &1, R) = o (F7)
and, forh=2,...,r,
Ma, &, R) = O(A(a,fh,l, R)E).

as R tends to infinity.
(2) There exists a positive constant Cy such that

S(&)N[CLR, R] # 0

for every sufficiently large real number R.

(8) Let ay,...,a,_1,a, be any nonnegative integers. If r > 2, then there
exist a positive integer k = k(ay,...,a,_1) and a positive constant
Csy(ay, ..., a,), where k depends only on ay, . .., a,—1 and Cy(ay, ..., a,)
only on ay, ..., a,, such that

=1

r—2 r
R—0 (R; > aiS(&) + RS(gH)) <R[ Mo & R)™
=1

for each real number R with R > Cy(ay, ..., a,).

Then &1, ...,& are algebraically independent.

Remark 2.2. In the case of » = 1, Theorem 2.1 follows from Corollary 1.2.

We verify Theorem 2.1 in Section 4. In the rest of this section we give a
sketch of the proof of Theorem 2.1 without technical details in the case where
r =2 and k(a;) = 1+ a for all a; > 0, where x(ay) is defined in the third
assumption of Theorem 2.1. For simplicity, suppose that 1 < &,& < 2. If &
and &, are algebraically dependent, then there exists a nonzero polynomial
P(X1,X3) € Z[X] such that

(2.1) P(£1,&) = 0.
Let
P(X1,X) = > AX{PXP
k=(a1,a2)EA

where A is a nonempty finite subset of N? and Ay a nonzero integer for each

k € A. We search nonzero islands of the a-ary expansion of the left-hand
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side of (2.1). For any k = (a,b) € A, we get

e = (Zt(éh mw) (Zt(gz, y)ay)

=0 y=0

> (&1, 00) -+ - 1(&s 1a)t(S2, 1) - - - E(S2, )

i1 seeriasd1seesdp >0
i1+ tiat+i1++Hip=m

e 108

(2.2) a "p(k,m).

0
Observe that p(k,m) > 0 if and only if m € aS(&) + bS(&2). In the proof

of Theorem 1.1, we used the relation

0e S c25¢) cC---
in order to find nonzero islands. Indeed, (1.8) implies that (k — 1)S(§) C
kES(E) (see also (1.13)). On the other hand, let (ay,as), (a},ay) € A. Then,
in general, neither a15(&;) + a25(&2) C a1S(&1) + a4S(&) nor a)S(&) +
ahS(&2) C a1S(&1) + aaS(&,) holds. This is the most different point between
the proofs of Theorems 1.1 and 2.1. Let > be the lexicographical order in

3
Il

N2 Namely, (a,a2) = (a},d), if a; > @y, or if a1 = a} and ay > d). Let
g = (g1,92) € A be the greatest element of A with respect to >=. Without
loss of generality, we may assume that A, > 0. For any (a;,a2) € A, if
a; = g, then ay < go. Thus, we have a15(&1) +a25(&) C g1.5(&1) + 25(&2).
If a1 < g1, then the relation above does not hold generally. However, by the
third assumption of Theorem 2.1, the set a1.5(&1) + a25(&,) is approximated
by (1+a1)S(&1) because k(a;) = ay + 1. Moreover, we have (14 a;)S(&;) C
918(&1).

Based on the observation above, we give nonzero islands in Section 4.4.
Let N be a sufficiently large integer. We construct an interval J = [T}, Ty) C
[0, N) satisfying the following three conditions:

(1) T1 € p1S(&1) + p2S(&2) for some (p1,p2) € A with p1 < gs.

(2) If T, < N, then T5 € ¢15(&1) + ¢25(&2) for some (q1,¢2) € A with

q1 < g1-

(3) Let m be any integer with 73 < m < Ty and let (aj,a2) € A with

a; < g1. Then m & a1.5(&1) + a25(&s).
Since prS(€1) +p2S(&) and quS(€1) +g25(&) are approximated by g,S(&,),
we get a subinterval I = [Ry, Ry) of J satisfying the following three condi-

tions:

(1) Ri € g15(&1) + (92 — 1)S(&2)-
(2) R2 € 15(&1) + (92 — 1)S(&2)-
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(3) Let m be any integer with Ry < m < Ry and let k = (a1, a2) € A
with g > k. Then

(2.3) m & a15(&1) + azS(&2).

Denote the length of I by |I| = Ry — R;. Using the second assumption of
Theorem 2.1, we deduce that there is an mg € N satisfying mg € S(§2) and

Cy
I < < I|.
rro=mes e
Putting U := Ry + mg, we obtain U € ¢15(&;) + ¢25(&2) and
Cy
2.4 R I|<U<LR I|.
(24) 1+1+01||— = 1JF1+C1||
In particular,
(2.5) p(g,U) > 0.

