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Let L be a field which is a Galois extension of the fieldK with Galois groupG. Greither
and Pareigis [GP87] showed that for manyG there existK-Hopf algebrasH other than the
group ringKG which makeL into an H-Hopf Galois extension ofK (or a GaloisH∗-
object in the sense of Chase and Sweedler [CS69]). Using Galois descent they translated
the problem of determining the Hopf Galois structures onL/K into one which depends
only on the Galois groupG. By this translation, they showed, for example, that any Galois
extension with non-abelian G admits at least one non-classical Hopf Galois structure. Byott
[By96] further translated the problem to a more amenable group-theoretic problem, and
showed that a Galois extensionL/K of fields with groupG has a unique Hopf Galois
structure, namely that byKG, iff n, the order ofG, is a Burnside number, that is, is coprime
to φ(n), Euler’s phi-function ofn. (This implies thatG is cyclic of square-free order.)

The observation of Greither and Pareigis is the only one in the literature to this point
which gives any information on the number of Hopf Galois structures on Galois field ex-
tensions forG non-abelian.

The purpose of this paper is to make a start at determining the number of Hopf Galois
structures onL/K for some non-abelian Galois groupsG.

Before stating our results, we need to describe Byott’s counting formula.

Let n be the order ofG, and letN be an abstract group with cardinalityn. Let λ,
resp.ρ : N → Perm(N) be the maps given by sendingη to left translation byη, resp. right
translation by the inverse ofη. The holomorph ofN, Hol(N)⊂Perm(N), is the normalizer
of λ(N) in Perm(N): thenHol(N) = ρ(N) ·Aut(N). The number of Hopf Galois structures

H⊗L → L

for K-Hopf algebrasH such thatL⊗H ∼= LN, is equal to the number of equivalence classes
of embeddings

β : G→ Hol(N)

such that the stabilizer inG of the identity element of the setN is trivial (i.e. β is regular),
where the equivalence relation is given byβ ∼ β′ iff β′ = C(δ) ◦β for someδ ∈ Aut(N),
whereC(δ) is conjugation byδ . If we denote the number of equivalence classes of regular
embeddings ofG into Hol(N) by e(G,N), then the number of Hopf Galois structures on a
Galois extension with groupG is the sum, over the set of isomorphism classes of groupsN
of cardinalityn, of e(G,N).

For some groups,e(G,N) = 0 for N not isomorphic toG. This is true forG is cyclic
of prime power order, because the holomorph of any non-cyclic group of orderpn has
no elements of orderpn ([Ko 98]). This suggests that to seek non-trivial Hopf Galois
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structures, the most promising place to start is to look for regular embeddings of the Galois
groupG into Hol(G), up to equivalence byAut(G).

In this paper we examinee(G,G) for G a symmetric or alternating group (n≥ 4). For
K = Q, these include the Galois groups of ”most” polynomials of degreen. It turns out that
the caseG simple is essentially the same as forG alternating,n≥ 5. We show:

Theorem. For G simple, e(G,G) = 2;
For the symmetric group Sn, n≥ 4,

e(Sn,Sn) = 2
bn/4c

∑
k=0

n!
(n−4k)!22k(2k)!

.

For the alternating group A4,e(A4,A4) = 10.

We also get a lower bound one(Sn,N) for N = An×C2, n≥ 5, which yields

Theorem. A Galois extension L/K with Galois group Sn has at least(n!)1/2 Hopf Galois
structures.

Our approach to countinge(G,G) is to ”unwind” regular embeddings

β : G→ Hol(G) = G·Aut(G)

by showing that for the groups we consider,β maps toG · Inn(G) ∼= G×G, hence can
be described via the mapsβi : G→ G arising from composition with the projection maps
πi : G×G→ G, i = 1,2. The equivalence relation one(G,G) and regularity then allow us
to assume that one ofβ1,β2 is the identity. This makes countinge(G,G) feasible.

