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Abstract. Let α be an integer with α ≥ 2. In this paper we will give
new criteria for algebraic independence of numbers ξ =

∑∞
n=1 α

−w(n),
where (w(n))∞n=1 is a strictly increasing sequence of nonnegative integers.
Applying our criteria, we deduce algebraic independence of such ξ also
for suitable sequences (w(n))∞n=1 with limn→∞ w(n+1)/w(n) = 1, which
was impossible by early methods. For instance, let l be a positive real
number and put

ηl =
∞∑

n=1

α−[fl(n)],

where [x] is the integral part of a real number x and

fl(n) = exp
(
(log n)1+l

)
.

We prove, using Theorem 2.1, that the uncountable set {ηl | l ≥ 1} is
algebraically independent. Moreover, if h and l are distinct positive real
numbers, then ηh and ηl are algebraically independent.

1. Introduction

Let α ≥ 2 be an integer. A normal number in base α is a positive

number whose base-α digits show a uniform distribution. Namely, all finite

words with letters from the alphabet {0, 1, . . . , α−1} occur with the proper

frequency. Borel [3] showed that almost all positive numbers are normal in

each integral base. However, it is generally difficult to check whether a given

number is normal or not.

Borel [4] conjectured that all algebraic irrational numbers are normal in

every integral base. This conjecture is still open. There exists no algebraic

number that has been proven to be normal. Moreover, no counterexample is

known. If Borel’s conjecture is true, then nonzero digits in base-α expansions

of algebraic irrational numbers appear with average frequency tending to

(α − 1)/α. Consequently, for any irrational ξ, if Borel’s conjecture is true

and if nonzero digits of ξ in base-α occur with average frequency tending

to 0, then ξ is transcendental.

We now introduce known results about transcendency and algebraic in-

dependence of positive numbers whose densities of nonzero digits are low.
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In this paper, let N be the set of nonnegative integers and Z≥1 the set of

positive integers. Moreover, we denote the integral part of a real number ξ

by [ξ]. Let us use the Vinogradov symbols ≫ and ≪, as well as the Landau

symbols O and o with their regular meanings. Recall that f ≪ g, g ≫ f

and f = O(g) are all equivalent and mean that |f | ≤ c|g| holds with some

positive constant c. Moreover, f = o(g) (resp. f ∼ g) implies that the ratio

f/g tends to zero (resp. 1). All implied constants may depend on the given

data.

We consider the number

ξ =
∞∑
n=1

α−w(n),(1.1)

where α ≥ 2 is an integer and (w(n))∞n=1 is a strictly increasing sequence

of nonnegative integers. Liouville [9, 10] first showed the existence of tran-

scendental numbers in 1844. He obtained the transcendency of the num-

ber
∑∞

n=1 α
−n! by proving what is nowadays called Liouville’s inequality.

Schmidt [16] generalized this inequality and showed the numbers γ1, γ2, . . .

defined by

γl =
∞∑
n=1

α−(ln)! (l = 1, 2, . . .)

are algebraically independent. Durand [7] verified for each real algebraic

number z with 0 < z < 1 that the uncountable set{
ζh =

∞∑
n=0

z[hn!] | h > 0

}
is algebraically independent. Shiokawa [17] established algebraic indepen-

dence of the values of gap series at algebraic points containing those ap-

peared in [7] and [16]. However, we can not apply Liouville’s method in the

case of

lim sup
n→∞

w(n+ 1)

w(n)
<∞.

Let k ≥ 2 be an integer. Mahler [11] verified that the number
∑∞

n=0 α
−kn is

transcendental. More generally, he proved for each algebraic number z with

0 < |z| < 1 that Φk(z) =
∑∞

n=0 z
kn is transcendental by using the functional

equation

Φk(z
k) = Φk(z)− z.(1.2)

Using the Schmidt Subspace Theorem, Corvaja and Zannier [5] generalized

Mahler’s results above as follows: Assume that (w(n))∞n=1 is lacunary, that
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is, satisfies

lim inf
n→∞

w(n+ 1)

w(n)
> 1.(1.3)

Then, for every algebraic z with 0 < |z| < 1, the number
∑∞

n=1 z
w(n) is tran-

scendental. Mahler’s method is also applicable to algebraic independence

theory. Using (1.2), Nishioka [12] showed for each algebraic number z with

0 < |z| < 1 that the values Φ2(z),Φ3(z), . . . are algebraically independent.

For detailed information concerning Mahler’s method for transcendence and

algebraic independence, see [13].

Now we return to the base-α expansions of algebraic numbers. For posi-

tive numbers ξ and R, let λ(α, ξ, R) be the number of nonzero digits among

the first (1 + [R]) digits of the base-α expansion of ξ. Namely,

λ(α, ξ, R) = Card{n ∈ N | n ≤ [R], [ξαn]− α[ξαn−1] ̸= 0},

where Card denotes the cardinality. Assume that α = 2. Bailey, Borwein,

Crandall, and Pomerance [1] showed for any algebraic irrational ξ that there

exists a positive computable constant C(ξ) depending only on ξ satisfying

λ(2, ξ, N) ≥ C(ξ)N1/(deg ξ)(1.4)

for all sufficiently large N . With a suitable positive C(α, ξ) in place of C(ξ)

we can prove (1.4) for any integral base α ≥ 2 in the same way.

Theorem 1.1. Let α be an integer greater than 1 and ξ > 0 an algebraic

irrational number. Then there exist effectively computable positive constants

C(α, ξ) and C ′(α, ξ) depending only on α and ξ such that, for any integer

N with N ≥ C ′(α, ξ),

λ(α, ξ,N) ≥ C(α, ξ)N1/(deg ξ).(1.5)

The idea of the proof of Theorem 1.1 was inspired by the paper of Knight

[8]. Let ADX
D +AD−1X

D−1 + · · ·+A0 ∈ Z[X] be the minimal polynomial

of ξ, where AD > 0. In the rest of this section, C1(α, ξ) and C2(α, ξ) denote

effectively computable positive constants depending only on α and ξ. We

have

ADξ
D + AD−1ξ

D−1 + · · ·+ A0 = 0.(1.6)

We explain the notion of nonzero islands introduced by Knight for another

proof of the transcendency of ξ0 =
∑∞

n=0 α
−2n . Let D′, A′

0, A
′
1, . . . , A

′
D′ be
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integers with D′ ≥ 1 and A′
D′ ≥ 1. We show that

ω :=
D′∑
k=0

A′
kξ

k
0 ̸= 0.

For any k with 1 ≤ k ≤ D′ we have

ξk0 =
∞∑

m=0

τ(m, k)α−m,

where τ(m, k) denotes the number of ways that m can be written as a sum

of k powers of 2. Let b be a sufficiently large integer. Put N = (2D
′ − 1)2b.

Let m be an integer with

N − 2b−1 + 1 ≤ m ≤ N + 2b − 1.

Then Lemma 1 in [8] implies that

τ(m, k) =

{
D′! ( if m = N and k = D′),
0 (otherwise).

Hence, considering the carries of the base-α expansion of D′!A′
D′α−N , we

deduce the following: there exists an integerm withN ≤ m ≤ N+O(1) such

that the m-th digit of the base-α expansion of ω is not zero. In particular,

ω ̸= 0. Knight used the term nonzero islands to refer nonzero digits which

occur from the carries of the base-α expansion of D′!A′
D′α−N .

