11125
lectures by Richard Borchards, notes by Scott Carnahan
Week 4, 29 Sep 2003)1 25

We review the even unimodular lattices, described in my first lecture. The basic type is
Hmn = {X1,..., Xmen € R™"|(all 5 € Zor all x, € Z + %) and Y x ever} with quadratic
formx2+.--+x% —x2 ., —---— x4, .. This is even if and only ilm=nmod 8.

Any indefinite even unimodular lattice is isomorphic to sortig,n. The story for

definite lattices is somewhat different:

dimension 0 8 16 24 32
isom.types 1 1 2 24>10°

The 8-dimensional lattice g = llg o, the two 16-dimensional lattices &g ® Eg and
I1160, and the 24-dimensional lattices were classified by Niemeier. They will be described
later on. As you can see, there is a sort of “phase change” at 24 dimensions.

There is a basic philosophy that is found in books on number theory and lattices, that
all lattices (over all number fields) are equal. The philosophy of today is that some lattices
are more equal than others. In particuléy s is very special.

The dimension 26 is related to:
1. Critical dimension in bosonic string theory
25— 1= 24 s related to:

1. A(1) = n(1)?4, whereA is the discriminant cusp form of weight 12, andis the
Dedekind function.

2. The constant term of(t) — 720= q~1 4 24+ 196884 + ..., which is the “right
normalization” of this modular function.

The Eisenstein serid® = 1— 24y o1(n)q".
Dimension of the Leech Lattice.

Sporadic groupMo4

o o M W

If we take a double covevl po(Z) of Slo(Z), we have(M po(Z))3° = 7./24.

First important property (found by Conway): The Dynkin diagram bf; »s is the Leech
lattice A.



This may sound a bit strange to you. It’s like the apocryphal story where you add
apples and oranges, and get the answer in bananas. It will take some time to explain what
this means.

We can model hyperbolic space as one component of the norm 1 vecR¥$%fvhich
make up a two-sheeted hyperboloid. The induced metric is uniformly hyperbolic. The
automorphisms affl 1 o5 form a discrete subgroup @ »5(R), and they include reflections
in the norm—2 vectors (i.e. in the hyperplanes®):

Vi— V4 (V,r)r

These generate a discrete reflection group on hyperbolic space.

Fix one region bounded by reflection hyperplanes. This is a fundamental domain for the
reflection group. [Marty: Is this compact, or at least finite volume?] It is not compact - it has
24 orbits of cusps (but this isn’t the same 24 as | mentioned earlier). It has infinite volume.
If you think the only interesting fundamental domains are compact or finite volume, you're
just going to have to change your mind.

Look at the walls of a fundamental domain. The set of walls is (more or less) the
Dynkin diagram of the reflection group. More precisely, the Dynkin diagram has 1 vertex
for each wall, and two vertices are joined by:

1. 0 lines if the walls meet at an angle wf2.
2. 1 line if the walls meet at an angle of 3.

3. A thick line if the walls meet ato (this means the hyperplanes in Lorentz space
intersect at a nontrivial norm 0O vector).

4. Dotted line if they don’t meet, some other stuff if something else happens, although
there aren’t any fixed conventions for these last two.

Now, walls can be identified with norm2 vectors (up to sign), and the nors2
vectors corresponding to the walls of our fundamental domain (where we choose those
with positive inner product with a fixed timelike vector), are cal&hple roots. Simple
roots correspond bijectively with nodes of the Dynkin diagram.

Q: What are the simple roots 6ify »5?
A: Using the original coordinates, it is a complete mess. We will choose an alternative

coordinate system.

Let A be the Leech lattice, anf(—1) the lattice with norms multiplied by-1. Then
N(—1) @111 is even and unimodular, so it is isomorphicltg 2s. [Someone (Noah?):
Why we can'’t just switch signature at the outset? Borcherds: It leads to problems later
on. This is one of the sign errors built into the structure of the universe that we can't
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do anything about.] We write vectors df; 5 as(A,m,n), whereA ¢ A, mne Z. The
norm of (A,m,n) is A> — 2mn Here, we are using a different inner productléy, than
the one defined earlier. There is a simple diagonal rotation which yields> 72 with
((a,b),(c,d)) =ad+bc.

We definep to be(0,0,1). This is a Weyl vector, with normp? = 0. We havep'/ <
p >= A\(—1). Conway showed that the simple roots are the vecatersl ; o5 such that:

1. (rr)=-2

2. (np)=1

The list of all such vectors is given By(A, 1, % —1)|A € A}. The 1 is necessary for

the second condition, and tl352=:— 1 is necessary for the first. This implies the simple roots
correspond bijectively to elementsAf It is easy to show that all of these roots are simple.
It is hard to show that there are no other simple roots.