Now we observe the a-ary expansion of the left-hand side of (2.1), using
(2.2). Recall that Az > 0 and that o~ p(k, m) causes carry, O(log(k, m)) to
the higher digits. Hence, combining (2.3), (2.4), and (2.5), we conclude that
positive digits left in the a-ary expansion of (2.1), which is a contradiction.
To explain the details of remaining positive digits, we introduce BBP tails
Yr in the last of Section 4.2.

3. PROOF OF MAIN RESULTS

Proof of Theorem 1.3. Let {my,,m,,...,m,} be any finite subset of {n, | [ >
1}. Without loss of generality, we may assume that [} <ly < --- <. Let
fi =M — [7711] +1e (L 2)

fori =1,...,7. Then S(&) 2 0 for i = 1,...,r. We check that &, ... &,
satisfy the assumptions of Theorem 2.1. Let [ be a positive number. In
Section 1 we proved that, for any sufficiently large x,

(3.1) filz) < filz +1) < 2fi(x).

Therefore, we verified the second assumption with C} = 1/2. For any posi-
tive numbers [ and x with = > 1, put

(3.2 gi(x) = exp ((log )"/ )

Note that g; is the inverse function of f;. Namely, for any x > 1, we have
filgi(z)) = x. Let ¢ and j be integers with 1 <4, j < r. As we mentioned in
Section 1, for any ¢ > 0,

(3.3) Ma, &, R) ~ gi,(R) = o (R7)
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as R tends to infinity. If ¢ < j, then, for any € > 0,

(3.4) g1, (R) = o (exp (e(log R)Y Y)Y = 0 (g, (R)) .

Thus the first assumption is fulfilled by (3.3) and (3.4). Finally we check
the third assumption. We introduce the results of Daniel [6]. Let (p,)>,
be the strictly increasing sequence of those positive integers that can be
represented as the sum of three cubes of positive integers. Then Daniel
showed that

fins1 — i = O (7).

In the same way as the proof of the result above, we get the following:

Lemma 3.1. Let k = (ay,...,a,) € N\{(0,...,0)}. Then, for R > 2,

(3.5) R—0 (R; Z aiS(&)> < R(log Ryt Targ(R)™k,
i=1
where

g(R) ™ = Hgli(Rr“i-

Proof. We prove Lemma 3.1 by induction on the value a; +- - - +a,. Assume
that a; + --- + a, = 1. Then there exists an integer h with 1 < h < r and

ap, = 1. We have
1 (0 = (i, () log fy ()41
" 9, (Jun (2))
Let x be a sufficiently large real number. Then, by the mean value theorem,
there exists p = p(z) € (0,1) such that

(1+ 1) fi, (z + p)(log fi, (z + p))in/(A+in)

flh(‘r + 1) - flh(x) =

9, (fin(x + p))
_ ()i (x + 1) (log fi, (@ + 1)/ 0+
a 9y, (flh (l‘))
fu () log fi, (x)
<< Y
9u.(fu,(2))
where for the last inequality we use (3.1). For R > 1, let
Rlog R
F(R) = _
= g

Taking the logarithm of F'(R), we deduce that F'(R) is monotone increasing
for sufficiently large R. If R is sufficiently large, then there exists m € N
such that
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Thus, we get 0(R; S(&,)) = [f,, (m)]. Since
F(fi,(m)) < F([fi,(m)]) < F(R),
we obtain
0<R—-0(R;S&) < fi(m+1)— fi,(m)+1

< F(fi(m)) < F(R),
which implies (3.5) in the case of a3 + -+ + a, = 1. Next, assume that
ai+---+a, > 2. Let
d = max{i > 1]a; > 1}.
Put
kK = (a},...,a):=(a1,...,a9-1,—1+ ay,0,...,0).

» T

Then we deduce, using the case of a; + --- 4+ a, = 1, that there exists a
positive constant C' satisfying

R = R—6(R:S(¢) < 01;15;;
Note that
R—0 (R; iaﬁ(@)) <R
because -
Z wS(€) > 5(E)

Thus, we may assume that R’ > 2. By the induction hypothesis, we get

o (R’; > a;S@-)) < R(log R)“ o g(R)™ = G(R).
i=1

Let

7 = O(R: S(8)) + 0 (R’; > s @) |

i=1
Then since

v e wS(&),
i=1

we get
0 < R—90 (&Zaﬁ(&-)) <R-~v
=1

(3.6) = R —0 (R’; ia;S(@)) < G(R').
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Taking the logarithm of G(R), we deduce that the function G(R) is mono-
tone increasing for sufficiently large R. Thus, we obtain