Normalized embeddings

We begin with the unwinding.

Let G be a finite group,S= Aut(G) and

β : G→ Hol(G) = G·Aut(G) = G·S

be a regular embedding.

Let
γ : Hol(G)→ S· Inn(S) = Hol(S)

by γ(ηα) = C(η)C(α), whereC(η),η ∈G is the inner automorphism ofG given by conju-
gation byη, and similarly forC(α). To see thatγ is a homomorphism is routine, using that
for anyδ ∈ Aut(G),η ∈ G,

δ ·C(η) ·δ−1 = C(δ(η))

in Aut(G).
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Let j : S· Inn(S)→S×Sby j(αC(β)) = (αβ,β); then j is an isomorphism with inverse
i : S×S→ S· Inn(S) by i(σ,τ) = στ−1C(τ).

Let πi : S×S→ Sbe the projections:πi(σ1,σ2) = σi , i = 1,2. Let β̂i = πi jγβ : G→ S,
homomorphisms.

If β(τ) = σα with τ,σ in G, α in S= Aut(G), then

jγβ(τ) = jγ(σα)
= j(C(σ)C(α))
= (C(σ)α,α)

Soβ̂1(τ) = C(σ)α, β̂2(τ) = α. Thusβ̂2 is the composition ofβ with the quotient map from
Hol(G) to Aut(G). We have, then,

Lemma 1. β(G) ⊂ G · Inn(G) iff β̂1(G) ⊂ Inn(G) iff β̂2(G) ⊂ Inn(G). If these inclusions
hold then there exist homomorphismsβi : G→ G, i = 1,2, such that

β(τ) = β1(τ)β2(τ−1)C(β2(τ)).

Proof The first equivalences are clear from the definitions ofβ̂i .

Supposeβ(G)⊂ Inn(G). Then we can write

β(τ) = σρ−1C(ρ)

for someσ,ρ in G. Thenβ̂1(τ) = C(σρ−1)C(ρ) = C(σ) andβ̂2(τ) = C(ρ). Define

βi : G→ G

by β1(τ) = σ, β2(τ) = ρ. Then

β(τ) = β1(τ)β2(τ−1)C(β2(τ)).

Lemma 2. Supposeβ(G) ⊂ G · Inn(G). If βi is 1-1 for i = 1 or 2, then there is some
δ ∈ Aut(G) so that in Hol(G), δ−1β(τ)δ = β′(τ) whereβ′i(τ) = τ.

Proof Let β(τ) = σρ−1C(ρ). Forδ ∈ Aut(G), let

β′(τ) = δ−1β(τ)δ = δ−1σρ−1C(ρ)δ = δ−1(σ)δ−1(ρ−1)C(δ−1(ρ)).

Then β′1(τ) = δ−1(σ) and β′2(τ) = δ−1(ρ). If β1 is 1-1, letδ = β1, thenσ = β1(τ) and
β̂1(τ) = τ; if β2 is 1-1, letδ = β2, thenρ = β2(τ) andβ̂2(τ) = τ.
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Thus if β(G)⊂ G· Inn(G) andβ1 is 1-1, we can assume that for allτ ∈ G,

β(τ) = τρ−1C(ρ) (1)

for someρ ∈ G; or if β2 is 1-1, we can assume that for allτ ∈ G,

β(τ) = στ−1C(τ) (2)

for someσ ∈ G.

We now show that this description is valid for the groups under consideration.

If G is simple, then, sinceAut(G)/Inn(G) is solvable by Schreier’s conjecture [Go82,
p. 55],βi : G→ Aut(G) maps toInn(G).

If G = Sn, n≥ 4,n 6= 6 thenAut(G) = Inn(G).

If G = S6 andβ̂i is 1-1, thenβ̂i(G) ⊂ Inn(G) sinceInn(S6) is the unique subgroup of
Aut(S6) of index 2 isomorphic toS6 [LL93].