In [1], the Thue-Siegel-Roth theorem [15] was used in order to find

nonzero islands. However, the Thue-Siegel-Roth theorem is ineffective. So,

in this paper we use Liouville’s inequality instead of the Thue-Siegel-Roth

theorem. As a consequence, we obtain the effective lower bounds C ′(α, ξ)

in Theorem 1.1.

We give a sketch of the proof of Theorem 1.1 without technical details.

For simplicity, assume that 1 ≤ ξ < 2 and write the α-ary expansion of ξ

by

ξ =
∞∑

m=0

t(ξ,m)α−m.

Note that t(ξ, 0) = 1. For any k with 1 ≤ k ≤ D,

ξk =
∞∑

m=0

α−m
∑

i1,...,ik≥0
i1+···+ik=m

t(ξ, i1) · · · t(ξ, ik) =:
∞∑

m=0

α−mρ(k,m).(1.7)

Let k ≥ 2. Then, putting ik = 0, we get

ρ(k,m) ≥
∑

i1,...,ik−1≥0

i1+···+ik−1=m

t(ξ, i1) · · · t(ξ, ik−1)t(ξ, 0) = ρ(k − 1,m).(1.8)
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Let N be a positive integer. In the same way as the proof of Theorem 7.1 in

[1], we can show that there exists an interval I = [U1, U2) ⊂ [0, N) satisfying

the following four conditions:

(1) ρ(D − 1, U1) > 0.

(2) If U2 < N , then ρ(D − 1, U2) > 0.

(3)

ρ(D − 1,m) = 0(1.9)

for any m with U1 < m < U2.

(4)

|I| ≥ C1(α, ξ)N
1/D,(1.10)

where |I| = U2 − U1 is the length of I.

Using (1.8) and (1.9), we get

ρ(k,m) = 0,(1.11)

where k and m are integers with 1 ≤ k ≤ D − 1 and U1 < m < U2.

Liouville’s inequality implies the following: By (1.10), if N ≥ C2(α, ξ), then

there exists an m0 satisfying t(ξ,m0) > 0 and

1

D + 2
|I| ≤ m0 ≤

D + 1

D + 2
|I|.

In fact, suppose that t(ξ,m) = 0 for any m with

1

D + 2
|I| ≤ m ≤ D + 1

D + 2
|I|.

Put

m1 := max

{
m ∈ N

∣∣∣∣m <
1

D + 2
|I|, t(ξ,m) ̸= 0

}
,

m2 := min{m ∈ N | m2 > m1, t(ξ,m) ̸= 0}.

Then we have

m2 ≥ (D + 1)m1.

Let

p :=

m1∑
m=0

t(ξ,m)αm1−m, q := αm1 .

Then p and q are integers. Thus,

ξ − p

q
=

∞∑
m=m2

t(ξ,m)α−m

≤ α1−m2 ≤ α1−(D+1)m1 = αqD+1,
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which contradicts Liouville’s inequality in the case of N ≥ C2(α, ξ) because

we have (1.10).

Hence, putting U := U1 +m0, we obtain

U1 +
1

D + 2
|I| ≤ U ≤ U1 +

D + 1

D + 2
|I|(1.12)

and

ρ(D,U) ≥ ρ(D − 1, U1)t(ξ,m0) > 0.(1.13)

In what follows, we observe the α-ary expansion of the left-hand side of

(1.6), using (1.7). Note that (1.7) is not generally the α-ary expansion of ξk

because α−mρ(k,m) causes carry, O(log ρ(k,m)) to the higher digits. Recall

that AD > 0. Combining (1.10), (1.11), (1.12), and (1.13), we conclude that

positive digits left in the α-ary expansion of (1.6), which is a contradic-

tion. To explain the details of remaining positive digits, Bailey, Borwein,

Crandall, and Pomerance [1] introduced BBP tails. Note that the concept

of BBP tails is defined in the paper [2] in order to give rapid algorithms for

the computation of the n-th digits of certain transcendental numbers.

In the case of α = 2, Rivoal [14] improved the constant C(ξ) for certain

classes of algebraic irrational ξ. For example, let ε be an arbitrary positive

number and ξ′ = 0.558 . . . the unique positive zero of the polynomial 8X3−
2X2 + 4X − 3. Theorem 7.1 in [1] implies for any sufficiently large N that

λ(2, ξ′, N) ≥ (1− ε)16−1/3N1/3.

On the other hand, using Corollary 2 in [14], we obtain

λ(2, ξ′, N) ≥ (1− ε)N1/3

for all sufficiently large N .

Let us consider applications of Theorem 1.1. For each real number k with

k > 1, put

νk =
∞∑
n=0

α−[nk].

Let d be a natural number with 2 ≤ d < k. (1.5) implies that νk is not

an algebraic number of degree at most d. Moreover, using Theorem 1.1, we

deduce criteria for transcendence.

Corollary 1.2. Let α be an integer greater than 1 and ξ a positive irrational

number. Assume for an arbitrary positive number ε that

λ(α, ξ,N) = o(N ε).(1.14)

Then ξ is transcendental.
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For instance, the numbers
∞∑
n=1

α−n!,
∞∑
n=0

α−2n

are transcendental by Corollary 1.2 because these numbers fulfill (1.14).

Moreover, for positive numbers l and x with x ≥ 1, let

fl(x) = exp
(
(log x)1+l

)
.

Then the number

ηl =
∞∑
n=1

α−[fl(n)]

is transcendental by Corollary 1.2 because ηl satisfies (1.14). In fact, it is

easily seen that, for any ε > 0,

λ(α, ηl, R) ∼ exp
(
(logR)1/(1+l)

)
= o

(
exp(ε logR)

)
= o (Rε)

as R tends to infinity. Note that ηl does not satisfy inequality (1.3). Thus,

we cannot prove, using the result of Corvaja and Zannier, that the number

ηl is transcendental. In fact, for a real number x with x > 1, we have

log

(
fl(x+ 1)

fl(x)

)
= (log(x+ 1))1+l − (log x)1+l.

By the mean value theorem, there exists σ = σ(l, x) ∈ (0, 1) such that

log

(
fl(x+ 1)

fl(x)

)
= (1 + l)

(log(x+ σ))l

x+ σ
.

Since the right-hand side of the equality above converges to zero as x tends

to infinity, we obtain

lim
x→∞

fl(x+ 1)

fl(x)
= 1.

The main purpose of this paper is to deduce algebraic independence of

certain classes of numbers ξ which satisfy (1.14). We will introduce criteria

for algebraic independence in Theorem 2.1. We prove this theorem in Section

4. Our method is quite flexible because we do not use functional equation.

As a consequence of Theorem 2.1 we deduce algebraic independence of the

values ηl for real numbers l with l ≥ 1.

Theorem 1.3. The uncountable set {ηl | l ≥ 1} is algebraically indepen-

dent.

We can not prove, using Theorem 2.1, that the uncountable set {ηl | l >
0} is algebraically independent. However, we deduce that any two elements

of this set are algebraically independent.
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Theorem 1.4. Let h and l be distinct positive real numbers. Then ηh and

ηl are algebraically independent.

We verify Theorems 1.3 and 1.4 in Section 3.

2. Criteria for algebraic independence

Let α ≥ 2 be an integer and ξ a positive number. For each integer m,

put

t(ξ,m) = [ξαm]− α[ξαm−1] ∈ {0, 1, . . . , α− 1}.

Note that t(ξ,−m) = 0 for all sufficiently large m ∈ N. Then ξ is written as

ξ =
∞∑

m=−∞

t(ξ,m)α−m,

which is the α-ary expansion of ξ. Set

S(ξ) = {m ∈ N | t(ξ,m) ̸= 0}.