9,(R) 9a(R)
_ RlogR (10 RlogR)“H"'J’“/T (RlogR>—k’
a,(R) \ "% gu(R) 9a(R)
R \ ¥
3.7 < log R)"**arg ( ) '
(3.7 (R 08 1) (B

Let i € N with 1 <7 < d. Since [; > 1, we observe that, for any sufficiently
large R,

R 1/(141) s
log ( )) = (log R — (log R)"/(+%) '

= (log R)Y/(+1) (1 — (log R)~h/(+10) V1)

2 (log R)l/(1+li) <1 _ (log R)—li/(l—i-li))

141

and hence

Therefore, we obtain

Combining the inequalities (3.6), (3.7) and (3.8), we conclude that

O<R-0 (R; Z%S(&)) < R(log Ryt Targ(R)™,
i—1

which implies (3.5). O
Let k = (ay,...,a,) € N". Then, by (3.3), (3.4) and Lemma 3.1,

R—0 (R; i a;S(&)+ (1+ ar—l)S<§7‘—1)>

< Rglr—l (R)_1/2 H gli(R)_ai =0 (R H /\(CM, glﬁ R)_ai>

i=1
as R tends to infinity. Hence, the third assumption of Theorem 2.1 is satisfied
with

k=rk(ay,...,a,—1) =1+ a,_1.

Therefore we proved Theorem 1.3. O
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Proof of Theorem 1.4. Without loss of generality, we may assume that h <
[.Let & = np — [mp] + 1 and & = m — [m] + 1. Note that 1 < &,& < 2
and that S(&;),S(&) 2 0. In the same way as in the proof of Theorem
1.3, we can verify that & and & satisfy the first and second assumptions
of Theorem 2.1 with C; = 1/2. In what follows, we prove that the third
assumption is satisfied. Let g;(x) be defined by (3.2).

Lemma 3.2. Let b be a positive integer. Then, for any positive number ¢,

we have

(3.9) R — 0(R;bS(&)) < Rgn(R)™"*

for R > 2.

Proof. We show (3.9) by induction on b. Assume that b = 1. In the same

way as in the proof of Lemma 3.1, we deduce that there exists a positive

constant C' satisfying

Rlog R
gn(R)
which implies (3.9) because, for any positive ¢,

log R = o(gn(R)")

as R tends to infinity. Suppose that b > 2. Without loss of generality, we

(3.10) R :=R—-0(R;S(&)) <C

may assume that R > 2 and that € < 1. In particular, we have
—b+1+4+¢<0.
By the induction hypothesis,
R —0(R'; (b —1)5(&)) < R'gn(R)™"%% = H(R).
We obtain, taking the logarithm of H(R), that the function H(R) is mono-
tone increasing for sufficiently large R. Hence,
0 < R—O(R:bS(&))
< R-0(R;5(&)) — 0(R; (b—1)S(&))
= R —0(R;(0-1)5(&)) < H(R)
Rlog R Rlog R
<« H (o ) <H ( )
gn(R) n(R)
Rlog R ( Rlog R) ~blte/3
gn(R)

R ) —b+14¢/3

(3.11) < Rgn(R)™ 1+€/39h( )
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Let

Then
2
(A=e)(=b+1+2)=—b+1+ze

For all sufficiently large R, we obtain

R 1/(1+h) )
log ( )) = (log R — (log R)Y/(+M
( gn(R) ( ( ) )

(1 . €/>(10g R)l/(1+h)

v

and hence

R\ brite/3
o (9h(R)> < gh(R)(l—a )(—b+1+e/3)

_ gh(R)—b+1+2e/3'

Combining (3.11) and the inequality above, we proved (3.9).

g

Let (a1, as) € N2, Then, applying Lemma 3.2 with b = a;+1 and e = 1/2,

we get

R—0(R;(a1 +1)S(&)) < Rgp(R)~ /2

= o <RH Mo, &, R)““)

as R tends to infinity. Therefore we checked the third assumption of Theo-

rem 2.1 with k = k(a1) = a; + 1 and hence verified Theorem 1.4.