If G = A4 and β̂i : A4 → Aut(A4) ∼= S4, then the image of̂βi is contained inInn(A4):
the composite

A4 → S4 → S4/A4

is trivial becauseA4 has no subgroups of index 2.

Thus for the groups of interest in this paper, ifβ̂i is 1-1, then we can assume thatβ has
the form (1) or (2).

We now examine these groups.

Simple Groups

Theorem 4. If G is simple, then e(G,G) = 2.

Proof SinceG is simple,βi is either 1-1 or trivial.

Case 1Suppose bothβ1 andβ2 are 1-1. Then we can assume

β(τ) = τβ2(τ−1)C(β2(τ)).

Now β is regular iff the functionf : τ 7→ τβ2(τ−1) from G to G is 1-1. But f is 1-1
iff the automorphismβ2 is fixed-point free. SinceG is non-abelian and simple,G has no
fixed-point free automorphisms, another consequence of the classification of finite simple
groups [Go82, p. 55]. Thus Case 1 yields no regular embeddings ofG into Hol(G).

Case 2β1 1-1,β2 is trivial. Then we can assumeβ1 is the identity, and thenβ(τ) = β1(τ) =
τ, which is regular.

Case 3β2 1-1,β1 is trivial. Then we can assumeβ2 is the identity, and thenβ(τ) = τ−1C(τ)
which is regular. Since the caseβ1 is trivial, β2 is trivial gives no regular embeddings, we
have a total of 2 regular embeddings, as we wished to show.
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Symmetric Groups

Let G = Sn for n≥ 5. In this section we computee(G,G).

Theorem 5. e(G, G) = two times the number of even permutations in Sn of order dividing
2.

Proof Let β : G→Hol(G) be a regular embedding andβ̂i : G→Aut(G) be the correspond-
ing projections. Ifβ̂i is 1-1, thenβ̂(G) is eitherAut(G) = Inn(G) if n 6= 6, or a subgroup of
index 2 inAut(G) if n = 6. In that case,̂β(G) = Inn(G), as noted above.

Let A= An be the alternating group. The restriction ofβ̂i to A is a homomorphism from
A to Aut(G); sinceInn(A) is a normal subgroup ofAut(G) and the quotient group has order
at most 4,̂βi must map intoInn(A). Henceβ̂i restricted toA is either 1-1 or trivial. If both
β̂1 andβ̂2 are both trivial onA, thenβ is trivial on A, so is not regular. Thus at least one of
β̂i is 1-1, and we can assume that for allσ in G,

β(σ) = β1(σ)β2(σ−1)C(β2(σ))

by Lemma 1.

Sinceβ is regular, the stabilizer of the identity element ofG is trivial, which means that
if β1(σ) = β2(σ), thenσ = 1.

Now βi restricted toA is also regular sinceβ is regular onG: for σ ∈ A, β1(σ) = β2(σ)
only for σ = 1. Hence for somei, βi is 1-1 onA, hence 1-1 onG. Thus we can assumeβ
has one of the following forms:

β(σ) = σβ2(σ−1)C(β2(σ)),

or
β(σ) = β1(σ)σ−1C(σ).

Sinceβ on A is a regular embedding, ifβ1 is the identity, thenβ2 is trivial on A, and
similarly if β2 is the identity. Ifβi is trivial on A, thenβi maps every odd permutation to a
single elementτ of Sof order dividing 2, and is trivial on all even permutations.

Thus there exists an elementτ of S so that for allσ ∈ G, β(σ) has one of the two
following forms:

• β(σ) = στ−1C(τ) for σ odd,β(σ) = σ for σ even; or

• β(σ) = τσ−1C(σ) for σ odd,β(σ) = σ−1C(σ) for σ even.

whereτ is a fixed element ofSof order dividing 2. (Henceτ = τ−1.)