Recall for R > 0 that

λ(α, ξ, R) = Card{n ∈ S(ξ) | n ≤ R}.

Note that if 1 ≤ ξ < α, then 0 ∈ S(ξ). For each positive integer a, let

aS(ξ) = {n1 + · · ·+ na | n1, . . . , na ∈ S(ξ)}.

For convenience, let 0S(ξ) = {0}. Moreover, for any positive numbers

ξ1, . . . , ξr and nonnegative integers a1, . . . , ar, let
r∑

i=1

aiS(ξi) = {s1 + · · ·+ sr | si ∈ aiS(ξi) for 1 ≤ i ≤ r}.

For a nonempty subset A of N, let us define the function θ(R;A) by

θ(R;A) = max{n ∈ A | n < R},

where R is a real number with

R > min{n ∈ A}.

Assume that 1 ≤ ξ1, . . . , ξr < α. Let (a1, . . . , ar), (a
′
1, . . . , a

′
r) ∈ Nr, where

ai ≥ a′i for every i with 1 ≤ i ≤ r. Then we have
r∑

i=1

aiS(ξi) ⊃
r∑

i=1

a′iS(ξi)

because S(ξ1), . . . , S(ξr) ∋ 0. We now state criteria for algebraic indepen-

dence.

Theorem 2.1. Let ξ1, . . . , ξr be positive irrational numbers. Suppose that

these numbers satisfy the following three assumptions:
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(1) For an arbitrary positive ε, we have

λ(α, ξ1, R) = o (Rε)

and, for h = 2, . . . , r,

λ(α, ξh, R) = o
(
λ(α, ξh−1, R)

ε
)
.

as R tends to infinity.

(2) There exists a positive constant C1 such that

S(ξr) ∩ [C1R,R] ̸= ∅

for every sufficiently large real number R.

(3) Let a1, . . . , ar−1, ar be any nonnegative integers. If r ≥ 2, then there

exist a positive integer κ = κ(a1, . . . , ar−1) and a positive constant

C2(a1, . . . , ar), where κ depends only on a1, . . . , ar−1 and C2(a1, . . . , ar)

only on a1, . . . , ar, such that

R− θ

(
R;

r−2∑
i=1

aiS(ξi) + κS(ξr−1)

)
< R

r∏
i=1

λ(α, ξi, R)
−ai

for each real number R with R ≥ C2(a1, . . . , ar).

Then ξ1, . . . , ξr are algebraically independent.

Remark 2.2. In the case of r = 1, Theorem 2.1 follows from Corollary 1.2.

We verify Theorem 2.1 in Section 4. In the rest of this section we give a

sketch of the proof of Theorem 2.1 without technical details in the case where

r = 2 and κ(a1) = 1 + a1 for all a1 ≥ 0, where κ(a1) is defined in the third

assumption of Theorem 2.1. For simplicity, suppose that 1 ≤ ξ1, ξ2 < 2. If ξ1

and ξ2 are algebraically dependent, then there exists a nonzero polynomial

P (X1, X2) ∈ Z[X] such that

P (ξ1, ξ2) = 0.(2.1)

Let

P (X1, X2) :=
∑

k=(a1,a2)∈Λ

AkX
a1
1 X

a2
2 ,

where Λ is a nonempty finite subset of N2 and Ak a nonzero integer for each

k ∈ Λ. We search nonzero islands of the α-ary expansion of the left-hand
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side of (2.1). For any k = (a, b) ∈ Λ, we get

ξa1ξ
b
2 =

(
∞∑
x=0

t(ξ1, x)α
−x

)a( ∞∑
y=0

t(ξ2, y)α
−y

)b

=
∞∑

m=0

∑
i1,...,ia,j1,...,jb≥0

i1+···+ia+j1+···+jb=m

t(ξ1, i1) · · · t(ξ1, ia)t(ξ2, j1) · · · t(ξ2, jb)

=:
∞∑

m=0

α−mρ(k,m).(2.2)

Observe that ρ(k,m) > 0 if and only if m ∈ aS(ξ1) + bS(ξ2). In the proof

of Theorem 1.1, we used the relation

0 ∈ S(ξ) ⊂ 2S(ξ) ⊂ · · ·

in order to find nonzero islands. Indeed, (1.8) implies that (k − 1)S(ξ) ⊂
kS(ξ) (see also (1.13)). On the other hand, let (a1, a2), (a

′
1, a

′
2) ∈ Λ. Then,

in general, neither a1S(ξ1) + a2S(ξ2) ⊂ a′1S(ξ1) + a′2S(ξ2) nor a′1S(ξ1) +

a′2S(ξ2) ⊂ a1S(ξ1)+ a2S(ξ2) holds. This is the most different point between

the proofs of Theorems 1.1 and 2.1. Let ≻ be the lexicographical order in

N2. Namely, (a1, a2) ≻ (a′1, a
′
2), if a1 > a′1, or if a1 = a′1 and a2 > a′2. Let

g = (g1, g2) ∈ Λ be the greatest element of Λ with respect to ≻. Without

loss of generality, we may assume that Ag > 0. For any (a1, a2) ∈ Λ, if

a1 = g1, then a2 ≤ g2. Thus, we have a1S(ξ1)+a2S(ξ2) ⊂ g1S(ξ1)+g2S(ξ2).

If a1 < g1, then the relation above does not hold generally. However, by the

third assumption of Theorem 2.1, the set a1S(ξ1)+a2S(ξ2) is approximated

by (1+ a1)S(ξ1) because κ(a1) = a1+1. Moreover, we have (1+ a1)S(ξ1) ⊂
g1S(ξ1).

Based on the observation above, we give nonzero islands in Section 4.4.

Let N be a sufficiently large integer. We construct an interval J = [T1, T2) ⊂
[0, N) satisfying the following three conditions:

(1) T1 ∈ p1S(ξ1) + p2S(ξ2) for some (p1, p2) ∈ Λ with p1 < g1.

(2) If T2 < N , then T2 ∈ q1S(ξ1) + q2S(ξ2) for some (q1, q2) ∈ Λ with

q1 < g1.

(3) Let m be any integer with T1 < m < T2 and let (a1, a2) ∈ Λ with

a1 < g1. Then m ̸∈ a1S(ξ1) + a2S(ξ2).

Since p1S(ξ1)+ p2S(ξ2) and q1S(ξ1)+ q2S(ξ2) are approximated by g1S(ξ1),

we get a subinterval I = [R1, R2) of J satisfying the following three condi-

tions:

(1) R1 ∈ g1S(ξ1) + (g2 − 1)S(ξ2).

(2) R2 ∈ g1S(ξ1) + (g2 − 1)S(ξ2).
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(3) Let m be any integer with R1 < m < R2 and let k = (a1, a2) ∈ Λ

with g ≻ k. Then

m ̸∈ a1S(ξ1) + a2S(ξ2).(2.3)

Denote the length of I by |I| = R2 − R1. Using the second assumption of

Theorem 2.1, we deduce that there is an m0 ∈ N satisfying m0 ∈ S(ξ2) and

C1

1 + C1

|I| ≤ m0 ≤
1

1 + C1

|I|.

Putting U := R1 +m0, we obtain U ∈ g1S(ξ1) + g2S(ξ2) and

R1 +
C1

1 + C1

|I| ≤ U ≤ R1 +
1

1 + C1

|I|.(2.4)

In particular,

ρ(g, U) > 0.(2.5)

Now we observe the α-ary expansion of the left-hand side of (2.1), using

(2.2). Recall that Ag > 0 and that α−mρ(k,m) causes carry, O(log(k,m)) to

the higher digits. Hence, combining (2.3), (2.4), and (2.5), we conclude that

positive digits left in the α-ary expansion of (2.1), which is a contradiction.