4. PROOF OF THEOREM 2.1

g

4.1. Base-a expansions of powers of real numbers. We prove The-

orem 2.1 by induction on r. Using Corollary 1.2, we deduce the case of
r = 1. In what follows, suppose that » > 2. Without loss of generality we
may assume that 1 < &,...,& < 2. In fact, &,... & are algebraically
independent if and only if £}, ..., & are algebraically independent, where

E=&—[&+1fori=1,...,r
For simplicity, let

Mi(R) = Mo, &, R) fori=1,...,rand R > 0.
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For convenience, put N’ = {0}. Let £ > 0,b € N,x = (zy,...,7) € N’ and
s=(s1,...,5) € Zb. Put

x| =

In what follows, we denote ({i,...,&:) and (Ai(R),...,A(R)) by { and
A(R), respectively. Then, for each k = (ay,...,a,) € N'\{(0,...,0)}, we
have

¢ - T (3ueenn )
- H(zt@,x)a—xl)

i=1 \xeN%

- S & x) & x, o Pl

where

p(k,m) = o t&x) (& x,) EN

x1 €N .., xp€Nar
[x1 [+ +[xr[=m

Note that, for each m € N, p(k,m) > 0 if and only if m € >\, a;5(§;). It
is easily seen that

plom) < 3 (a—1M

xleNal ..... xp€NAr
[x1 [+ +[xr[=m

)

We now check the following;:

Lemma 4.1. Letk = (ay,...,a,) € N'\{(0,...,0)} and N € N.
(1)

> pll,m) < (a— DFAN)E,

(2) :
Card{m € N | m < N, p(k,m) > 0} < (o — D))k,
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Proof. Put, fori=1,...,r,
S = {m € S(&) | m < N}, 80 = {0},
Then

Z plk,m) = Z (& xa) - (&, %)

m=0 x1 EN?L ..., xpENQr
< > (@ = D = (a = FAN),

which implies the first statement of Lemma 4.1. The second statement fol-
lows from the first one because p(k, m) € N for each m € N. g

4.2. Auxiliary functions. We define the lexicographical order > on N”
as follows. For any k = (a1,...,a,), kK = (d},...,a.) with k # k', there
exists a positive [ such that the first (I — 1) symbols in k = (ay,...,a,)
and k' = (a},...,a]) coincide, but their /th symbols are different. Then
k= (ay,...,a,) =k =(a},...,a) if and only if ¢; > aj.

Each nonzero polynomial Q(X) € Z[X;, ..., X,| is uniquely written as
QX)= > BXX
keA(Q)
where A(Q) is a finite subset of N" determined by @, By a nonzero integer
and X = (X3,...,X,). Recall for k = (ay,...,a,) that X* = X ... X0
Let g(Q) = (1(Q), . .., 9-(Q)) be the greatest element of A(Q)) with respect
to >. Moreover, put
MQ) = {keMQ)[ar=g(Q),...,ar-1=g-1(Q), ar < g:(Q)},
A(Q) = MN\(M(Q)U{s(@)}),
A3(Q) = {keAQ)|ar=g(Q),...,ar2=92(Q),ar1 < g91(Q)},
where k = (ay,...,a,). We define the number e(Q) as follows. If A3(Q) is
empty, then put e(Q)) = 0. Otherwise, let

e(Q) = max{a,_1 | (a1,...,a,_1,a,) € A3(Q)}.

Now assume that &1, ..., &, are algebraically dependent. Then there exists
a nonzero polynomial P(X) € Z[X1,...,X,] such that
P(&) = 0.

By the induction hypothesis &, ..., &, are algebraically independent. Thus,
the degree of P(X) in X; is positive. Namely, ¢;(P) > 1. Without loss of
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generality, we may assume that
(4.3) X (X, = D|P(X).
In what follows, let
k(n) = K(g1(P), g2(P), ..., gr—a(P), 1),

where n is a nonnegative integer and the right-hand side of the equality
above is defined in the third assumption of Theorem 2.1. Let m and n be

integers with 0 < m < n. Then, for any positive number R, we have

R—0 <R Zgz 51 +nS(§r 1))

<R-4 <R Zgz S(&) +mS(&,- 1))

because
r—2
Zgl S(&) +nS(&1) D) gi(P)S(&) +mS(&-1).
i=1

So, if necessary, by increasing k(n), we may assume that x(n) > 1 for any
n € N and that the sequence (k(n))22, is monotone increasing.

Lemma 4.2. There is a nonzero polynomial F(X,_1,X,) € Z[X,_1,X,]
such that

gr—1(FP) > k(e(FP)).