Sketch of Conway'’s Proof: Supposév,m,n) is some other simple root (30> 1). Then
the norm condition implies-v? + 2mn= —2. Since(v,m,n) has non-negative inner prod-
uct with all other simple roots (note that the sign is reversed from the one for simple

roots of positive definite latticeshy := —(v,A) + m(A—z2 —1)+n>0forallA. This implies

(L—N)2=2+ % + % > 2. Conway, Parker, and Sloane proved that the Leech lattice has

covering radius,/2, using about 50 pages of rather tiresome calculations. This niedns
is covered by closed balls of radiy& centered at the lattice points Af Our calculations
showed thaf. has distance greater thaf2 from allA € A, which is not possible.

With this result, we can calculate the full automorphism grould ofs. Unfortunately,
we are out of time, so the remaining half of this one hour lecture will happen next week.

Week 5, 6 Oct 2003]14 »5 (continued)

We start by recalling some notatiol o5 is the even 26-dimensional even unimodular
lattice. Its reflection group is generated by reflections in ne@rvectors (one can consider
norm 2 vectors, but it is much harder to deal with, and doesn'’t give a hyperbolic reflection
group). There is a Weyl vectqr, such thar is a simple root if and only if> = —2 and
(r,p) = 1. We writell; 25 = A@ 1111, and elementg\,m,n) have norm-A2 +2mn The

simple roots are), = (A, 1, A—ZZ —1) for A € A. This depends on the fact that the covering
radius ofA is at mosty/2.

Applications: We analyze Aulll12s). It is isomorphic to{+1} x Aut*(ll12s5), where

Aut™ (I1125) is the autochronous group, whose elements map the positive timelike cone to
itself. Aut®(I1125) = (reflection group- (Affine automorphisms of\), a semidirect prod-

uct, and the group of affine automorphismAisAut(A), where the group on the left acts by



translations, and the group on the right is a central extension of Conway'’s sporadic simple
groupCo; by Z /2.

In general, Aut(lattice}= (reflection)- (Auts fixing some fundamental domain). Note
that this only works for positive definite or lorentzian lattices, as other lattices don’t have
fundamental domains. To each fundamental domain, we have a Weyl pector

Q: What are the automorphisms W »5 fixing p = (0,0,1)? This is equivalent to asking
what automorphisms preserpe / (p) = A.

A: Suppose € A. We get an automorphism takiriy, 1,n) — (A+v, 1, x). Since automor-
phisms preserve norm, we get the third coordinate:

(A,m,n) — (A+mym,mv?/2+mn)

This gives an action of\ on 14 25, fixing p = (0,0,1) andp*/(p). One can check that
these are all of the automorphisms with these properties.

Q: What does the fundamental domain of the reflection grouj0f look like?

A: Itis a subset oH2° (Hyperbolic space). [Konstantin: If the lattice sits in 26-dimensional
space, shouldn’t the fundamental domain be 26-dimensional? Borcherds: I'm just taking
the norm 1 vectors, so we can apply our 25-dimensional hyperbolic intuition to see what’s
going on.] There are two models of hyperbolic space:

1. “upper-half spaceR™ x R?* (looks like H?. [some drawing of a line (actually 24-
dimensional), with a bumpy curve over it. bumps touching the line are “cusps”,
bumps over the line are “corners”, and the whole thing looks periodic, indicating
translation-invariance undek. There is a “horrible point” ato, indicated by an
upward arrow.] We get finite volume after modding out by thaction.

2. “open ball model” (like the unit disc if). [drawing of a disc, with bumpy curve
on inside looking like the bumps above, but getting small toward a “messy point”
somewhere on the boundary.]

Q: Can we classify cusps and corners?

A: Yes. There are 23 orbits of cusps underAut(A). These are very interesting - they
correspond to the 23 orbits of “deep holes”/afnamely the corners of distang& from

0 in the Voronoi decomposition. There are 284 orbits of corners. They are rather boring.
These correspond to the 284 orbits of of “shallow holes”, which are corners of distance less
than/2 from 0.

