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LetL be afield which is a Galois extension of the fi&lavith Galois groups. Greither
and Pareigis [GP87] showed that for ma@yhere exisK-Hopf algebrasd other than the
group ringKG which makeL into anH-Hopf Galois extension oK (or a GaloisH*-
object in the sense of Chase and Sweedler [CS69]). Using Galois descent they translated
the problem of determining the Hopf Galois structuresLgK into one which depends
only on the Galois grouf. By this translation, they showed, for example, that any Galois
extension with non-abelian G admits at least one non-classical Hopf Galois structure. Byott
[By96] further translated the problem to a more amenable group-theoretic problem, and
showed that a Galois extensianfK of fields with groupG has a unique Hopf Galois
structure, namely that iy G, iff n, the order ofG, is a Burnside number, that is, is coprime
to @(n), Euler’s phi-function oh. (This implies thatG is cyclic of square-free order.)

The observation of Greither and Pareigis is the only one in the literature to this point
which gives any information on the number of Hopf Galois structures on Galois field ex-
tensions foiG non-abelian.

The purpose of this paper is to make a start at determining the number of Hopf Galois
structures orh./K for some non-abelian Galois grou@s

Before stating our results, we need to describe Byott’s counting formula.

Let n be the order ofG, and letN be an abstract group with cardinality Let A,
resp.p : N — Perm(N) be the maps given by sendingo left translation by, resp. right
translation by the inverse of. The holomorph oN, Hol(N) c PermN), is the normalizer
of A(N) in Perm(N): thenHol(N) = p(N) - Aut(N). The number of Hopf Galois structures

H®L—L

for K-Hopf algebrasd such that @ H = LN, is equal to the number of equivalence classes
of embeddings
B:G— Hol(N)

such that the stabilizer i@ of the identity element of the sdt s trivial (i.e. 3 is regular),
where the equivalence relation is given Py~ B’ iff ' = C(d) o 3 for somed € Aut(N),
whereC(d) is conjugation by . If we denote the number of equivalence classes of regular
embeddings o6 into Hol(N) by e(G,N), then the number of Hopf Galois structures on a
Galois extension with grou@ is the sum, over the set of isomorphism classes of grbups
of cardinalityn, of (G,N).

For some groups(G,N) = 0 for N not isomorphic td. This is true forG is cyclic
of prime power order, because the holomorph of any non-cyclic group of @tbeas
no elements of ordep” ([Ko 98]). This suggests that to seek non-trivial Hopf Galois
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structures, the most promising place to start is to look for regular embeddings of the Galois
groupG into Hol(G), up to equivalence bput(G).

In this paper we examing(G, G) for G a symmetric or alternating group & 4). For
K = Q, these include the Galois groups of "most” polynomials of degrdeturns out that
the casés simple is essentially the same as @alternatingh > 5. We show:

Theorem. For G simple, ¢G,G) = 2;
For the symmetric group,sn > 4,

[n/4] nl
AS$)=2 ) a2

For the alternating group A e(As4,A4) = 10.

We also get a lower bound @tS,,N) for N = A, x C, n > 5, which yields

Theorem. A Galois extension IK with Galois group § has at least{n!)'/2 Hopf Galois
structures.

Our approach to counting(G, G) is to "unwind” regular embeddings
B:G— Hol(G) =G-Aut(G)

by showing that for the groups we considBrmaps toG - Inn(G) = G x G, hence can
be described via the mas: G — G arising from composition with the projection maps
T, : Gx G — G, i =1,2. The equivalence relation @G, G) and regularity then allow us
to assume that one @f, 3, is the identity. This makes countirggG, G) feasible.

Normalized embeddings
We begin with the unwinding.
Let G be a finite groupS= Aut(G) and

B:G— Hol(G)=G-Aut(G) =G S

be a regular embedding.

Let
y:Hol(G) — S-Inn(S) = Hol(S)

by y(na) =C(n)C(a), whereC(n),n € G is the inner automorphism @ given by conju-
gation byn, and similarly forC(a). To see thay is a homomorphism is routine, using that
for anyd € Aut(G),n € G,

8-C(n)-3 *=C(3(n))

in Aut(G).