Proof. We define the nonzero polynomial o(X,_1, X,) € Z[X,_1, X,] as fol-
lows. If r = 2, then put

(44) O'(Xl,XQ) = P(Xl,XQ).
If » > 3, then P(X) is uniquely written as
@5 PN= Y X X)XP X

k:(a1 ,,,,, ar,Q)GF

where T is a finite subset of N2 and ¢ (X,_1, X,) € Z[X,_1, X,| a nonzero
polynomial. Note that 1:= (¢;(P),...,g-_2(P)) € I'. Now put

O-(erlv Xr) = QOI(Xr—l; Xr)

Let

o(Xoo1, Xp) = >0 X)X,
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where 0;(X,) € Z[X,] with 0,(X,) # 0. We show for any integer n with
n > b that there is a nonzero polynomial ™ (X, 1, X,) € Z[X,_1, X,]
satisfying the following: o(X,_1, X, )™ (X,_1, X,) is written as

b—1
(4.6) o(X, 1, X )™ (X,o1, X,) = ) () X0, + ) i (X)X,
1=0

where wi(n)(Xr) € Z[X,] for i = 0,1,...,b with wén)(Xr) # 0. In the case
of b = 0, it is clear that (™ (X, 1, X,) = X" | satisfies (4.6). Suppose
that b > 1. We check (4.6) by induction on n. If n = b, then putting
PO (X, 1, X,) =1, we get (4.6). Assume that n > b+1. Then the induction
hypothesis implies that

¢(n) (Xr—h Xr) = Ub(Xr)erlw(nil)(erla XT‘) - w(—nlj-lla) (XT)
fulfills (4.6). ™ (X,_1, X,) # 0 because o,(X,)™ D (X,_1, X,) # 0. Let
w = max{0,b — 1}. In what follows, we verify that
F(X,o1, X,) = "X, 4, X,)
satisfies the statement of Lemma 4.2. Using (4.5) and (4.6), we deduce that
the first (r — 2) symbols of g(P) and g(F P) coincide in the case of r > 3.

Moreover, we obtain

(47) ge 1(FP) = r(w)
and
(4.8) e(FP) <w.

In fact, if A3(F'P) is not empty, then by (4.4), (4.5), and (4.6), we get
e(FP) < b—1. Hence, combining (4.7) and (4.8), we conclude that

41 (FP) > n(e(FP))
because the sequence (k(n))5°,, is monotone increasing. d
For simplicity, put

A = A(FP),

A, = Ap(FP)for1<h<3,

ko = (g1,...,9:) = g(FP).
Recall that, for ¢ =1,2,...,7r — 2,

9i = 9i(FP) = gi(P),

S0

H(n) - K(.gl) g2, -, 9r-2, n)
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for each n € N. Let
F(X,1, X)P(X) = Y AX®,

where Ay is a nonzero integer. Then

(1.9) S Ak =0,

keA
Note that, for each k € A, we have |k| > 1 because X, divides P(X).
Without loss of generality, we may assume that Ay, > 1.

Lemma 4.3. Ay and Ay are not empty.

Proof. First suppose that A, is empty. Then, for each k = (ay,...,a,), we
have a1 = g1,...,a,—1 = g,—1. Thus, (4.9) implies that &, is an algebraic
number, which contradicts to the induction hypothesis.

Next, assume that A; is empty. Then we get
(4.10) > A X® = Ay, XX,

a1=gq,--- ap_1=gp_1

Let ® : Z[Xq,...,X,] = Z[Xy,...,X,_1] be defined by

@(Q(Xl, cee ,XT)> == Q(Xl, cee 7X7'—17 1)
By (4.10), the greatest element of ®(F(X,_1, X,)P(X)) with respect to the
lexicographical order on N1 is (g1,...,¢,-1). So, ®(F(X,_1, X,)P(X)) is
not zero. Namely, X, — 1 does not divide F(X,_1, X,.)P(X), which contra-
dicts (4.3). O
Let
D =1+ max{[k|[k € A}.
Denote the greatest element of A; and Ay with respect to > by k; and ks,
respectively. Let
e=1(91,92,---,9—2,¢(FP),D).

Then, for each k € Ay, we have k < e. In fact, if A3 is empty, then there
exists a positive | with [ <7 — 2 such that the first (/ — 1) symbols in e and
k, coincide, but the [ th symbol of e is greater than that of ky. Otherwise,

ks is written as

k2 = (917927 s 7g7'*27€(FP)7a)

with a < D, and so ky < e. By the first assumption of Theorem 2.1, for any
k e AQ,

(4.11) A(n) = 0(A(n)°).
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Lemma 4.2 implies
(4.12) gr—1 > K(e(FP)).

Let = be the set of nonnegative integers N such that, for every integer n
with 0 <n < N,

(4.13) nA(n)=® < NA(N)™®.

Note that = is an infinite set. In fact, by the first assumption of Theorem

2.1, we have

lim NA(N)™® = oo.

N—o00
If necessary, by increasing Cs(e), we may assume that A.(n) > 5 for every
n € N with n > Cy(e), where Cs(e) is defined in the third assumption of

Theorem 2.1. For simplicity, let

Lemma 4.4. Let M and E be any positive real numbers with
M > Cy(e)
and
E > AMAM)™°.
Then
M+%E< 6(M + E).

