
18.086 Problem Set 1 Solutions

(1) 6.2 # 8. Solve u′ = −Ku starting from the delta vector

u(0) = [zeros(N, 1); 1; zeros(N, 1)].

For large sizes n = 2N + 1 = 201 and 2001, compare as many methods as
possible for accuracy and time step ∆t:

Backward Euler BDF2 Runge-Kutta ode45 ode15s

Solution: The equation in this question is a model of heat flow with delta
initial conditions and a conductive boundary. I have placed sample code on
the web site. You should be careful to run the numerical approximation for
the full length of time, since an off-by-one error in your loop parameter will
yield only first order accuracy.

Results: Unless you chose your time interval to be extremely large, the
errors for N = 201 and N = 2001 should be almost identical, since there is
negligible heat leakage at the boundary. Additional distortions to analysis of
accuracy can come from setting ∆t too large (stability problems) or too small
(for high-order methods like Runge-Kutta, you can run afoul of floating-
point precision limits). The following error results are for T = 10 - other
time intervals may yield different constants, but they should yield the same
order.

Method ∆t = 0.1 ∆t = 0.05 Accuracy
Backward Euler 8.17 · 10−4 4.08 · 10−4 8 · 10−3(∆t)

BDF2 5.97 · 10−6 1.47 · 10−6 6 · 10−4(∆t)2

RK2 6.99 · 10−6 1.72 · 10−6 7 · 10−4(∆t)2

RK4 5.66 · 10−10 3.46 · 10−11 6 · 10−6(∆t)4

ode45 8.38 · 10−6 8.38 · 10−6 N/A
ode15s 1.50 · 10−5 1.50 · 10−5 N/A

The errors for ode45 and ode15s are constant, because the solvers auto-
matically adjust step size. There may be a way to override this behavior,
but I haven’t found it.

(2) 6.2 # 10. The semidiscrete form of ∂u/∂t = ∂2u/∂x2 is a system of ordinary
differential equations. Periodic boundary conditions produce the −1, 2, −1
circulant matrix C in u′ = −n2Cu. Starting from u(0) = (1 : n)/n test
these methods for their stability limits with n = 11 and n = 101, and find
the steady state u(∞) for large t:

Forward Euler Runge-Kutta Trapezoidal (15) Adams-Bashforth (17)

Solution: This is a model of heat flow with sawtooth initial conditions and
periodic boundary conditions. The stability limits on ∆t are as follows:

Method n = 11 n = 101
Forward Euler 0.00421 4.90 · 10−5

RK2 0.00421 4.90 · 10−5

RK4 0.00587 6.82 · 10−5

Trapezoidal ∞ ∞
Adams-Bashforth 0.00210 2.45 · 10−5

The steady state is given by the average value u(∞) = n+1
2n . Code is on

the web site.
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(3) 6.4 # 3. An odd 2π-periodic sawtooth function ST (x) is the integral of an
even square wave SW (x). Solve utt = uxx starting from SW and also ST
with ut(x, 0) = 0, by a double Fourier series in x and t:
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Solution: Any exponential input eikx to the wave equation utt = uxx evolves
with time as a linear combination of eik(x+t) and eik(x−t), with coefficients
determined by the initial time derivative. In particular, with an interval of
length 2π and periodic boundary conditions, we can decompose our solution
u(x, t) into a double Fourier sum∑

m,n∈Z
cm,ne

imxeint

where cm,n = 0 if m 6= ±n. The initial condition ut(x, 0) = 0 implies∑
m∈Z

eimx(imcm,m + (−im)cm,−m) = 0

By orthogonality of exponentials, cm,m = cm,−m for all m. In particular, our
initial signal is divided into two equal waves travelling in opposite directions.
If u(x, 0) = SW (x), then u(x, t) = SW (x+t)+SW (x−t)

2 . If u(x, 0) = ST (x),
then u(x, t) = ST (x+t)+ST (x−t)

2 .
(4) 6.4 #4. Draw the graphs of SW (x) and ST (x) for |x| ≤ π. If they are

extended to be 2π-periodic for all x, what is the d’Alembert solution uSW =
1
2SW (x+ t)+ 1

2SW (x− t)? Draw its graph at t = 1 and t = π, and similarly
for ST .
Solution: I have given MATLAB code for plotting. The implementation
looks a bit odd, because the textbook and MATLAB definitions of square
wave and sawtooth function differ. Even after the obvious adjustments, we
need to scale amplitudes by constant multiples:

π/4 = 1− 1/3 + 1/5− . . .
and

π2/8 = 1 + 1/9 + 1/25 + . . .

(5) 6.4 #5. Solve the wave equation utt = uxx by the leapfrog method (14)
starting from rest with u(x, 0) = SW (x). Periodic boundary conditions
replace uxx by the second difference circulant −CU/(∆x)2. Compare with
the exact solution in Problem 4 at t = π, for CFL numbers ∆t/∆x =
0.8, 0.9, 1.0, 1.1.
Solution: CFL numbers 0.8 and 0.9 yield some limited high-frequency os-
cillation arising from the discontinuity. CFL number 1.0 will in general
produce high-frequency oscillation with amplitude comparable to the input
size. However, when the time interval has length a multiple of π, it is pos-
sible to arrange parameters so that all of the oscillations cancel out at the
end (You should not think of this as a good general strategy). CFL number
1.1 explodes. Code is on the website.