Letj:S-Inn(S) — Sx Sby j(aC(B)) = (ap,B); thenj is an isomorphism with inverse
i :SxS— S Inn(S) byi(o,1) = ot 1C(1).

Let g : Sx S— Shbe the projectionsrg (01,02) = 0j, i = 1, 2. Letfﬂi =TjyB:G— S
homomorphisms.

If B(1) = oa witht,0in G, a in S= Aut(G), then

So fﬂl(T) =C(0o)a, fiz(T) =aq. Thusf&z is the composition o with the quotient map from
Hol(G) to Aut(G). We have, then,

Lemma 1. B(G) C G-Inn(G) iff P1(G) C Inn(G) iff B2(G) C Inn(G). If these inclusions
hold then there exist homomorphisfiis G — G, i = 1,2, such that

B(t) = Ba(1)B2(T™H)C(B2(1))-

Proof The first equivalences are clear from the definitionéiof
Supposé3(G) C Inn(G). Then we can write

B(1) = op~'C(p)
for somea, p in G. Thenpy(t) = C(op~1)C(p) = C(0) andPa(t) = C(p). Define
Bi:G—G
by B1(t) = 0, B2(T) = p. Then
B(1) = Ba(T)B2(T™H)C(B2(1))-
m

Lemma 2. Suppose3(G) C G-Inn(G). If B is 1-1 for i= 1 or 2, then there is some
€ Aut(G) so that in HolG), 5 1B(1)d = /(1) wherep!(1) = T.

Proof Let B(1) = ap~1C(p). Ford € Aut(G), let
B'(1) =3 B(1)8="58"op 'C(p)5=58*(0)5 (p~H)C(E *(p))-

ThenB}(1) = 8 1(0) andBy(t) = 8 1(p). If By is 1-1, letd = By, theno = P4 (1) and
ﬁl(r) =T, if B2 is 1-1, letd = B2, thenp = PB2(T) andfﬂz(T) =T. O



Thusif(G) C G-Inn(G) andf; is 1-1, we can assume that for al€ G,
B(t) =1p C(p) (1)
for somep € G; or if B2 is 1-1, we can assume that for alE G,
B(1) = ot'C(1) (2)

for someo € G.
We now show that this description is valid for the groups under consideration.

If G is simple, then, sincAut(G)/Inn(G) is solvable by Schreier’s conjecture [Go82,
p. 55],Bi : G — Aut(G) maps tann(G).

If G=S,, n>4,n+# 6 thenAut(G) = Inn(G).

If G=S and ﬁi is 1-1, therﬁi(G) C Inn(G) sincelnn(Ss) is the unique subgroup of
Aut(Sg) of index 2 isomorphic t&s [LL9I3].

If G=A4 andfii 1 Aq — Aut(A4) = Sy, then the image oﬁi is contained innn(Ay):
the composite
Ay — S — S /A
is trivial becausé\4 has no subgroups of index 2.

Thus for the groups of interest in this papelﬁiiiis 1-1, then we can assume tlfighas
the form @) or (2).

We now examine these groups.
Simple Groups

Theorem 4. If G is simple, then @, G) = 2.

Proof SinceG is simple,(; is either 1-1 or trivial.
Case 1Suppose botp; and; are 1-1. Then we can assume

B(t) = TB2(T")C(Ba(1)).

Now B is regular iff the functionf : T +— tB(1~1) from Gto G is 1-1. Butf is 1-1
iff the automorphisnf3; is fixed-point free. Sinc& is non-abelian and simpl& has no
fixed-point free automorphisms, another consequence of the classification of finite simple
groups [Go82, p. 55]. Thus Case 1 yields no regular embeddingsrab Hol (G).

Case 23; 1-1, Bz is trivial. Then we can assunfi is the identity, and thefi(t) = B1(1) =
T, which is regular.

Case 3B, 1-1,B; is trivial. Then we can assunfi is the identity, and thef(t) = t1C(1)
which is regular. Since the cae is trivial, (3, is trivial gives no regular embeddings, we
have a total of 2 regular embeddings, as we wished to show. O
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Symmetric Groups
Let G = S, for n > 5. In this section we comput&G, G).