Proof. Using

| e

we get
E _ _
3> (M +E)AM)™® > (M+ E)XM+E)"-.
Note that M + E > Cy(e). Thus, using (4.12) and the third assumption of
Theorem 2.1 with
(a1,...,a,) =€, R=M + E,
we deduce that

M+FE—-0M+FE)<(M+E)AM+E)°<

Sl

Y

which implies Lemma 4.4. O
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Using (4.1) and (4.9), we get, for each R € N,

O—QRZA§ —ZAkZ (k,m+ R)a~

keA keA m=—R
SO

Yg = Z Ag f: plk,m+ R)a™™ € Z.

keA m=1
Let N € N. In what follows, we estimate the number y(N) of R € N
satisfying R < N and Yy > 0, namely,

y(N) = Card{R € N| R < N, Yz > 0}.
4.3. Bounds for y(N). First, we consider upper bounds for y(N).

Lemma 4.5.

as N tends to infinity.

Proof. For k € A and R € N, let

o0

Y(k,R) = p(k,m+ R)a™™ > 0.
m=1
Then by (4.2)
- + R+ |kl -1\ _
Y (k < 1y m
R) < D (o= M)

=1

m+ R+ k| —-1\__,,
: (O“”'k'z( W)
m=1

In the proof of Theorem 2.1 of [1], Bailey, Borwein, Crandall, and Pomerance
showed for R > 0 and [ > 1 that

~(m+R+1-1\__,, (R+1)
Z( 1 )2 SU-D(RTL)

m=1

Since k| > 1, we get
(a — DM(R + k)
(k| — DHI(R+1)

(4.14) Y(k, R) <

In particular,

N N
—1“"]\/ k|l
Sovikr) < 3O AR

R=0 R=0 (k| = 1)t
0 — )N + [l
= (k[ = 1)!

(4.15)
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By the first assumption of Theorem 2.1, we have
(4.16) AN)E = o(N).

Let K = [Dlog, N, where log, N = (log N)/(log o) and [x] is the smallest
integer greater than or equal to a real number . Then by (4.15), (4.16) and
the first statement of Lemma 4.1, we get

N-K

Z_: Y(k,R) =Y a ™Y pkm+R)

=1 R=0

ZofmZp(k, R)+a K Z ol Z_: p(k,m + R)

m=1 R=0 m=14+K R=0
N—-K oo
(0= DMAN + a5 55" plke,m + R+ K)o

R=0m=1

3

IN

IN

(N)+a ¥ Y Y(k, R+ K)
o(N) + N—D(oz— DP(N + D) = o(N).

|
S

IN

Since Y(k, R) > 0,

YR|<Z|Ak|Z (k, R) = o(N).

R=0 keA
Using Yr € Z, we obtain
N-K
y(N) <K+ [Yr| = o(N).
R=0

Next, we estimate lower bounds for y(N).

Lemma 4.6. Let N € N be sufficiently large and I = [Uy,Us) an interval
with I C [0, N). Suppose that p(k,z) = 0 for any integer x € (Uy,Us) and
k € A\{ko}. Moreover, assume that there exists U € N satisfying

Uy <U<U;—Dlog, N
and
p(k07U) > 0.

Then Y, > 0 for any n € [Uy,U).
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Proof. We prove Lemma 4.6 by induction on n. First we consider the case
of n =U — 1. Using (4.14), Ax, > 1, and the assumptions on [ and U, we

obtain

YU—l = ZAkZ km+U—1)

keA m=1
1 oo
> —— > Al Y pkm+U-—T)a”
@ keA\{ko} m=1+Us—U
1
= —= > AoV (k, Uy - 1)
o keA\{ko}
1
> —— > AN Pla-1)PT(N+D-1)P7 >0
@ keA\{ko}

for all sufficiently large .
Next, suppose that Y,, > 0 for some n € N with 1+ U; < n < U — 1.
Then by Ay, p(ko,n) > 0 we get

1 1 >
Yoo = — E Axp(k,n) + — E Ag E plk,m+n— 1)a_erl
@ keA a keA m=2

1 1
— —14k010(l{07 n) + —Yn > O
[0 (0]

Hence we verified Lemma 4.6. O

4.4. Completion of the proof of Theorem 2.1. We construct intervals
I = [Uy, U,) satistying the assumptions of Lemma 4.6. Using (4.11) and the
second statement of Lemma 4.1, we deduce the following: Let N € = be
sufficiently large. Then the number of nonnegative integers 7" with 7" < N
such that there exists a k € Ay with p(k,7T") > 0 is at most

S (0= DMAN) < AN

ke 32

Say these T’s are 0 =T} < Ty < --- < T, where

(4.17) SAN)®.
Set 71, = N and
={J=J0)=[T;Thy) |1 <j <7}

For any interval I C R, let |/| denote its length. Then we have

(4.18) S 1=

JeJg
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Moreover, put
J = {JeT||J]=16NAN) "},
Jo = {JeTi|JC[Ce),N)}.