The only further restriction onτ is that it must be even, for ifτ were odd, thenστ
would be even for all oddσ in G, and soβ(G)eG would be a subset ofA andβ would not be
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regular. On the other hand, ifτ is even, then{στ|σ odd} contains all odd permutations of
S, and{σ|σ even}, resp{σ−1|σ even} contains all even permutations ofG, and so in either
caseβ is regular.

Thus to determinee(G,G) it suffices to observe that ifβ(σ) = στ−1C(τ) for σ odd,
β(σ) = σ for σ even, orβ(σ) = τσ−1C(σ) for σ odd,β(σ) = σ−1C(σ) for σ even, andβ′ is
similarly of one of those two forms for someτ′ 6= τ, thenβ andβ′ are not equivalent: that
is, there exists no elementδ of Aut(G) so thatδβ(σ)δ−1 = β′(σ) for all σ. We have three
cases.

Case I. β(σ) = στ−1C(τ) for σ odd,β(σ) = σ for σ even;β′(σ) = τ′σ−1C(σ) for σ
odd,β′(σ) = σ−1C(σ) for σ even. Then for allσ even,

δσδ−1 = σ−1C(σ)

or
δ(σ) = σ−1C(σ).

This never holds forσ 6= 1.

The other two cases are similar:

Case II. β(σ) = στ−1C(τ) for σ odd,β(σ) = σ for σ even;β′(σ) = στ′−1C(τ′) for σ
odd,β′(σ) = σ for σ even. Then for allσ even,

δσδ−1 = σ,

or
δ(σ) = σ.

Case III. β(σ) = τσ−1C(σ) for σ odd,β(σ) = σ−1C(σ) for σ even;β′(σ) = τ′σ−1C(σ)
for σ odd,β′(σ) = σ−1C(σ) for σ even. Then for allσ even,

δσ−1C(σ)δ−1 = σ−1C(σ)

or
δ(σ−1)C(δ(σ−1)) = σ−1C(σ),

henceδ(σ) = σ for all evenσ.

To finish both case II and case III, we note that ifδ = C(π) for someπ ∈ Sn andδ
fixes all of An thenπ = 1; if δ is an outer automorphism, thenn = 6 and the centralizer
of δ in Aut(S6) containsInn(A6), so has order≥ 360: but any outer automorphism ofS6

has centralizer of order dividing 20, by [LL93, Proposition 2.3]. Thereforeδ is trivial and
τ = τ′.

Thuse(G,G) is twice the number of even permutations inSof order dividing 2, as we
wished to show
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Corollary 6.

e(G,G) = 2
bn/4c

∑
k=0

n!
(n−4k)!22k(2k)!

Proof Any permutation ofAn of order dividing 2 is the product of an even number of
disjoint transpositions. To find all products of 2k disjoint transpositions for 0≤ k≤ n/4,
pick two numbers from the originaln, then two from the remainingn−2 numbers, then two
from the remaining, etc.: the number of choices is

(n
2

)
·
(n−2

2

)
· . . . ·

(n−(4k−2)
2

)
. That gives

n!
(n−4k)!22k choices. But since the order of the 2k transpositions doesn’t matter, we divide by

(2k)!. The result is the number of ways of choosing an element which is a product of 2k
disjoint transpositions.

The groupsA4 and S4

Theorem 7. e(A4,A4) = 10and e(S4,S4) = 8.

The proofs are similar to those above. For both groups, Lemma 1 applies, so forA= A4

we have three cases for possible embeddings:

1. β1 is 1-1,β2 is 1-1;

2. β1 is 1-1,|β2(A)| divides 3;

3. |β1(A)| divides 3,β2 is 1-1.

Case 1gives no embeddings, as before.