To explain the details of remaining positive digits, we introduce BBP tails

YR in the last of Section 4.2.

3. Proof of main results

Proof of Theorem 1.3. Let {ηl1 , ηl2 , . . . , ηlr} be any finite subset of {ηl | l ≥
1}. Without loss of generality, we may assume that l1 < l2 < · · · < lr. Let

ξi = ηli − [ηli ] + 1 ∈ (1, 2)

for i = 1, . . . , r. Then S(ξi) ∋ 0 for i = 1, . . . , r. We check that ξ1, . . . , ξr

satisfy the assumptions of Theorem 2.1. Let l be a positive number. In

Section 1 we proved that, for any sufficiently large x,

fl(x) ≤ fl(x+ 1) ≤ 2fl(x).(3.1)

Therefore, we verified the second assumption with C1 = 1/2. For any posi-

tive numbers l and x with x ≥ 1, put

gl(x) = exp
(
(log x)1/(1+l)

)
.(3.2)

Note that gl is the inverse function of fl. Namely, for any x ≥ 1, we have

fl(gl(x)) = x. Let i and j be integers with 1 ≤ i, j ≤ r. As we mentioned in

Section 1, for any ε > 0,

λ(α, ξi, R) ∼ gli(R) = o (Rε)(3.3)
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as R tends to infinity. If i < j, then, for any ε > 0,

glj(R) = o
(
exp

(
ε(logR)1/(1+li)

))
= o (gli(R)

ε) .(3.4)

Thus the first assumption is fulfilled by (3.3) and (3.4). Finally we check

the third assumption. We introduce the results of Daniel [6]. Let (µn)
∞
n=1

be the strictly increasing sequence of those positive integers that can be

represented as the sum of three cubes of positive integers. Then Daniel

showed that

µn+1 − µn = O
(
µ8/27
n

)
.

In the same way as the proof of the result above, we get the following:

Lemma 3.1. Let k = (a1, . . . , ar) ∈ Nr\{(0, . . . , 0)}. Then, for R ≥ 2,

R− θ

(
R;

r∑
i=1

aiS(ξi)

)
≪ R(logR)a1+···+arg(R)−k,(3.5)

where

g(R)−k =
r∏

i=1

gli(R)
−ai .

Proof. We prove Lemma 3.1 by induction on the value a1+ · · ·+ar. Assume

that a1 + · · · + ar = 1. Then there exists an integer h with 1 ≤ h ≤ r and

ah = 1. We have

f ′
lh
(x) =

(1 + lh)flh(x)(log flh(x))
lh/(1+lh)

glh(flh(x))
.

Let x be a sufficiently large real number. Then, by the mean value theorem,

there exists ρ = ρ(x) ∈ (0, 1) such that

flh(x+ 1)− flh(x) =
(1 + lh)flh(x+ ρ)(log flh(x+ ρ))lh/(1+lh)

glh(flh(x+ ρ))

≤ (1 + lh)flh(x+ 1)(log flh(x+ 1))lh/(1+lh)

glh(flh(x))

≪ flh(x) log flh(x)

glh(flh(x))
,

where for the last inequality we use (3.1). For R > 1, let

F (R) =
R logR

glh(R)
.

Taking the logarithm of F (R), we deduce that F (R) is monotone increasing

for sufficiently large R. If R is sufficiently large, then there exists m ∈ N
such that

[flh(m)] < R ≤ [flh(1 +m)].
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Thus, we get θ(R;S(ξh)) = [flh(m)]. Since

F (flh(m)) ≪ F ([flh(m)]) ≤ F (R),

we obtain

0 < R− θ(R;S(ξh)) ≤ flh(m+ 1)− flh(m) + 1

≪ F (flh(m)) ≪ F (R),

which implies (3.5) in the case of a1 + · · · + ar = 1. Next, assume that

a1 + · · ·+ ar ≥ 2. Let

d = max{i ≥ 1|ai ≥ 1}.

Put

k′ = (a′1, . . . , a
′
r) := (a1, . . . , ad−1,−1 + ad, 0, . . . , 0).

Then we deduce, using the case of a1 + · · · + ar = 1, that there exists a

positive constant C satisfying

R′ := R− θ(R;S(ξd)) ≤ C
R logR

gld(R)
.

Note that

R− θ

(
R;

r∑
i=1

aiS(ξi)

)
≤ R′

because
r∑

i=1

aiS(ξi) ⊃ S(ξd).

Thus, we may assume that R′ ≥ 2. By the induction hypothesis, we get

R′ − θ

(
R′;

r∑
i=1

a′iS(ξi)

)
≪ R′(logR′)a

′
1+···+a′rg(R′)−k′

=: G(R′).

Let

γ = θ(R;S(ξd)) + θ

(
R′;

r∑
i=1

a′iS(ξi)

)
.

Then since

γ ∈
r∑

i=1

aiS(ξi),

we get

0 < R− θ

(
R;

r∑
i=1

aiS(ξi)

)
≤ R− γ

= R′ − θ

(
R′;

r∑
i=1

a′iS(ξi)

)
≪ G(R′).(3.6)
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Taking the logarithm of G(R), we deduce that the function G(R) is mono-

tone increasing for sufficiently large R. Thus, we obtain

G(R′) ≪ G

(
C
R logR

gld(R)

)
≪ G

(
R logR

gld(R)

)
=

R logR

gld(R)

(
log

R logR

gld(R)

)a′1+···+a′r

g

(
R logR

gld(R)

)−k′

≪ R

gld(R)
(logR)a1+···+arg

(
R

gld(R)

)−k′

.(3.7)

Let i ∈ N with 1 ≤ i ≤ d. Since li ≥ 1, we observe that, for any sufficiently

large R,(
log

(
R

gli(R)

))1/(1+li)

=
(
logR− (logR)1/(1+li)

)1/(1+li)

= (logR)1/(1+li)
(
1− (logR)−li/(1+li)

)1/(1+li)

≥ (logR)1/(1+li)

(
1− 2

1 + li
(logR)−li/(1+li)

)
≥ (logR)1/(1+li) − 1

and hence

gli

(
R

gld(R)

)
≫ gli

(
R

gli(R)

)
≫ gli(R).

Therefore, we obtain

g

(
R

gld(R)

)−k′

≪ g(R)−k′
.(3.8)

Combining the inequalities (3.6), (3.7) and (3.8), we conclude that

0 < R− θ

(
R;

r∑
i=1

aiS(ξi)

)
≪ R(logR)a1+···+arg(R)−k,

which implies (3.5). �

Let k = (a1, . . . , ar) ∈ Nr. Then, by (3.3), (3.4) and Lemma 3.1,

R− θ

(
R;

r−2∑
i=1

aiS(ξi) + (1 + ar−1)S(ξr−1)

)

≤ Rglr−1(R)
−1/2

r−1∏
i=1

gli(R)
−ai = o

(
R

r∏
i=1

λ(α, ξi, R)
−ai

)
asR tends to infinity. Hence, the third assumption of Theorem 2.1 is satisfied

with

κ = κ(a1, . . . , ar−1) = 1 + ar−1.