Lemma 4.7. Let N € = be sufficiently large.

(1)

=

Y1z

Jeg

(2)
N
Z |J| > 3

Jed

Proof. By (4.17) and (4.18)

D= = >

JeT JeJg JeI\T

> N —7-16NA(N)™® >

=

)

which implies the first statement of Lemma 4.7. We now check the sec-
ond statement. Take positive integers Ny < Nj satisfying N; > Cs(e) and
p(ko, N;) > 0 for i = 0,1. If N > Ny, then there exists jo = jo(IN) with

T, = No, T4, < Ny

by the definition of 71,75, ..., T4, Let J(j) € J1\J2. Then j < jo. Hence,
for any N € = with N > 6Ny,

DW= > W= 10

JeT2 JeJ
1 1
> N—N, >=N.
2 3

U

By Lemma 4.1 the number of nonnegative integers R with R < N such
that there exists a k € Ay with p(k, R) > 0 is at most
D (a = DMAN)* < CaA(N)H,
ke,
where C} is a positive constant. Say these R's are 0 = Ry < Ry < --- < R,

where

(4.19) 1< CuA(N),
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Let Ry, = N and
IT={I=[R;,Riy)|1<i<upu}
Then

D U=

IcT
Put

{I €Z|IcCJforsomeJeJ},

A+,

IQ - {IGL

Lemma 4.8. Let N € = be sufficiently large.

(1)
N
>l

1T,

(2)
Z|I|zﬁ

IEIQ

Proof. We check the first statement. For any J = [T}, T14;) € Jo, we have
Cy(e) <T; <Ty4; < N.If N € = is sufficiently large, then by (4.13)

J
% > ANAN)™® > T4 MTh45)"¢
So, using (4.12) and the third assumption of Theorem 2.1 with

(al,...,aT) = e, R = TH_]‘,

we obtain
Tivj > 0(They) > Tigy — TigA(Thsy)~°
||
Z T1+j 4 :
k; is written as k; = (g1, .., gr—1,u). Since
r—1 r—1
0(Tie;) € Y gnS(&) C > gnS(&) +uS(&),
h=1 h=1
we get

pllct, 6(T3)) > 0.
Thus, by the definition of Ry, R, ..., Riyy,
(4.20) 0(Tv+j) = R;
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for some ¢ € N. Consequently, we put
B(J) = min{n € N|n>T; n = R; for some i € N},
v(J) = max{n € N|n < Ti;4;,n= R, for some i € N}.

Then it is clear that

(4.21) > =)= B(])
IeT,ICJ

and that

(122 3T) 2 0(Th) > Ty — 2

Similarly, we have

ULs anavye = amm)

Applying Lemma 4.4 with

/1
M=T, F=—
VB! 47
we get
/1 /1 171
T} <0|(T; <Tj
+ = 3 + — 1 + — 1

In the same way as in the proof of (4.20), we deduce that
171
o1 =R,
for some 7 € N. Hence
/1

(4.23) B(J) < 9<T+| |)<Tj+ T

Therefore, combining (4.21), (4.22) and (4.23), we obtain
1
Z 1] > §U|-
IeT,ic
Consequently, using Lemma 4.7, we conclude that
MILED SIS SNIET D SIFET
IeT, JeJs I€L,ICT Jejz

which implies the first statement.
Using (4.19) and the first statement of Lemma 4.8, we get

DU = Y M= Y M

IeT, IeTy Iehi\I»
> 1y L vy s Ly
= 6" T HMc e =12

Thus we verified the second statement.
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In what follows, we show that each interval I € 7, satisfies the assump-
tions of Lemma 4.6. The first assumption of Theorem 2.1 implies that, for
any k € A,

(4.24) log, N =0 (NA(N)7¥).

By the second assumption of Theorem 2.1, there exists a positive constant
Cy such that, for any real number R with R > CYy,

S(&) N [CLR, B] £ 0.

Moreover, by (4.24) there is a positive constant C5 such that, for each nat-
ural number N with N > Cs,

1
12C5
Let N € Z and I = [R;, R1+;) € Z,. Suppose that N is sufficiently large.

Then we have

(4.25) NA(N)™ — Dlog, N > C,.

(4.26) 1] > NA(N) &,

12C;
If N > Cj5, then by (4.25) and (4.26), there exists V' € S(&,) with
(4.27) Cy(|I| = Dlog, N) <V < |I| — Dlog, N.