Theorem 5. e(G, G) = two times the number of even permutations,inf®rder dividing
2.

Proof Let3: G — Hol(G) be a regular embedding aﬁd: G — Aut(G) be the correspond-
ing projections. IB; is 1-1, therB(G) is eitherAut(G) = Inn(G) if n# 6, or a subgroup of
index 2 inAut(G) if n= 6. In that case3(G) = Inn(G), as noted above.

Let A= A, be the alternating group. The restrictiorﬁpto Ais a homomorphism from
Ato Aut(G); sincelnn(A) is a normal subgroup d&fut(G) and the quotient group has order
at most4f3i must map intdnn(A). Henceﬁi restricted toA is either 1-1 or trivial. If both
fsl ande are both trivial omA, thenf is trivial on A, so is not regular. Thus at least one of
[ﬁi is 1-1, and we can assume that foralih G,

B(0) = B1(0)B2(01)C(B2(0))
by Lemma 1.

Sincef is regular, the stabilizer of the identity element®ifs trivial, which means that
if B1(0) = B2(0), theno = 1.

Now (3 restricted toA is also regular sincB is regular orG: for o € A, B1(0) = B2(0)
only for c = 1. Hence for somg [3; is 1-1 onA, hence 1-1 or5. Thus we can assunfe
has one of the following forms:

B(0) = oB2(0~1)C(B2(0)),
or

B(0) = P1(0)o 'C(0).

Sincef on Ais a regular embedding, @81 is the identity, ther; is trivial on A, and
similarly if B is the identity. Iff3; is trivial on A, then3; maps every odd permutation to a
single element of Sof order dividing 2, and is trivial on all even permutations.

Thus there exists an elemenbf S so that for allo € G, (o) has one of the two
following forms:

e B(0) = ot~ IC(1) for 0 0dd,B(0) = o for o even; or
e B(0) =10'C(0) for 0 0odd,B(0) = 0~1C(0) for o even.

wheret is a fixed element o of order dividing 2. (Hence =t 1.)

The only further restriction om is that it must be even, for if were odd, therot
would be even for all odd in G, and sd3(G)eg would be a subset & and would not be
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regular. On the other hand,fis even, theq ot|o odd} contains all odd permutations of
S, and{c|o ever}, resp{o—!|o evenr} contains all even permutations @f and so in either
casef is regular.

Thus to determine(G, G) it suffices to observe that B(c) = ot~1C(1) for ¢ odd,
B(o) = o for g even, o3(0) = 16~1C(0) for o odd,B(0) = 61C(0) for o even, and®’ is
similarly of one of those two forms for somé=£ 1, thenp andf’ are not equivalent: that
is, there exists no elemedtof Aut(G) so thatdéf(0)d* = B'(o) for all 0. We have three
cases.

Case |. B(0) = ot~ 1C(1) for o odd, B(0) = o for o even;B' (o) = T'o~'C(0) for o
odd,B'(0) = 6~1C(0o) for o even. Then for alb even,
5051 =071C(0)
or
5(0) = o~ 1C(0).
This never holds foo # 1.
The other two cases are similar:
Case Il. B(0) = ot1C(1) for o odd,B(0) = o for o even;p/(c) = or' *C(T') for &
odd, (o) = o for o even. Then for alb even,

d3ad 1 =0,

or
6(o) =o0.

Case lll. B(0) =10 1C(0) for o 0dd,B(0) = 0~1C(0) for o even;f’'(0) =10~ 1C(0)
for o odd,'(0) = 6—'C(0) for o even. Then for alb even,

50~ 1C(0)6 1 =o71C(0)

or
8(c~1)C(3(c™ 1)) =0'C(0),

henced(o) = o for all eveno.

To finish both case Il and case Ill, we note thabif= C(m) for somem e S, andd
fixes all of A, thentt= 1; if d is an outer automorphism, then= 6 and the centralizer
of & in Aut(Ss) containsinn(Ag), so has ordep 360: but any outer automorphism §§
has centralizer of order dividing 20, by [LL93, Proposition 2.3]. Thereboi®trivial and
1="1.

Thuse(G, G) is twice the number of even permutationsSof order dividing 2, as we
wished to show L



Corollary 6.
[n/4] n!

