
II1,25

lectures by Richard Borchards, notes by Scott Carnahan

Week 4, 29 Sep 2003,II1,25

We review the even unimodular lattices, described in my first lecture. The basic type is
IIm,n = {x1, . . . ,xm+n ∈ Rm+n|(all xi ∈ Z or all xi ∈ Z + 1

2) and ∑xi even} with quadratic
form x2

1 + · · ·+x2
m−x2

m+1−·· ·−x2
m+n. This is even if and only ifm≡ n mod 8.

Any indefinite even unimodular lattice is isomorphic to someIIm,n. The story for
definite lattices is somewhat different:

dimension 0 8 16 24 32
isom. types 1 1 2 24> 109

The 8-dimensional lattice isE8
∼= II8,0, the two 16-dimensional lattices areE8⊕E8 and

II16,0, and the 24-dimensional lattices were classified by Niemeier. They will be described
later on. As you can see, there is a sort of “phase change” at 24 dimensions.

There is a basic philosophy that is found in books on number theory and lattices, that
all lattices (over all number fields) are equal. The philosophy of today is that some lattices
are more equal than others. In particular,II1,25 is very special.

The dimension 26 is related to:

1. Critical dimension in bosonic string theory

25−1 = 24 is related to:

1. ∆(τ) = η(τ)24, where∆ is the discriminant cusp form of weight 12, andη is the
Dedekind function.

2. The constant term ofj(τ)− 720= q−1 + 24+ 196884q+ . . . , which is the “right
normalization” of this modular function.

3. The Eisenstein seriesE2 = 1−24∑σ1(n)qn.

4. Dimension of the Leech Lattice.

5. Sporadic groupM24

6. If we take a double coverMp2(Z) of SL2(Z), we have(Mp2(Z))ab∼= Z/24.

First important property (found by Conway): The Dynkin diagram ofII1,25 is the Leech
latticeΛ.
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This may sound a bit strange to you. It’s like the apocryphal story where you add
apples and oranges, and get the answer in bananas. It will take some time to explain what
this means.

We can model hyperbolic space as one component of the norm 1 vectors ofR1,25, which
make up a two-sheeted hyperboloid. The induced metric is uniformly hyperbolic. The
automorphisms ofII1,25 form a discrete subgroup ofO1,25(R), and they include reflections
in the norm−2 vectorsr (i.e. in the hyperplanesr⊥):

v 7→ v+(v, r)r

These generate a discrete reflection group on hyperbolic space.

Fix one region bounded by reflection hyperplanes. This is a fundamental domain for the
reflection group. [Marty: Is this compact, or at least finite volume?] It is not compact - it has
24 orbits of cusps (but this isn’t the same 24 as I mentioned earlier). It has infinite volume.
If you think the only interesting fundamental domains are compact or finite volume, you’re
just going to have to change your mind.

Look at the walls of a fundamental domain. The set of walls is (more or less) the
Dynkin diagram of the reflection group. More precisely, the Dynkin diagram has 1 vertex
for each wall, and two vertices are joined by:

1. 0 lines if the walls meet at an angle ofπ/2.

2. 1 line if the walls meet at an angle ofπ/3.

3. A thick line if the walls meet at∞ (this means the hyperplanes in Lorentz space
intersect at a nontrivial norm 0 vector).

4. Dotted line if they don’t meet, some other stuff if something else happens, although
there aren’t any fixed conventions for these last two.

Now, walls can be identified with norm−2 vectors (up to sign), and the norm−2
vectors corresponding to the walls of our fundamental domain (where we choose those
with positive inner product with a fixed timelike vector), are calledsimple roots. Simple
roots correspond bijectively with nodes of the Dynkin diagram.

Q: What are the simple roots ofII1,25?

A: Using the original coordinates, it is a complete mess. We will choose an alternative
coordinate system.

Let Λ be the Leech lattice, andΛ(−1) the lattice with norms multiplied by−1. Then
Λ(−1)⊕ II1,1 is even and unimodular, so it is isomorphic toII1,25. [Someone (Noah?):
Why we can’t just switch signature at the outset? Borcherds: It leads to problems later
on. This is one of the sign errors built into the structure of the universe that we can’t
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do anything about.] We write vectors ofII1,25 as(λ,m,n), whereλ ∈ Λ, m,n ∈ Z. The
norm of (λ,m,n) is λ2−2mn. Here, we are using a different inner product onII1,1 than
the one defined earlier. There is a simple diagonal rotation which yieldsII1,1

∼= Z2 with
((a,b),(c,d)) = ad+bc.

We defineρ to be(0,0,1). This is a Weyl vector, with normρ2 = 0. We haveρ⊥/ <
ρ >∼= Λ(−1). Conway showed that the simple roots are the vectorsr ∈ II1,25 such that:

1. (r, r) =−2

2. (r,ρ) = 1

The list of all such vectors is given by{(λ,1, λ2

2 −1)|λ ∈ Λ}. The 1 is necessary for

the second condition, and theλ2

2 −1 is necessary for the first. This implies the simple roots
correspond bijectively to elements ofΛ. It is easy to show that all of these roots are simple.
It is hard to show that there are no other simple roots.