Using (4.24) and (4.26), we get
(4.28) Ci(JI| = Dlog, N) > 1+ Bclm}
because N is sufficiently large. Let
U=R;,+V.
Then there exists k = (¢g1,...,¢-—1,0) € Ay (b < g,) such that

r—1 r
Ued a5E) +1+0)S(E)C D g5,
SO - -
p(ko,U) > 0.
Moreover, by (4.27) and (4.28)
Ri+1+ qu} < U <Ry, — Dlog, N.
By the definition of Z,, there exists a positive integer j such that
I'=[R;, Rit1) C [T}, Tj1).
Hence, for any integer « with x € (R;, R;11) and k € A\{ko}, we have
plk,x) =0
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because A\{ko} = Ay UAs. Thus, by Lemma 4.6, Y, > 0 for any n € N with
1

Hence, using Lemma 4.8, we conclude that

y(N) =) (1 + BOMID > 2—1401N,

I€Zs

which contradicts the statement of Lemma 4.5. Therefore we proved Theo-

rem 2.1.

ACKNOWLEDGEMENTS

I am deeply grateful to Prof. Masayoshi Hata for many suggestions and
for improving the language of this paper. I would like to thank Prof. Yann
Bugeaud for careful reading of the manuscript and for giving useful ad-
vice. I would like to express my gratitude to Prof. Masanori Katsurada and
Prof. Takaaki Tanaka for careful reading and correcting the manuscript. I
would like to thank the referee for the constructive and fruitful comments
and suggestions on the manuscript. This work is supported by the JSPS
fellowship.

REFERENCES

[1] D. H. Bailey, J. M. Borwein, R. E. Crandall and C. Pomerance, On the
binary expansions of algebraic numbers, J. Théor. Nombres Bordeaux
16 (2004), 487-518.

[2] D. H. Bailey, P. B. Borwein, S. Plouffe, On the rapid computation
of various polylogarithmic constants, Mathematics of Computation 66
(1997), 903-913.

3] E. Borel, Les probabilités dénombrables et leurs applications
arithmétiques, Rend. circ. Mat. Palermo 27 (1909), 247-271.

4] E. Borel, Sur les chiffres décimaux de /2 et divers problémes de prob-
abilités en chaine, C. R. Acad. Sci. Paris 230 (1950), 591-593.

[5] P. Corvaja and U. Zannier, Some new applications of the subspace
theorem, Compositio Math. 131 (2002), 319-340.

[6] S. Daniel, On gaps between numbers that are sums of three cubes,
Mathematika 44 (1997), 1-13.

[7] A. Durand, Indépendance algébrique de nombres complexes et critere
de transcendance, Compositio Math. 35 (1977), 259-267.



ALGEBRAIC INDEPENDENCE 31

[8] M. J. Knight, An ‘ocean of zeros’ proof that a certain non-Liouville
number is transcendental, American Mathematical Monthly 98 (1991),
947-949.

[9] J. Liouville, Remarques relatives 1° a des classes tres-étendues de quan-
tités dont la valeur n’est ni rationnelle ni méme réducible a des irra-
tionnelles algébri-ques; 2° a un passage du livre des Principes ou New-
ton calcule I'action exercée par une sphere sur un point extérieur, C.
R. Acad. Sci. Paris 18 (1844), 883-885.

[10] J. Liouville, Nouvelle démonstration dun théoreme sur les irra-
tionnelles algébriques, C. R. Acad. Sci. Paris 18 (1844), 910-911.

[11] K. Mahler, Arithmetische Eigenschaften der Losungen einer Klasse von
Funktionalgleichungen, Math. Ann. 101 (1929), 342-366.

[12] K. Nishioka, Algebraic independence by Mahler’s method and S-unit
equations, Compositio Math. 92 (1994), 87-110.

[13] K. Nishioka, Mahler Functions and Transcendence, Lecture Notes in
Math. 1631, Springer, 1996.

[14] T. Rivoal, On the bits counting function of real numbers, J. Aust.
Math. Soc. 85 (2008), 95-111.

[15] K. Roth, Rational approximations to algebraic numbers, Mathematika
2 (1955), 1-20. Corrigendum, pp. 168.

[16] W. M. Schmidt, Simultaneous approximation and algebraic indepen-
dence of numbers, Bull. Amer. Math. Soc. 68 (1962), 475-478.

[17] 1. Shiokawa, Algebraic independence of certain gap series, Arch. Math.
38 (1982), 438-442.

DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE AND TECHNOLOGY, NIHON

UNIVERSITY, 1-8-14 KANDA-SURUGADAI, CHIYODA-KU, TOKYO 101-8308, JAPAN
E-mail address: kanekoha@math.cst.nihon-u.ac. jp