=2 2 (0 a2

Proof Any permutation ofA, of order dividing 2 is the product of an even number of
disjoint transpositions. To find all products df disjoint transpositions for & k < n/4,
pick two numbers from the original then two from the remaining— 2 numbers, then two

from the remaining, etc.: the number of choicegJs- (",?) ... (”_(42“_2)). That gives

(n+k!)!22k choices. But since the order of thk anspositions doesn’t matter, we divide by

(2k)!. The result is the number of ways of choosing an element which is a produé&t of 2
disjoint transpositions. ]

The groupsAs and §
Theorem 7. e(A4,A4) =10and €4, &) =

The proofs are similar to those above. For both groups, Lemma 1 applies e &)
we have three cases for possible embeddings:

1. B1is1-1,B2is 1-1;
2. B1is 1-1,|B2(A)| divides 3;
3. |B1(A)| divides 3,32 is 1-1.

Case lgives no embeddings, as before.
For Case 2if B1 is 1-1, then we can assume tlfiahas the form

B(0) = oP2(0~*)C(B2(0))
for all o in Ag; thenf is regular iff the map
f:0— oPa(c0 1)

is 1-1. If 32 is trivial, thenf is regular. IfB> has kernel,, thenf is 1-1 onV,. Fix at

of order 3, therf; is determined by8,(1). Now tB2(1~1) cannot be invy, or elsef is not

1-1. ThusPz(t) must be in the same coset modMpast. There are then four choices for
B2(1), and each gives a regular embedding. Thus we have five regular embeddings from
case 2.

Case 3is similar to Case 2.

SinceAut(A4) = Inn(Sy), it is a routine computation similar to that f& above that
the 10 regular embeddings are all non-equivalent. We leave details to the reader. Similar
arguments give the result f&.



Computing e(G,N) for N2 G

To count the number of Hopf Galois structures on a Galois extehsiknwith Galois
groupG, we need to know not onlg(G, G) but alsoe(G,N) for groupsN not isomorphic
to G but of the same cardinality &. This is a non-trivial task: for example,@ = &, a
group of order 720, there are 839 such groNf@e be checked [GAP97].

For simple groups the task is made easier by the following observation:

Lemma 8. If G is simple, N is a group not isomorphic to G but of the same cardinality,
and €G,N) # 0, then G embeds in@!) = Aut(N)/Inn(N)

Proof Let3: G — Hol(N) = N - Aut(N) be a regular map. Consider the composition
PP : G — N-Aut(N) — Aut(N) — O(N).

If T3 = 0 thenf yields an isomorphism fror® to N sincef3 is regular. Thusg is 1-1. If
p13 = 0 thent3 mapsG ontoInn(N) = N. Thusprf3 is 1-1. O

For G simple, this greatly restricts the possitez G for which e(G,N) # 0. For
simple G with |G| < 1000 the only case we found wheBembeds inO(N) for N 2 G
is G = GL3(F2),N = Cg x K of order 168, wher& is any group of order 21. But then,
sinceC3 andK are characteristic subgroupsifHol(N) 2 Hol (C3) x Hol (K). If B: G —
Hol(N) were regular, the® — Hol(K) would be non-trivial, and hendd would embed
in Hol(K). However, ifK = C7 - C3 is non-abelian, theAut(K) = Hol(C7) soHol(K) has
order 21:42, while ifK = Cyp1, thenAut(K) = Cy2 andHol (K) has order 2112 [Correction
May 3, 2004:Aut(K) = Cgs x Cp, which has the same order]. Hence in neither case Goes
embed inHol (K).

By contrast, we have

Theorem 9. Let n> 5and N= A, x C,. Then €S,,N) = the number of odd permutations
of §, of order 2.

Proof BothCy andA,, are characteristic subgroupshf C, is characteristic becaus® is
the center oN. A, is in fact fully invariant: any endomorphisom of N takesA, to itself,
for if Ttis the projection o ontoCy, thenta = 0. SinceN = A, x C, and both factors are
characteristic,

Hol(N) = Hol(An) x Hol(Cp) = (An- AUt(A,)) X Ca.