For Case 2, if β1 is 1-1, then we can assume thatβ has the form

β(σ) = σβ2(σ−1)C(β2(σ))

for all σ in A4; thenβ is regular iff the map

f : σ 7→ σβ2(σ−1)

is 1-1. If β2 is trivial, thenβ is regular. Ifβ2 has kernelV4, then f is 1-1 onV4. Fix a τ
of order 3, thenβ2 is determined byβ2(τ). Now τβ2(τ−1) cannot be inV4, or elsef is not
1-1. Thusβ2(τ) must be in the same coset moduloV4 asτ. There are then four choices for
β2(τ), and each gives a regular embedding. Thus we have five regular embeddings from
case 2.

Case 3is similar to Case 2.

SinceAut(A4) = Inn(S4), it is a routine computation similar to that forSn above that
the 10 regular embeddings are all non-equivalent. We leave details to the reader. Similar
arguments give the result forS4.
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Computing e(G,N) for N 6∼= G

To count the number of Hopf Galois structures on a Galois extensionL/K with Galois
groupG, we need to know not onlye(G,G) but alsoe(G,N) for groupsN not isomorphic
to G but of the same cardinality asG. This is a non-trivial task: for example, ifG = S6, a
group of order 720, there are 839 such groupsN to be checked [GAP97].

For simple groups the task is made easier by the following observation:

Lemma 8. If G is simple, N is a group not isomorphic to G but of the same cardinality,
and e(G,N) 6= 0, then G embeds in O(N) = Aut(N)/Inn(N)

Proof Let β : G→ Hol(N) = N ·Aut(N) be a regular map. Consider the composition

ρπβ : G→ N ·Aut(N)→ Aut(N)→ O(N).

If πβ = 0 thenβ yields an isomorphism fromG to N sinceβ is regular. Thusπβ is 1-1. If
ρπβ = 0 thenπβ mapsG ontoInn(N)∼= N. Thusρπβ is 1-1.

For G simple, this greatly restricts the possibleN 6∼= G for which e(G,N) 6= 0. For
simpleG with |G| ≤ 1000 the only case we found whereG embeds inO(N) for N 6∼= G
is G = GL3(F2),N = C3

2 ×K of order 168, whereK is any group of order 21. But then,
sinceC3

2 andK are characteristic subgroups ofN, Hol(N)∼= Hol(C3
2)×Hol(K). If β : G→

Hol(N) were regular, thenG→ Hol(K) would be non-trivial, and henceG would embed
in Hol(K). However, ifK = C7 ·C3 is non-abelian, thenAut(K) = Hol(C7) soHol(K) has
order 21·42, while ifK =C21, thenAut(K) =C12 andHol(K) has order 21·12 [Correction
May 3, 2004:Aut(K) = C6×C2, which has the same order]. Hence in neither case doesG
embed inHol(K).

By contrast, we have

Theorem 9. Let n≥ 5 and N= An×C2. Then e(Sn,N) = the number of odd permutations
of Sn of order 2.

Proof BothC2 andAn are characteristic subgroups ofN: C2 is characteristic becauseC2 is
the center ofN. An is in fact fully invariant: any endomorphismα of N takesAn to itself,
for if π is the projection ofN ontoC2, thenπα = 0. SinceN = An×C2 and both factors are
characteristic,

Hol(N) = Hol(An)×Hol(C2) = (An ·Aut(An))×C2.

Now Aut(An) = Aut(Sn) = Inn(Sn) for n 6= 6, a theorem of Ḧolder (c.f. [Ro82], p. 399),
andAut(A6) = Aut(S6) by [LL93], Theorem 4.6.

Supposeβ : Sn → (An ·Aut(An))×C2 is regular. Then the maps obtained by following
β by the two projections,

βa : Sn → An ·Aut(An)
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and
βb : Sn →C2

are both regular. Thusβb is onto, has kernelAn, and is unique.

For σ in Sn let βa(σ) = ηα, whereη ∈ An, α ∈ Aut(An). If we composeβa with the
map

jγ : An ·Aut(An)→ Aut(An)×Aut(An)

followed by the projection maps ontoAut(An) we obtain maps

β̂i : Sn → Aut(An) = Aut(Sn)

by β̂1(σ) = C(η)α, β̂2(σ) = α.