Therefore we proved Theorem 1.3. �
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Proof of Theorem 1.4. Without loss of generality, we may assume that h <

l. Let ξ1 = ηh − [ηh] + 1 and ξ2 = ηl − [ηl] + 1. Note that 1 < ξ1, ξ2 < 2

and that S(ξ1), S(ξ2) ∋ 0. In the same way as in the proof of Theorem

1.3, we can verify that ξ1 and ξ2 satisfy the first and second assumptions

of Theorem 2.1 with C1 = 1/2. In what follows, we prove that the third

assumption is satisfied. Let gl(x) be defined by (3.2).

Lemma 3.2. Let b be a positive integer. Then, for any positive number ε,

we have

R− θ(R; bS(ξ1)) ≪ Rgh(R)
−b+ε(3.9)

for R ≥ 2.

Proof. We show (3.9) by induction on b. Assume that b = 1. In the same

way as in the proof of Lemma 3.1, we deduce that there exists a positive

constant C satisfying

R′ := R− θ(R;S(ξ1)) ≤ C
R logR

gh(R)
,(3.10)

which implies (3.9) because, for any positive ε,

logR = o(gh(R)
ε)

as R tends to infinity. Suppose that b ≥ 2. Without loss of generality, we

may assume that R′ ≥ 2 and that ε < 1. In particular, we have

−b+ 1 + ε < 0.

By the induction hypothesis,

R′ − θ(R′; (b− 1)S(ξ1)) ≪ R′gh(R
′)−b+1+ε/3 =: H(R′).

We obtain, taking the logarithm of H(R), that the function H(R) is mono-

tone increasing for sufficiently large R. Hence,

0 < R− θ(R; bS(ξ1))

≤ R− θ(R;S(ξ1))− θ(R′; (b− 1)S(ξ1))

= R′ − θ(R′; (b− 1)S(ξ1)) ≪ H(R′)

≪ H

(
C
R logR

gh(R)

)
≪ H

(
R logR

gh(R)

)
=

R logR

gh(R)
gh

(
R logR

gh(R)

)−b+1+ε/3

≪ Rgh(R)
−1+ε/3gh

(
R

gh(R)

)−b+1+ε/3

.(3.11)
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Let

ε′ :=
ε

3b− 3− ε
∈ (0, 1).

Then

(1− ε′)
(
−b+ 1 +

ε

3

)
= −b+ 1 +

2

3
ε.

For all sufficiently large R, we obtain(
log

(
R

gh(R)

))1/(1+h)

=
(
logR− (logR)1/(1+h)

)1/(1+h)

≥ (1− ε′)(logR)1/(1+h)

and hence

gh

(
R

gh(R)

)−b+1+ε/3

≤ gh(R)
(1−ε′)(−b+1+ε/3)

= gh(R)
−b+1+2ε/3.

Combining (3.11) and the inequality above, we proved (3.9). �

Let (a1, a2) ∈ N2. Then, applying Lemma 3.2 with b = a1+1 and ε = 1/2,

we get

R− θ(R; (a1 + 1)S(ξ1)) ≪ Rgh(R)
−a1−1/2

= o

(
R

2∏
i=1

λ(α, ξi, R)
−ai

)
as R tends to infinity. Therefore we checked the third assumption of Theo-

rem 2.1 with κ = κ(a1) = a1 + 1 and hence verified Theorem 1.4. �

4. Proof of Theorem 2.1

4.1. Base-α expansions of powers of real numbers. We prove The-

orem 2.1 by induction on r. Using Corollary 1.2, we deduce the case of

r = 1. In what follows, suppose that r ≥ 2. Without loss of generality we

may assume that 1 ≤ ξ1, . . . , ξr < 2. In fact, ξ1, . . . , ξr are algebraically

independent if and only if ξ′1, . . . , ξ
′
r are algebraically independent, where

ξ′i = ξi − [ξi] + 1 for i = 1, . . . , r.

For simplicity, let

λi(R) = λ(α, ξi, R) for i = 1, . . . , r and R > 0.
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For convenience, put N0 = {0}. Let ξ > 0, b ∈ N,x = (x1, . . . , xb) ∈ Nb, and

s = (s1, . . . , sb) ∈ Zb. Put

|x| =

{
0 (b = 0),

x1 + · · ·+ xb (b ≥ 1),

t(ξ,x) =

{
1 (b = 0),

t(ξ, x1) · · · t(ξ, xb) (b ≥ 1),

xs =

{
1 (b = 0),

xs11 · · · xsbb (b ≥ 1).

In what follows, we denote (ξ1, . . . , ξr) and (λ1(R), . . . , λr(R)) by ξ and

λ(R), respectively. Then, for each k = (a1, . . . , ar) ∈ Nr\{(0, . . . , 0)}, we
have

ξk =
r∏

i=1

(
∞∑
x=0

t(ξi, x)α
−x

)ai

=
r∏

i=1

(∑
x∈Nai

t(ξi,x)α
−|x|

)
=

∑
x1∈Na1 ,...,xr∈Nar

t(ξ1,x1) · · · t(ξr,xr)α
−|x1|−···−|xr|

=
∞∑

m=0

ρ(k,m)α−m,(4.1)

where

ρ(k,m) :=
∑

x1∈Na1 ,...,xr∈Nar
|x1|+···+|xr |=m

t(ξ1,x1) · · · t(ξr,xr) ∈ N.

Note that, for each m ∈ N, ρ(k,m) > 0 if and only if m ∈
∑r

i=1 aiS(ξi). It

is easily seen that

ρ(k,m) ≤
∑

x1∈Na1 ,...,xr∈Nar
|x1|+···+|xr |=m

(α− 1)|k|

= (α− 1)|k|
(
m+ |k| − 1

|k| − 1

)
.(4.2)

We now check the following:

Lemma 4.1. Let k = (a1, . . . , ar) ∈ Nr\{(0, . . . , 0)} and N ∈ N.
(1)

N∑
m=0

ρ(k,m) ≤ (α− 1)|k|λ(N)k.

(2)

Card{m ∈ N | m ≤ N, ρ(k,m) > 0} ≤ (α− 1)|k|λ(N)k.
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Proof. Put, for i = 1, . . . , r,

Si = {m ∈ S(ξi) | m ≤ N}, S0
i = {0}.

Then
N∑

m=0

ρ(k,m) =
∑

x1∈Na1 ,...,xr∈Nar
|x1|+···+|xr |≤N

t(ξ1,x1) · · · t(ξr,xr)

≤
∑

x1∈S
a1
1 ,...,xr∈Sar

r

(α− 1)|k| = (α− 1)|k|λ(N)k,

which implies the first statement of Lemma 4.1. The second statement fol-

lows from the first one because ρ(k,m) ∈ N for each m ∈ N. �

4.2. Auxiliary functions. We define the lexicographical order ≻ on Nr

as follows. For any k = (a1, . . . , ar), k
′ = (a′1, . . . , a

′
r) with k ̸= k′, there

exists a positive l such that the first (l − 1) symbols in k = (a1, . . . , ar)

and k′ = (a′1, . . . , a
′
r) coincide, but their lth symbols are different. Then

k = (a1, . . . , ar) ≻ k′ = (a′1, . . . , a
′
r) if and only if al > a′l.

Each nonzero polynomial Q(X) ∈ Z[X1, . . . , Xr] is uniquely written as

Q(X) =
∑

k∈Λ(Q)

BkX
k,

where Λ(Q) is a finite subset of Nr determined by Q, Bk a nonzero integer

and X = (X1, . . . , Xr). Recall for k = (a1, . . . , ar) that X
k = Xa1

1 · · ·Xar
r .