Now Aut(An) = Aut(S,) = Inn(S,) for n # 6, a theorem of ElIder (c.f. [Ro82], p. 399),
andAut(As) = Aut(Ss) by [LL93], Theorem 4.6.

Supposé : Sy — (An- Aut(A,)) x Cy is regular. Then the maps obtained by following
[ by the two projections,
Ba:Sh — An-Aut(An)
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and
Bo:SHh—C2
are both regular. Thyd, is onto, has kernel,, and is unique.

Foro in §, let Ba(0) = na, wheren € Ay, o € Aut(A,). If we compose3, with the
map
JY: An- Aut(An) — Aut(An) x Aut(An)

followed by the projection maps onfawt(A,) we obtain maps
Bi 1 S — Aut(A,) = Aut(Sy)

by B1(0) = C(n)at, f2(0) = a.

If n= 6 then at least one cfﬁl and[f%z is 1-1. Otherwise, both have kernel containing
Ag, and saf is not 1-1. But iff is 1-1, thenB; maps ontdnn(S) as noted below Lemma
2. If n# 6 thenAut(S,) = Inn(S,). Hence for alin, a = C(1) for somet € S,, sof; yields
Bi: Sy — SywhereBi(o) =nt,Bz(0) =twithn € Ay, 1€ S, and

Ba(0) = B1(0)B2(0™)C(B2(0)) € An-INn(Sy).

If By is 1-1, then by Lemma 2 there is sodie Aut(S,) = Aut(An) so thatd—1(Ba(0))d =
B(o) with B,(0) = 0. Hence we can assume tifalo) = o1~ 1C(1) for T = B2(0). Simi-
larly if B2 is 1-1.

If both 31 and 3, are 1-1, we can assunfi (o) = o and 32 is an automorphism of
S.. For B4 to be regular, the functiofi : §, — An, f(0) = oB2(0~1), must be surjective.
Letn be in the image of. ThenoiBz(o7t) = n = 02P2(0,?) iff 0,0y is fixed by the
automorphisnB,, and so the cardinality of the preimage of amy A, is equal to the
cardinality of the seB([32) of fixed points off3,. If B2 is inner, conjugation byt € S,, then
|IB(B2)| is easily seen to be at least 3 for amyif n= 6 andf3; is an outer automorphism of
S, then|B(B2)| > 4 by [LL93] (see page 290, top). Hence if bdhandf; are 1-1, then
Ba cannot be regular.

Thus if B4 is regular, exactly one dd; andf3, is 1-1, and the other map is therefore

trivial on A, and maps any odd permutation to a fixed permutatiohorder 2 inS,. Thus
B4 either has the form

Ba(0) = ot~ 1C(1) for o odd,

Ba(0) = o for o even
or

Ba(o) = 10~ 1C(0) for ¢ odd

Ba(0) = 6~1C(0) for o even
SinceBa : Sy — An-INn(S,), T must be odd. As in the proof of Theorem 5, both cases give
distinct embeddingp for all oddt of order 2, and so the number of regular embeddings of
S\ into A, - InNn(S,) is equal to twice the number of odd permutation§jrof order 2. [

The same argument as for Corollary 6 gives
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Corollary 10. Forn> 5,

® n!
&(Sh A x C2) = ZKZO (n— 4k —2)122 1 (2k+ 1)1

Corollary 11. If L /K is a Galois extension with Galois group,$ > 5, then the number
of Hopf Galois structures on/K is at least(n!)%/2,

Proof The sums of Corollaries 6 and 11 add up to

ZJ.;(n—ZjI)!ZJ'j!'

Forn= 2k+ 2, the term forj = ks

(2k+2)!
212Kk’
for n=2k+ 1 the term forj = ks
(2k+1)!
2kl -
Each of these terms is easily seen taxhén!)1/2. O

Note that by Stirling’s formula(n!)¥/2 > (2m)Y/4nt/4(2)"/2. Finally, we remark that
by a now familiar argumeng(Ss,M10) = 72, so a lower bound for the number of Hopf
Galois structures oh/K with Galois groupSs is 224.

This research was partially supported by National Security Agency research grant
#MDA9049710114.
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