If n = 6 then at least one of̂β1 andβ̂2 is 1-1. Otherwise, both have kernel containing
A6, and soβ is not 1-1. But ifβ̂ is 1-1, thenβ̂i maps ontoInn(S6) as noted below Lemma
2. If n 6= 6 thenAut(Sn) = Inn(Sn). Hence for alln, α = C(τ) for someτ ∈ Sn, soβ̂i yields
βi : Sn → Sn whereβ1(σ) = ητ,β2(σ) = τ with η ∈ An,τ ∈ Sn, and

βa(σ) = β1(σ)β2(σ−1)C(β2(σ)) ∈ An · Inn(Sn).

If β1 is 1-1, then by Lemma 2 there is someδ ∈ Aut(Sn) = Aut(An) so thatδ−1(βa(σ))δ =
β(σ) with β1(σ) = σ. Hence we can assume thatβa(σ) = στ−1C(τ) for τ = β2(σ). Simi-
larly if β2 is 1-1.

If both β1 andβ2 are 1-1, we can assumeβ1(σ) = σ andβ2 is an automorphism of
Sn. For βa to be regular, the functionf : Sn → An, f (σ) = σβ2(σ−1), must be surjective.
Let η be in the image off . Thenσ1β2(σ−1

1 ) = η = σ2β2(σ−1
2 ) iff σ−1

2 σ1 is fixed by the
automorphismβ2, and so the cardinality of the preimage of anyη ∈ An is equal to the
cardinality of the setB(β2) of fixed points ofβ2. If β2 is inner, conjugation byπ ∈ Sn, then
|B(β2)| is easily seen to be at least 3 for anyπ. If n= 6 andβ2 is an outer automorphism of
S6, then|B(β2)| ≥ 4 by [LL93] (see page 290, top). Hence if bothβ1 andβ2 are 1-1, then
βa cannot be regular.

Thus if βa is regular, exactly one ofβ1 andβ2 is 1-1, and the other map is therefore
trivial on An and maps any odd permutation to a fixed permutationτ of order 2 inSn. Thus
βa either has the form

βa(σ) = στ−1C(τ) for σ odd,

βa(σ) = σ for σ even,
or

βa(σ) = τσ−1C(σ) for σ odd,

βa(σ) = σ−1C(σ) for σ even.

Sinceβa : Sn → An · Inn(Sn), τ must be odd. As in the proof of Theorem 5, both cases give
distinct embeddingsβ for all oddτ of order 2, and so the number of regular embeddings of
Sn into An · Inn(Sn) is equal to twice the number of odd permutations inSn of order 2.

The same argument as for Corollary 6 gives
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Corollary 10. For n≥ 5,

e(Sn,An×C2) = 2
∞

∑
k=0

n!
(n−4k−2)!22k+1(2k+1)!

.

Corollary 11. If L/K is a Galois extension with Galois group Sn, n≥ 5, then the number
of Hopf Galois structures on L/K is at least(n!)1/2.

Proof The sums of Corollaries 6 and 11 add up to

2
∞

∑
j=0

n!
(n−2 j)!2 j j!

.

For n = 2k+2, the term forj = k is

(2k+2)!
2!2kk!

;

for n = 2k+1 the term forj = k is
(2k+1)!

2kk!
.

Each of these terms is easily seen to be≥ (n!)1/2.

Note that by Stirling’s formula,(n!)1/2 ≥ (2π)1/4n1/4(n
e)

n/2. Finally, we remark that
by a now familiar argument,e(S6,M10) = 72, so a lower bound for the number of Hopf
Galois structures onL/K with Galois groupS6 is 224.

This research was partially supported by National Security Agency research grant
#MDA9049710114.
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