One slightly less boring example of a corner: Suppose we use the original coordinate
system:

1
l125={(X0,...,%s) € RV?° allx € Zorallx € Z+§,in even}
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Here, our norm is — x2 — --- —x3.}. What isp in these coordinates? We want to take
the simplest representative possible, so we set the first spacelike coordinatée O:
(*,0,%,...,%). Now, this forcesxy to be nonzero, since if it were zerp,would be per-
perdicular to the norm-2 vector(0,1,—-1,0,...,0), andA has no norm 2 vectors. The
simplest form it can take is thefk, 0,1, x,...,%). Now, X3 cannot be-1,0, 1 for the same
reason, since otherwise it would be easy to find another nePnvector perpendicular
to p. Continuing, we havéx,0,1,2,...,24), and in order to have norm zero, we need
the first coordinate to satisfy? = 0% + 124224 -.. 424> = 70?. This is in fact (by a
theorem of Watson) the only nontriviai(> 2) solution to 6+ 12+ --- 4+ m? = n?. As

it happensp = (70,0,1,...,24) does givep'/{p) = A, although this is not easy (due to
Conway and Curtis). The vectét,0,...,0) is a corner of the fundamental domain of the
reflection group. The hyperplanes passing through this corner correspond to roots of the
form (0,...,0,—1,1,0,...,0), and(0,1,1,0,...,0). This gives the diagrarD,s, where the
last vector is one of the degree one vertices adjacent to the degree three vertex.

Other corners have somewhat less nice reflection groups associated to them.

TheDys lattice is{xy, ..., Xz5|X € Z, Y X ever}. The roots are vectors with 2 entri¢d
and O elsewher€Q,...,+1,0,...,£1,0,...,0), and the simple roots a(, ...,0,—1,1,0,...,0)
and(1,1,0,...,0). The Weyl vector of this reflection group (6,1,2,...,24).

Cusps: The Niemeier lattices other thancorrespond to orbits of primitive norm 0 vectors

of 111 25 under its automorphism group, which correspond to orbits of cusps of the funda-
mental domain of the reflection group underAut(A), which correspond to orbits of deep
holes ofA. All of these sets have 23 elements. Actually, deep holes themselves correspond
to cusps, since we are looking at orbits under the same group of automorphisms.

If Lis a Niemeier latticell1 25 = L@ 111 1. As with/A\, we can take coordinatés, m,n),
setw = (0,0,1) a norm zero Weyl vector, and we can retrigvBy takingw" /(w).

Next week’s seminar will be the remaining8of today’s seminar.
Week 6, 13 Oct 200311 »5 (continued)
We have the following four classes:
1. Isomorphism classes of Niemeier lattices
2. Orbits of primitive norm 0 vectors itl 1 25 under Autll 1 25)
3. Orbits (under\ - Aut(A\)) of cusps of the fundamental domain of reflection

4. Orbits of {deep holesU {e} underA - Aut(A)

The correspondence between 1 and 2 works forléygs1. The correspondence be-
tween 2 and 3 works for hyperbolic reflection groups in general, &vithut(A) is replaced
by Aut(fundamental domain



0

Write ||1725 = /\(—1) D (1

(1)) , and write elements g&, m, n) with norm—\?+2mn

Let p = (0,0,1) be the Weyl vector in a chosen fundamental domairp'stp = A. Now
supposgv,m,n) is a norm 0 vector iflly25. Thenv/me A® Q. If (vym,n) is in the
fundamental domain

{((v,mn),(\,1,A%/2—1)) > OVA € A}

then(v/m—A)? > 2 for all A (Exercise).

More generally, the maps, m,n) — v/m gives a (hon-smooth) one-to-one correspon-

dence between the boundary of the fundamental domai/aadR) U . [Draws a picture
of a spiky blob inscribed in a circle]

Example: Let L = Eg. What does the corresponding cusp look like? We wili{es =

Ld ((1) é) and write elements a&,mn),v € Eg with norm —=v2+2mn A norm O

vector corresponding th is w= (0,0,1). What are the simple roots whose hyperplanes
pass throughv, and what are the angles between them?

Let (r,m,n) be a vector il 1 25, orthogonal taw, and with norm-2. The orthogonality

condition impliesn= 0, so we havér,0,n). The norm condition implies® = 2, sor is a

root of E3, and there are 720 of these.
The vectors(r,0,n) then form the roots of thaffine reflection group ofEs. Pick

some fundamental domain of the affine reflection group, and write down the simplest set
of simple roots for the group. We havg,0,0) for r; a simple root ofES (24 choices),
and(r’,0,1) for r’ a root of EZ in the fundamental domain, and sort(@ 1, 1), whose
hyperplane doesn't actually pass through the cusp, but comes close to it. [Draws three
copies of affineEg, and draws an extra vertex, connected to each of the three diagrams by
the vertex furthest out from the branch.]