Let g(Q) = (g1(Q), . . . , gr(Q)) be the greatest element of Λ(Q) with respect

to ≻. Moreover, put

Λ1(Q) = {k ∈ Λ(Q) | a1 = g1(Q), . . . , ar−1 = gr−1(Q), ar < gr(Q)},

Λ2(Q) = Λ(Q)\
(
Λ1(Q) ∪ {g(Q)}

)
,

Λ3(Q) = {k ∈ Λ(Q) | a1 = g1(Q), . . . , ar−2 = gr−2(Q), ar−1 < gr−1(Q)},

where k = (a1, . . . , ar). We define the number e(Q) as follows. If Λ3(Q) is

empty, then put e(Q) = 0. Otherwise, let

e(Q) = max{ar−1 | (a1, . . . , ar−1, ar) ∈ Λ3(Q)}.

Now assume that ξ1, . . . , ξr are algebraically dependent. Then there exists

a nonzero polynomial P (X) ∈ Z[X1, . . . , Xr] such that

P (ξ) = 0.

By the induction hypothesis ξ2, . . . , ξr are algebraically independent. Thus,

the degree of P (X) in X1 is positive. Namely, g1(P ) ≥ 1. Without loss of



ALGEBRAIC INDEPENDENCE 19

generality, we may assume that

Xr(Xr − 1)|P (X).(4.3)

In what follows, let

κ(n) := κ(g1(P ), g2(P ), . . . , gr−2(P ), n),

where n is a nonnegative integer and the right-hand side of the equality

above is defined in the third assumption of Theorem 2.1. Let m and n be

integers with 0 ≤ m ≤ n. Then, for any positive number R, we have

R− θ

(
R;

r−2∑
i=1

gi(P )S(ξi) + nS(ξr−1)

)

≤ R− θ

(
R;

r−2∑
i=1

gi(P )S(ξi) +mS(ξr−1)

)
because

r−2∑
i=1

gi(P )S(ξi) + nS(ξr−1) ⊃
r−2∑
i=1

gi(P )S(ξi) +mS(ξr−1).

So, if necessary, by increasing κ(n), we may assume that κ(n) ≥ 1 for any

n ∈ N and that the sequence (κ(n))∞n=0 is monotone increasing.

Lemma 4.2. There is a nonzero polynomial F (Xr−1, Xr) ∈ Z[Xr−1, Xr]

such that

gr−1(FP ) ≥ κ(e(FP )).

Proof. We define the nonzero polynomial σ(Xr−1, Xr) ∈ Z[Xr−1, Xr] as fol-

lows. If r = 2, then put

σ(X1, X2) := P (X1, X2).(4.4)

If r ≥ 3, then P (X) is uniquely written as

P (X) =
∑

k=(a1,...,ar−2)∈Γ

φk(Xr−1, Xr)X
a1
1 · · ·Xar−2

r−2 ,(4.5)

where Γ is a finite subset of Nr−2 and φk(Xr−1, Xr) ∈ Z[Xr−1, Xr] a nonzero

polynomial. Note that l := (g1(P ), . . . , gr−2(P )) ∈ Γ. Now put

σ(Xr−1, Xr) := φl(Xr−1, Xr).

Let

σ(Xr−1, Xr) =:
b∑

i=0

σi(Xr)X
i
r−1,
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where σi(Xr) ∈ Z[Xr] with σb(Xr) ̸= 0. We show for any integer n with

n ≥ b that there is a nonzero polynomial ψ(n)(Xr−1, Xr) ∈ Z[Xr−1, Xr]

satisfying the following: σ(Xr−1, Xr)ψ
(n)(Xr−1, Xr) is written as

σ(Xr−1, Xr)ψ
(n)(Xr−1, Xr) = ψ

(n)
b (Xr)X

n
r−1 +

b−1∑
i=0

ψ
(n)
i (Xr)X

i
r−1,(4.6)

where ψ
(n)
i (Xr) ∈ Z[Xr] for i = 0, 1, . . . , b with ψ

(n)
b (Xr) ̸= 0. In the case

of b = 0, it is clear that ψ(n)(Xr−1, Xr) = Xn
r−1 satisfies (4.6). Suppose

that b ≥ 1. We check (4.6) by induction on n. If n = b, then putting

ψ(b)(Xr−1, Xr) = 1, we get (4.6). Assume that n ≥ b+1. Then the induction

hypothesis implies that

ψ(n)(Xr−1, Xr) = σb(Xr)Xr−1ψ
(n−1)(Xr−1, Xr)− ψ

(n−1)
−1+b (Xr)

fulfills (4.6). ψ(n)(Xr−1, Xr) ̸= 0 because σb(Xr)ψ
(n−1)(Xr−1, Xr) ̸= 0. Let

w = max{0, b− 1}. In what follows, we verify that

F (Xr−1, Xr) := ψ(κ(w))(Xr−1, Xr)

satisfies the statement of Lemma 4.2. Using (4.5) and (4.6), we deduce that

the first (r − 2) symbols of g(P ) and g(FP ) coincide in the case of r ≥ 3.

Moreover, we obtain

gr−1(FP ) = κ(w)(4.7)

and

e(FP ) ≤ w.(4.8)

In fact, if Λ3(FP ) is not empty, then by (4.4), (4.5), and (4.6), we get

e(FP ) ≤ b− 1. Hence, combining (4.7) and (4.8), we conclude that

gr−1(FP ) ≥ κ(e(FP ))

because the sequence (κ(n))∞n=0 is monotone increasing. �

For simplicity, put

Λ = Λ(FP ),

Λh = Λh(FP ) for 1 ≤ h ≤ 3,

k0 = (g1, . . . , gr) := g(FP ).

Recall that, for i = 1, 2, . . . , r − 2,

gi = gi(FP ) = gi(P ),

so

κ(n) = κ(g1, g2, . . . , gr−2, n)
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for each n ∈ N. Let

F (Xr−1, Xr)P (X) =
∑
k∈Λ

AkX
k,

where Ak is a nonzero integer. Then∑
k∈Λ

Akξ
k = 0.(4.9)

Note that, for each k ∈ Λ, we have |k| ≥ 1 because Xr divides P (X).

Without loss of generality, we may assume that Ak0 ≥ 1.

Lemma 4.3. Λ1 and Λ2 are not empty.

Proof. First suppose that Λ2 is empty. Then, for each k = (a1, . . . , ar), we

have a1 = g1, . . . , ar−1 = gr−1. Thus, (4.9) implies that ξr is an algebraic

number, which contradicts to the induction hypothesis.

Next, assume that Λ1 is empty. Then we get∑
k=(a1,...,ar)∈Λ

a1=g1,...,ar−1=gr−1

AkX
k = Ak0X

k0 .(4.10)

Let Φ : Z[X1, . . . , Xr] → Z[X1, . . . , Xr−1] be defined by

Φ(Q(X1, . . . , Xr)) = Q(X1, . . . , Xr−1, 1).

By (4.10), the greatest element of Φ(F (Xr−1, Xr)P (X)) with respect to the

lexicographical order on Nr−1 is (g1, . . . , gr−1). So, Φ(F (Xr−1, Xr)P (X)) is

not zero. Namely, Xr − 1 does not divide F (Xr−1, Xr)P (X), which contra-

dicts (4.3). �

Let

D = 1 +max{|k|
∣∣k ∈ Λ}.

Denote the greatest element of Λ1 and Λ2 with respect to ≻ by k1 and k2,

respectively. Let

e = (g1, g2, . . . , gr−2, e(FP ), D).

