18.086 Problem Set 1 Solutions
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6.2 # 8. Solve v/ = —Ku starting from the delta vector
u(0) = [zeros(N, 1);1;zeros(N, 1)].

For large sizes n = 2N + 1 = 201 and 2001, compare as many methods as
possible for accuracy and time step At:

Backward Euler BDF2 Runge-Kutta ode45 odelbs

Solution: The equation in this question is a model of heat flow with delta
initial conditions and a conductive boundary. I have placed sample code on
the web site. You should be careful to run the numerical approximation for
the full length of time, since an off-by-one error in your loop parameter will
yield only first order accuracy.

Results: Unless you chose your time interval to be extremely large, the
errors for N = 201 and N = 2001 should be almost identical, since there is
negligible heat leakage at the boundary. Additional distortions to analysis of
accuracy can come from setting At too large (stability problems) or too small
(for high-order methods like Runge-Kutta, you can run afoul of floating-
point precision limits). The following error results are for " = 10 - other
time intervals may yield different constants, but they should yield the same
order.

Method At =0.1 At =0.05 Accuracy
Backward Euler | 8.17-10"%  4.08-10~% 8-1073(At)
BDF2 597-107¢ 1.47-107% 6-107%(A¢t)?
RK?2 6.99-1076 1.72-107¢ 7.107%4(At)?
RK4 5.66-10710 3.46-1071 6-1076(A)*
ode45 8.38-107% 8.38-10°° N/A
odelbs 1.50-107° 1.50-107° N/A

The errors for ode45 and odel5s are constant, because the solvers auto-

matically adjust step size. There may be a way to override this behavior,
but I haven’t found it.
6.2 # 10. The semidiscrete form of du/0t = 0?u/0z? is a system of ordinary
differential equations. Periodic boundary conditions produce the —1, 2, —1
circulant matrix C in v/ = —n2Cu. Starting from u(0) = (1 : n)/n test
these methods for their stability limits with n = 11 and n = 101, and find
the steady state u(oo) for large ¢:

Forward Euler Runge-Kutta Trapezoidal (15) Adams-Bashforth (17)

Solution: This is a model of heat flow with sawtooth initial conditions and
periodic boundary conditions. The stability limits on At are as follows:

Method n=11 n =101
Forward Euler | 0.00421 4.90-107°
RK2 0.00421 4.90-107°
RK4 0.00587 6.82-107°
Trapezoidal o0 o0
Adams-Bashforth | 0.00210 2.45-107°
The steady state is given by the average value u(co) = "2—21 Code is on

the web site.
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6.4 # 3. An odd 2m-periodic sawtooth function ST'(z) is the integral of an
even square wave SW(z). Solve uy = uy, starting from SW and also ST
with w(x,0) = 0, by a double Fourier series in x and t¢:

cosxr cos3r  cosdx sinx sin3x sinbx

SW(z) = - + . ST (z) = -

1 3 ! 1 9 25

Solution: Any exponential input e?** to the wave equation wy = Uy, evolves
with time as a linear combination of e*@+) and e*(@=1)  with coefficients
determined by the initial time derivative. In particular, with an interval of
length 27 and periodic boundary conditions, we can decompose our solution
u(z,t) into a double Fourier sum
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where ¢, , = 0 if m # £n. The initial condition u;(z,0) = 0 implies

Z e (imepm + (—im)cm,—m) =0

mEZ
By orthogonality of exponentials, ¢, m = ¢m,—m for all m. In particular, our
initial signal is divided into two equal waves travelling in opposite directions.
If w(z,0) = SW(z), then u(x,t) = SW(Ht)JZrSW(x*t). If w(z,0) = ST(x),
then u(z, {) = STEHOTSTE=t)
6.4 #4. Draw the graphs of SW(z) and ST (z) for |z| < w. If they are
extended to be 2m-periodic for all z, what is the d’Alembert solution ugy =
1SW(z+t)+3SW (z—1t)? Draw its graph at ¢ = 1 and ¢ = 7, and similarly
for ST.
Solution: I have given MATLAB code for plotting. The implementation
looks a bit odd, because the textbook and MATLAB definitions of square
wave and sawtooth function differ. Even after the obvious adjustments, we
need to scale amplitudes by constant multiples:

T/A=1-1/34+1/5—...

and

/8 =1+4+1/9+1/25+...
6.4 #5. Solve the wave equation uy = ug, by the leapfrog method (14)
starting from rest with u(x,0) = SW(x). Periodic boundary conditions
replace uz; by the second difference circulant —CU/(Ax)?. Compare with
the exact solution in Problem 4 at ¢ = m, for CFL numbers At/Ax =
0.8,0.9,1.0,1.1.
Solution: CFL numbers 0.8 and 0.9 yield some limited high-frequency os-
cillation arising from the discontinuity. CFL number 1.0 will in general
produce high-frequency oscillation with amplitude comparable to the input
size. However, when the time interval has length a multiple of m, it is pos-
sible to arrange parameters so that all of the oscillations cancel out at the
end (You should not think of this as a good general strategy). CFL number
1.1 explodes. Code is on the website.