Consequences:

1. What is (p,w)? p is a norm 0 vector withp,r) = 1 for all simple rootsr, and
w = Y miri, wherer; run through all simple roots in some component of affige
(p,w) = Smi(p,ri) = S m;, which is the Coxeter numbér of that component of
the root system. FdEg, h = 30. This implies a result of Niemeier, namely that all
components of the Dynkin diagram of a Niemeier lattichkave the same Coxeter
number.

2. The rank of the root system is 24,lif= A. We omit the proof, although it follows
easily from the fact thdt corresponds to a deep hole.

We use these two properties to classify Niemeier lattices, by listing all admissible root

systems. We will make a table of simply laced affine diagrams, and assign positive integers
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to the vertices such that the number on any vertex is half the sum of those on the adjacent
vertices, and such that these numbers are smallest possible. The Coxeter number of the
diagram is the sum of these numbers.

Diagram Coxeter numbér

An n+1
Dn 2n—2
Eg 12
E; 18
Eg 30

Then we make a list of possible Coxeter numbers, and the diagrams which correspond
to them.

2 3 4 5 6 7 8 9 10 11 12
At Ao As Ay A5,D4 As A7,Ds Ag Ag,De Aio A11,D7,Ee

13 14 15 16 17 18 19 20 21
A2 A13,Dg Ais Ai5,D9 Aig A17,D10,E7 Aig A19,D11 Ao
22 23 24 25 ... 30 46
A21,D12 Aoz Ao3,Di1z Aos ... A9,Dis,Es ... Aus,Do2s

Now, we pick diagrams from each column so that their subscripts add t#&224A212,
8, AS, AZDy, DS, /;g A2D2, A3, A3Dg, DE, A11D7Eg, Eg, A2, D3, A1sDg, A17E7, D1oEZ,
D2, A24, D16eEs, Eg, D2a.

Amazing fact: Each of these Dynkin diagrams correspondsxactly oneNeimeier lat-
tice. The only known proofs of this are through case-by-case analysis.

This gives rise to a “Leech lattice calculus” which is mostly due to Conway. Suppose
we find an affine Dynkin diagram ift. Then it is contained in the Dynkin diagram of some
Niemeier lattice. For example: [Some messy drawing involving three copies of &ffine
with an extra vertex connecting them by the long ends.] Take an @fipdere [circles a
D1g]. It must be contained in an affin@1gEg, and this must contain asrthogonal affine
Es, so we can deduce the existence of this vertex here [Draws another vertex, and connects
it to the second vertex in the long path of the copyEgfnot included in theDyg.] This
must have inner product 2 with the norm 0 vectoE@f so these edges must exist. [draws
edges to the ends of the length 3 paths offgs involved with theD1g. Since there is an
affineEg here, we must havEg. [l didn’t understand this, either]

Next week, Noah Snyder will talk about the Leech lattice.

Week 8, 27 Oct 2003, Applications ofl 25

7



Recall: A is the Dynkin diagram ofl1 25 = A @ G é . The fundamental domain of
111 25 has something to do with(affine), where walls correspond to pointsAf and cusps
(i.e. norm 0 vectors) correspond to deep holes (23 orbits), which correspond to Niemeier

lattices other thaw.
Next, we will see how\ controls unimodular lattices in small dimensidrs25).

Recall that the Smith-Minkowski-Siegel mass formula implies the number of unimod-
ular lattices isvery rapidly increasing in dimensions at least about 28.

SupposeL is unimodular, and dimension 25 (and if diby) < 25, replace withL &
725-dim(L)y ook atLeve" which is the sublattice of vectors of even norrrLinL"¢"has
index 2 inL, so (L8’ /L®eNjs cyclic of order 4. Look at a norm 4 vecterof 117 7. v+
has dimension 25, is negative definite, gud)’ /v* is cyclic of order 4. In fact, this gives
bijections between:

1. orbits of norm 4 vectors il 1 25
2. even latticedv of dimension 25 such that’/M = 7 /4

3. 25 dimensional unimodular lattices

Orbits of negative norm vectors lily »5 are not interesting. Any two such vectors are
conjugate if they have the same norm, and are equal multiples of primitive vectors.

For norm 0 vectors, we have a bijection between primitive norm 0 vectors and Niemeier
latticesw' /w. There are 24 Z-.o orbits, given bynw, with w primitive andn a positive
integer.