Then, for each k ∈ Λ2, we have k ≺ e. In fact, if Λ3 is empty, then there

exists a positive l with l ≤ r− 2 such that the first (l− 1) symbols in e and

k2 coincide, but the l th symbol of e is greater than that of k2. Otherwise,

k2 is written as

k2 = (g1, g2, . . . , gr−2, e(FP ), a)

with a < D, and so k2 ≺ e. By the first assumption of Theorem 2.1, for any

k ∈ Λ2,

λ(n)k = o (λ(n)e) .(4.11)
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Lemma 4.2 implies

gr−1 ≥ κ(e(FP )).(4.12)

Let Ξ be the set of nonnegative integers N such that, for every integer n

with 0 ≤ n ≤ N ,

nλ(n)−e ≤ Nλ(N)−e.(4.13)

Note that Ξ is an infinite set. In fact, by the first assumption of Theorem

2.1, we have

lim
N→∞

Nλ(N)−e = ∞.

If necessary, by increasing C2(e), we may assume that λr(n) ≥ 5 for every

n ∈ N with n ≥ C2(e), where C2(e) is defined in the third assumption of

Theorem 2.1. For simplicity, let

θ(R) = θ

(
R;

r−1∑
i=1

giS(ξi)

)
.

Lemma 4.4. Let M and E be any positive real numbers with

M ≥ C2(e)

and

E ≥ 4Mλ(M)−e.

Then

M +
1

2
E < θ(M + E).

Proof. Using

E

4
≥ Mλ(M)−e,

E

4
> Eλ(M)−e,

we get

E

2
> (M + E)λ(M)−e ≥ (M + E)λ(M + E)−e.

Note that M + E ≥ C2(e). Thus, using (4.12) and the third assumption of

Theorem 2.1 with

(a1, . . . , ar) = e, R =M + E,

we deduce that

M + E − θ(M + E) < (M + E)λ(M + E)−e <
E

2
,

which implies Lemma 4.4. �
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Using (4.1) and (4.9), we get, for each R ∈ N,

0 = αR
∑
k∈Λ

Akξ
k =

∑
k∈Λ

Ak

∞∑
m=−R

ρ(k,m+R)α−m,

so

YR :=
∑
k∈Λ

Ak

∞∑
m=1

ρ(k,m+R)α−m ∈ Z.

Let N ∈ N. In what follows, we estimate the number y(N) of R ∈ N
satisfying R ≤ N and YR > 0, namely,

y(N) = Card{R ∈ N | R ≤ N, YR > 0}.

4.3. Bounds for y(N). First, we consider upper bounds for y(N).

Lemma 4.5.

y(N) = o(N)

as N tends to infinity.

Proof. For k ∈ Λ and R ∈ N, let

Y (k, R) =
∞∑

m=1

ρ(k,m+R)α−m ≥ 0.

Then by (4.2)

Y (k, R) ≤
∞∑

m=1

(α− 1)|k|
(
m+R + |k| − 1

|k| − 1

)
α−m

≤ (α− 1)|k|
∞∑

m=1

(
m+R + |k| − 1

|k| − 1

)
2−m.

In the proof of Theorem 2.1 of [1], Bailey, Borwein, Crandall, and Pomerance

showed for R ≥ 0 and l ≥ 1 that
∞∑

m=1

(
m+R + l − 1

l − 1

)
2−m <

(R + l)l

(l − 1)!(R + 1)
.

Since |k| ≥ 1, we get

Y (k, R) <
(α− 1)|k|(R + |k|)|k|

(|k| − 1)!(R + 1)
.(4.14)

In particular,

N∑
R=0

Y (k, R) <
N∑

R=0

(α− 1)|k|(N + |k|)|k|

(|k| − 1)!

≤ (α− 1)|k|(N + |k|)|k|+1

(|k| − 1)!
.(4.15)
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By the first assumption of Theorem 2.1, we have

λ(N)k = o(N).(4.16)

LetK = ⌈D logαN⌉, where logαN = (logN)/(logα) and ⌈x⌉ is the smallest

integer greater than or equal to a real number x. Then by (4.15), (4.16) and

the first statement of Lemma 4.1, we get

N−K∑
R=0

Y (k, R) =
∞∑

m=1

α−m

N−K∑
R=0

ρ(k,m+R)

≤
K∑

m=1

α−m

N∑
R=0

ρ(k, R) + α−K

∞∑
m=1+K

αK−m

N−K∑
R=0

ρ(k,m+R)

≤ (α− 1)|k|λ(N)k + α−K

N−K∑
R=0

∞∑
m=1

ρ(k,m+R +K)α−m

= o(N) + α−K

N−K∑
R=0

Y (k, R +K)

≤ o(N) +N−D(α− 1)D(N +D)D = o(N).

Since Y (k, R) ≥ 0,

N−K∑
R=0

|YR| ≤
∑
k∈Λ

|Ak|
N−K∑
R=0

Y (k, R) = o(N).

Using YR ∈ Z, we obtain

y(N) ≤ K +
N−K∑
R=0

|YR| = o(N).

�

Next, we estimate lower bounds for y(N).

Lemma 4.6. Let N ∈ N be sufficiently large and I = [U1, U2) an interval

with I ⊂ [0, N). Suppose that ρ(k, x) = 0 for any integer x ∈ (U1, U2) and

k ∈ Λ\{k0}. Moreover, assume that there exists U ∈ N satisfying

U1 < U ≤ U2 −D logαN

and

ρ(k0, U) > 0.

Then Yn > 0 for any n ∈ [U1, U).
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Proof. We prove Lemma 4.6 by induction on n. First we consider the case

of n = U − 1. Using (4.14), Ak0 ≥ 1, and the assumptions on I and U , we

obtain

YU−1 =
∑
k∈Λ

Ak

∞∑
m=1

ρ(k,m+ U − 1)α−m

≥ 1

α
−

∑
k∈Λ\{k0}

|Ak|
∞∑

m=1+U2−U

ρ(k,m+ U − 1)α−m

=
1

α
−

∑
k∈Λ\{k0}

|Ak|αU−U2Y (k, U2 − 1)

≥ 1

α
−

∑
k∈Λ\{k0}

|Ak|N−D(α− 1)D−1(N +D − 1)D−1 > 0

for all sufficiently large N .

Next, suppose that Yn > 0 for some n ∈ N with 1 + U1 ≤ n ≤ U − 1.

Then by Ak0ρ(k0, n) ≥ 0 we get

Yn−1 =
1

α

∑
k∈Λ

Akρ(k, n) +
1

α

∑
k∈Λ

Ak

∞∑
m=2

ρ(k,m+ n− 1)α−m+1

=
1

α
Ak0ρ(k0, n) +

1

α
Yn > 0.

Hence we verified Lemma 4.6. �

4.4. Completion of the proof of Theorem 2.1. We construct intervals

I = [U1, U2) satisfying the assumptions of Lemma 4.6. Using (4.11) and the

second statement of Lemma 4.1, we deduce the following: Let N ∈ Ξ be

sufficiently large. Then the number of nonnegative integers T with T ≤ N

such that there exists a k ∈ Λ2 with ρ(k, T ) > 0 is at most∑
k∈Λ2

(α− 1)|k|λ(N)k ≤ 1

32
λ(N)e.

Say these T ’s are 0 = T1 < T2 < · · · < Tτ , where

τ ≤ 1

32
λ(N)e.(4.17)

Set T1+τ = N and

J = {J = J(j) = [Tj, T1+j) | 1 ≤ j ≤ τ}.

