学術論文

  1. Y. Hamana, On the central limit theorem for the multiple point range of random walk, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Vol. 39, No. 2 (1992), 339-363.
  2. Y. Hamana, The variance of the single point range of two dimensional recurrent random walk, Proc. Japan Acad., Ser. A Math. Sci., Vol. 68, No. 7 (1992), 195-197.
  3. Y. Hamana, The law of the iterated logarithm for the single point range random walk, Tokyo J. Math., Vol. 17, No. 1 (1994), 171-180.
  4. Y. Hamana, The fluctuation results for the single point range of random walks in low dimensions, Japan. J. Math. (N.S.), Vol. 21, No. 2 (1995), 287-333.
  5. Y. Hamana, The limit theorems for the single point range of strongly transient random walks, Osaka J. Math., Vol. 32, No.4 (1995), 869-886.
  6. Y. Hamana, On the multiple point range of three dimensional random walks, Kobe J. Math., Vol. 12, No.2 (1995), 95-122.
  7. Y. Hamana, The fluctuation result for the multiple point range of two dimensional recurrent random walks, Ann. Probab., Vol. 25, No.2 (1997), 568-639.
  8. Y. Hamana, A remark on the multiple point range of two dimensional random walks, Kyushu J. Math., Vol. 52, No.1 (1998), 23-80.
  9. Y. Hamana, An almost sure invariance principle for the range of random walks, Stochastic Process. Appl., Vol. 78, No.2 (1998), 131-143.
  10. Y. Hamana, Asymptotics of the moment generating function for the range of random walks, J. Theoret. Probab., Vol. 14, No.1 (2001), 189-197.
  11. Y. Hamana and H. Kesten, A large-deviation result for the range of random walk and for the Wiener sausage, Probab. Theory Related Fields, Vol. 120, No. 2 (2001), 183-208.
  12. Y. Hamana and H. Kesten, Large deviations for the range of an integer valued random walk, Ann. Henri Poincaré Probab. Statist., Vol. 38, No. 1 (2002), 17-58.
  13. Y. Hamana, A remark on the range of three dimensional pinned random walks, Kumamoto J. Math., Vol. 19 (2006), 83--98.
  14. Y. Hamana, On the range of pinned random walks, Tohoku Math. J. (2), Vol. 58, No.3 (2006), 329--357.
  15. Y. Hamana, On the expected volume of the Wiener sausage, J. Math. Soc. Japan, Vol. 62, No. 4 (2010), 1113-1136.
  16. Y. Hamana, The expected volume and surface area of the Wiener sausage in odd dimensions, Osaka J. Math., Vol. 49, No. 4 (2012), 853-868.
  17. Y. Hamana and H. Matsumoto, The probability densities of the first hitting times of Bessel processes, J. Math-for-Ind., Vol. 4B (2012), 91-95.
  18. Y. Hamana and H. Matsumoto, The probability distribution of the first hitting time of Bessel processes, Trans. Amer. Math. Soc., Vol. 365, No. 10 (2013), 5237-5257.
  19. Y. Hamana and H. Matsumoto, Asymptotics of the probability distributions of the first hitting time of Bessel processes, Electron. Commun. Probab., Vol. 19, No. 5 (2014), 1-5.
  20. Y. Hamana, Asymptotic expansion of the expected volume of the Wiener sausage in even dimensions, Kyushu J. Math., Vol. 70, No.1 (2016), 167-196.
  21. Y. Hamana and H. Matsumoto, Hitting times of Bessel processes, volume of Wiener sausages and zeros of Macdonald functions, J. Math. Soc. Japan, Vol. 68, No. 4 (2016), 1615-1653.
  22. Y. Hamana and H. Matsumoto, Hitting times to spheres of Brownian motions with and without drifts, Proc. Amer. Math. Soc., Vol. 144, No. 12 (2016), 5385-5396.
  23. Y. Hamana and H. Matsumoto, A formula for the expected volume of the Wiener sausage with constant drift, Forum Math., Vol. 29, No. 2 (2017), 369-382.
  24. Y. Hamana and H. Matsumoto, Precise asymptotic formulae for the first hitting times of Bessel processes, Tokyo J. Math., Vol. 41, No. 2 (2018), 603-615.
  25. Y. Hamana, H. Matsumoto and T. Shirai, On the zeros of the Macdonald functions, Opuscula Math., Vol. 39, No. 3 (2019), 361-382.
  26. Y. Hamana, Hitting times to spheres of Brownian motions with drifts starting from the origin, Proc. Japan Acad., Ser. A Math. Sci., Vol. 95, No. 4 (2019), 37-39.
  27. Y. Hamana, The probability distributions of the first hitting times of radial Ornstein-Uhlenbeck processes, Studia Math., Vol. 251, No.1 (2020), 65-88.
  28. Y. Hamana, R. Kaikura and K. Shinozaki, Asymptotic expansions for the first hitting times of Bessel processes, Opuscula Math., Vol. 41, No. 4 (2021), 509-537.
  29. Y. Hamana, Square-root boundaries for Bessel processes and hitting times of radial Ornstein-Uhlenbeck processes, Opuscula Math., Vol. 43, No. 2 (2023), 145-172.
  30. Y. Hamana and L. Zhang, Hitting times of hyperbolic Bessel processes, Colloq. Math., Vol.175, No.2 (2024), 163-182.
  31. Y. Hamana and H. Matsumoto, Brownian hitting to spheres, J. Math. Soc. Japan, Vol. 76, No.4 (2024), 1307-1319.
  32. Y. Hamana and H. Matsumoto, Joint distribution of the hitting time and site for Ornstein-Uhlenbeck process, Electron. Commun. Probab., Vol. 24, article no. 79 (2024), 1-9.
  33. Y. Hamana, Tail probability of the hitting time of Brownian motion to a sphere with fixed hitting sites, preprint.

論説

  1. 濱名裕治, Wiener sausage に対する極限定理と関連する話題, 数学, 54 (2002), 147-166.

書評

  1. 濱名裕治, G.F.Lawler and V. Limic "Random Walk: A Modern Introduction", 数学, 74 (2022), 212-216.