For positive norm vectors, we have 121 orbits of norm 2 vectors, 665 orbits of norm 4
vectors, and about 3000 orbits of norm 6 vectors.

Supposev is a positive norm vector i1 5. We may assume is in a fundamental
domain ofll4 »s. Then the simple roots of- form a sublattice of\, taken as a subset of
the simple roots ofl 1 5. There are two possibilities:

1. vt has roots. Pick a roat € v-. Thenv+r has normv2+r2 =2 —2, so we
can “reduce’v to a vector of smaller norm. With some effort, this process can be
reversed knowing vectors of norm@ allows us to find those of nornm2+ 2 with
roots orthogonal to them. This works fldi 1gn for all n.

2. vt has no roots. Recall; 25 has a Weyl vectop such thatp,r) = 1 for all simple
rootsr. We know(v,r) > O for all simple roots, as is in the fundamental domain.
Thus, (v—p,r) > 0 for all simple rootsr. In particular,v— p has positive horm
=2 —2(v,p) < V2, so we can recoveras(v—p) + p and induct.



Example: Find all 25 dimensional unimodular latticesvith no norm 2 vectorsL corre-
sponds to a norm 4 vectwin the fundamental domain of 5. Norm 2 vectors correspond
to norm—2 vectors ofv!, so there are no (simple) roots i 25 orthogonal tov. Using
caS(ze 2a:=v—pisin the fundamental domain. We know®Ga? < V2 = 4, soeither a? = 0
ora=2.

If a> = 0, then(a,p) = 2, anda corresponds to some Niemeier lattiaé/a. The
Coxeter number of the Niemeier lattice(& p) = 2 (becaus@= S myri norm 0,(r;,p) =1
implies (a,p) = 3 m = Coxeter number), so the Niemeier lattice is of tyﬁé. Anyway,

a is determined (up to conjugacy), 6= a+ p is determined. The corresponding lattice
vt turns out to b&Z @ Aogg, WhereAqqq is the “odd Leech lattice”, an odd 24 dimensional
unimodular lattice of minimal norm 3. It was discovered about 20 years bé&foamnd |
think Witt discovered it but I'm not sure.

The second possibility is thaf = 2 and(a, p) = 1. Vectors with specified inner prod-
uct with p are very easy to classify: any such vector is of the fopn-p’, wherep’? = 0

and(p’,p) = 1. If we writell125 = A+ ((1) cl)) thenp = (0,0,1) andp’ is conjugate to

(0,1,0). This if a®> = 2, ais conjugate tg + p. There is only one possibilityw = A @ Z.

So the only 25 dimensional unimodular lattices with no norm 2 vectorda¢&. and
Nodd D Z.
Remark: In all dimensions> 23 other than 25, there are unimodular lattices with no roots.

If L is a 25 dimensional unimodular lattice, then the Dynkin diagram of norm 2 roots
of L is a sublattice of\. For example, iL. = Z?%, the Dynkin diagram of norm 2 vectors is
D25, soD2s C A. We saw this explicitly inN70,0,1,2,...,24).

How do you prove thaf\ has covering radiug/2?
One way is to do a huge calculation, which was how Conway, Parker and Sloane proved

Another way is to recall thah has covering radiusc v/2, if and only if Il105 has a
Weyl vectorp, if and only if the Dynkin diagram of any Niemeier lattice has rank 0 or 24
and all components have the same Coxeter number. This was first proved by Niemeier, and
a “clean proof” was found by Venkov.

Recall that ifL is an even unimodular lattice, then its theta function

0, (T) _ e2Tli (A2/2)t

is a modular form of level one and Weigﬂii@. We modify the function (first done by

Hecke) to:
Z p()\)eZT[i()\z/Z)T
A€l



wherep is a harmonic polynomial. This gives a level one, Wei@f%@ +degp) form.

Now, we takel to be a Neimeier lattice, anp(A) = (A, a)? — %, wherea is any fixed

vector inL. The 24 in the denominator is the dimensionLgfand makes the polynomial
harmonic.

Key point: The space of level one cusp forms of weight 14 is 0, so

1
ZZ (A, a)?= = x2nxa®x|L(2n)|
24
A=2
where the last term is the number of normv&ctors inL. Forn= 1, we haveys ,2_,(\,0)? =

g—; x # norm 2 vectors oE. This easily implies the above properties of the root system of
L.

Exercise We need the fact that R is a connectedroot system of norm 2 vectors, and
a € R, then the number of vectors having inner product

2 1
1 2n—4
0 withais *
-1 2n—4
-2 1
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