For any interval I ⊂ R, let |I| denote its length. Then we have∑
J∈J

|J | = N.(4.18)
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Moreover, put

J1 =
{
J ∈ J

∣∣|J | ≥ 16Nλ(N)−e
}
,

J2 = {J ∈ J1 | J ⊂ [C2(e), N)}.

Lemma 4.7. Let N ∈ Ξ be sufficiently large.

(1) ∑
J∈J1

|J | ≥ N

2
.

(2) ∑
J∈J2

|J | ≥ N

3
.

Proof. By (4.17) and (4.18)∑
J∈J1

|J | =
∑
J∈J

|J | −
∑

J∈J\J1

|J |

≥ N − τ · 16Nλ(N)−e ≥ N

2
,

which implies the first statement of Lemma 4.7. We now check the sec-

ond statement. Take positive integers N0 < N1 satisfying Ni > C2(e) and

ρ(k2, Ni) > 0 for i = 0, 1. If N > N1, then there exists j0 = j0(N) with

Tj0 = N0, T1+j0 ≤ N1

by the definition of T1, T2, . . . , T1+τ . Let J(j) ∈ J1\J2. Then j ≤ j0. Hence,

for any N ∈ Ξ with N ≥ 6N1,∑
J∈J2

|J | ≥
∑
J∈J1

|J | −
j0∑
j=1

|J(j)|

≥ 1

2
N −N1 ≥

1

3
N.

�

By Lemma 4.1 the number of nonnegative integers R with R ≤ N such

that there exists a k ∈ Λ1 with ρ(k, R) > 0 is at most∑
k∈Λ1

(α− 1)|k|λ(N)k ≤ C3λ(N)k1 ,

where C3 is a positive constant. Say these R’s are 0 = R1 < R2 < · · · < Rµ,

where

µ ≤ C3λ(N)k1 .(4.19)
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Let R1+µ = N and

I = {I = [Ri, R1+i) | 1 ≤ i ≤ µ}.

Then ∑
I∈I

|I| = N.

Put

I1 = {I ∈ I | I ⊂ J for some J ∈ J },

I2 =

{
I ∈ I1

∣∣∣∣|I| ≥ 1

12C3

Nλ(N)−k1

}
.

Lemma 4.8. Let N ∈ Ξ be sufficiently large.

(1) ∑
I∈I1

|I| ≥ N

6
.

(2) ∑
I∈I2

|I| ≥ N

12
.

Proof. We check the first statement. For any J = [Tj, T1+j) ∈ J2, we have

C2(e) ≤ Tj < T1+j ≤ N . If N ∈ Ξ is sufficiently large, then by (4.13)

|J |
4

≥ 4Nλ(N)−e ≥ T1+jλ(T1+j)
−e.

So, using (4.12) and the third assumption of Theorem 2.1 with

(a1, . . . , ar) = e, R = T1+j,

we obtain

T1+j > θ(T1+j) > T1+j − T1+jλ(T1+j)
−e

≥ T1+j −
|J |
4
.

k1 is written as k1 = (g1, . . . , gr−1, u). Since

θ(T1+j) ∈
r−1∑
h=1

ghS(ξh) ⊂
r−1∑
h=1

ghS(ξh) + uS(ξr),

we get

ρ(k1, θ(T1+j)) > 0.

Thus, by the definition of R1, R2, . . . , R1+µ,

θ(T1+j) = Ri(4.20)
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for some i ∈ N. Consequently, we put

β(J) = min{n ∈ N | n > Tj, n = Ri for some i ∈ N},

γ(J) = max{n ∈ N | n < T1+j, n = Ri for some i ∈ N}.

Then it is clear that ∑
I∈I,I⊂J

|I| = γ(J)− β(J)(4.21)

and that

γ(J) ≥ θ(T1+j) > T1+j −
|J |
4
.(4.22)

Similarly, we have

|J |
4

≥ 4Nλ(N)−e ≥ 4Tjλ(Tj)
−e.

Applying Lemma 4.4 with

M = Tj, E =
|J |
4
,

we get

Tj +
|J |
8
< θ

(
Tj +

|J |
4

)
< Tj +

|J |
4
.

In the same way as in the proof of (4.20), we deduce that

θ

(
Tj +

|J |
4

)
= Ri

for some i ∈ N. Hence

β(J) ≤ θ

(
Tj +

|J |
4

)
< Tj +

|J |
4
.(4.23)

Therefore, combining (4.21), (4.22) and (4.23), we obtain∑
I∈I,I⊂J

|I| ≥ 1

2
|J |.

Consequently, using Lemma 4.7, we conclude that∑
I∈I1

|I| ≥
∑
J∈J2

∑
I∈I,I⊂J

|I| ≥ 1

2

∑
J∈J2

|J | ≥ 1

6
N,

which implies the first statement.

Using (4.19) and the first statement of Lemma 4.8, we get∑
I∈I2

|I| =
∑
I∈I1

|I| −
∑

I∈I1\I2

|I|

≥ 1

6
N − µ

1

12C3

Nλ(N)−k1 ≥ 1

12
N.

Thus we verified the second statement. �
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In what follows, we show that each interval I ∈ I2 satisfies the assump-

tions of Lemma 4.6. The first assumption of Theorem 2.1 implies that, for

any k ∈ Λ,

logαN = o
(
Nλ(N)−k

)
.(4.24)

By the second assumption of Theorem 2.1, there exists a positive constant

C4 such that, for any real number R with R ≥ C4,

S(ξr) ∩ [C1R,R] ̸= ∅.

Moreover, by (4.24) there is a positive constant C5 such that, for each nat-

ural number N with N ≥ C5,

1

12C3

Nλ(N)−k1 −D logαN ≥ C4.(4.25)

Let N ∈ Ξ and I = [Ri, R1+i) ∈ I2. Suppose that N is sufficiently large.

Then we have

|I| ≥ 1

12C3

Nλ(N)−k1 .(4.26)

If N ≥ C5, then by (4.25) and (4.26), there exists V ∈ S(ξr) with

C1(|I| −D logαN) ≤ V ≤ |I| −D logαN.(4.27)

Using (4.24) and (4.26), we get

C1(|I| −D logαN) ≥ 1 +

[
1

2
C1|I|

]
(4.28)

because N is sufficiently large. Let

U = Ri + V.

Then there exists k = (g1, . . . , gr−1, b) ∈ Λ1 (b < gr) such that

U ∈
r−1∑
i=1

giS(ξi) + (1 + b)S(ξr) ⊂
r∑

i=1

giS(ξi),

so

ρ(k0, U) > 0.

Moreover, by (4.27) and (4.28)

Ri + 1 +

[
1

2
C1|I|

]
≤ U ≤ Ri+1 −D logαN.

By the definition of I2, there exists a positive integer j such that

I = [Ri, Ri+1) ⊂ [Tj, Tj+1).

Hence, for any integer x with x ∈ (Ri, Ri+1) and k ∈ Λ\{k0}, we have

ρ(k, x) = 0
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because Λ\{k0} = Λ1∪Λ2. Thus, by Lemma 4.6, Yn > 0 for any n ∈ N with

Ri ≤ n ≤ Ri +

[
1

2
C1|I|

]
.

Hence, using Lemma 4.8, we conclude that

y(N) ≥
∑
I∈I2

(
1 +

[
1

2
C1|I|

])
≥ 1

24
C1N,

which contradicts the statement of Lemma 4.5. Therefore we proved Theo-

rem 2.1.
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