Sketch of Conway’s Proof:Suppose(v,m,n) is some other simple root (som> 1). Then
the norm condition implies−v2 +2mn=−2. Since(v,m,n) has non-negative inner prod-
uct with all other simple roots (note that the sign is reversed from the one for simple
roots of positive definite lattices),A :=−(v,λ)+m(λ2

2 −1)+n≥ 0 for all λ. This implies
( v

m−λ)2 = 2+ 2
m2 + A

m > 2. Conway, Parker, and Sloane proved that the Leech lattice has

covering radius
√

2, using about 50 pages of rather tiresome calculations. This meansR24

is covered by closed balls of radius
√

2 centered at the lattice points ofΛ. Our calculations
showed thatvm has distance greater than

√
2 from all λ ∈ Λ, which is not possible.

With this result, we can calculate the full automorphism group ofII1,25. Unfortunately,
we are out of time, so the remaining half of this one hour lecture will happen next week.

Week 5, 6 Oct 2003,II1,25 (continued)

We start by recalling some notation.II1,25 is the even 26-dimensional even unimodular
lattice. Its reflection group is generated by reflections in norm−2 vectors (one can consider
norm 2 vectors, but it is much harder to deal with, and doesn’t give a hyperbolic reflection
group). There is a Weyl vectorρ, such thatr is a simple root if and only ifr2 = −2 and
(r,ρ) = 1. We writeII1,25

∼= Λ⊕ II1,1, and elements(λ,m,n) have norm−λ2 +2mn. The

simple roots arerλ = (λ,1, λ2

2 −1) for λ ∈ Λ. This depends on the fact that the covering
radius ofΛ is at most

√
2.

Applications: We analyze Aut(II1,25). It is isomorphic to{±1}×Aut+(II1,25), where
Aut+(II1,25) is the autochronous group, whose elements map the positive timelike cone to
itself. Aut+(II1,25) ∼= (reflection group) · (Affine automorphisms ofΛ), a semidirect prod-
uct, and the group of affine automorphisms isΛ ·Aut(Λ), where the group on the left acts by
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translations, and the group on the right is a central extension of Conway’s sporadic simple
groupCo1 by Z/2.

In general, Aut(lattice)= (reflection)· (Auts fixing some fundamental domain). Note
that this only works for positive definite or lorentzian lattices, as other lattices don’t have
fundamental domains. To each fundamental domain, we have a Weyl vectorρ.

Q: What are the automorphisms ofII1,25 fixing ρ = (0,0,1)? This is equivalent to asking
what automorphisms preserveρ⊥/〈ρ〉= Λ.

A: Supposev∈Λ. We get an automorphism taking(λ,1,n) 7→ (λ+v,1,∗). Since automor-
phisms preserve norm, we get the third coordinate:

(λ,m,n) 7→ (λ+mv,m,mv2/2+mn)

This gives an action ofΛ on II1,25, fixing ρ = (0,0,1) andρ⊥/〈ρ〉. One can check that
these are all of the automorphisms with these properties.

Q: What does the fundamental domain of the reflection group ofII1,25 look like?

A: It is a subset ofH25 (Hyperbolic space). [Konstantin: If the lattice sits in 26-dimensional
space, shouldn’t the fundamental domain be 26-dimensional? Borcherds: I’m just taking
the norm 1 vectors, so we can apply our 25-dimensional hyperbolic intuition to see what’s
going on.] There are two models of hyperbolic space:

1. “upper-half space”R+×R24 (looks likeH2. [some drawing of a line (actually 24-
dimensional), with a bumpy curve over it. bumps touching the line are “cusps”,
bumps over the line are “corners”, and the whole thing looks periodic, indicating
translation-invariance underΛ. There is a “horrible point” at∞, indicated by an
upward arrow.] We get finite volume after modding out by theΛ action.

2. “open ball model” (like the unit disc inC). [drawing of a disc, with bumpy curve
on inside looking like the bumps above, but getting small toward a “messy point”
somewhere on the boundary.]

Q: Can we classify cusps and corners?

A: Yes. There are 23 orbits of cusps underΛ ·Aut(Λ). These are very interesting - they
correspond to the 23 orbits of “deep holes” ofΛ, namely the corners of distance

√
2 from

0 in the Voronoi decomposition. There are 284 orbits of corners. They are rather boring.
These correspond to the 284 orbits of of “shallow holes”, which are corners of distance less
than

√
2 from 0.

One slightly less boring example of a corner: Suppose we use the original coordinate
system:

II1,25 = {(x0, . . . ,x25) ∈ R1,25| all xi ∈ Z or all xi ∈ Z+
1
2
,∑xi even}

4



Here, our norm isx2
0− x2

1− ·· ·− x2
25}. What isρ in these coordinates? We want to take

the simplest representative possible, so we set the first spacelike coordinatex1 to be 0:
(*,0,*,. . . ,*). Now, this forcesx2 to be nonzero, since if it were zero,ρ would be per-
perdicular to the norm−2 vector(0,1,−1,0, . . . ,0), andΛ has no norm 2 vectors. The
simplest form it can take is then,(∗,0,1,∗, . . . ,∗). Now, x3 cannot be−1,0,1 for the same
reason, since otherwise it would be easy to find another norm−2 vector perpendicular
to ρ. Continuing, we have(∗,0,1,2, . . . ,24), and in order to have norm zero, we need
the first coordinate to satisfyn2 = 02 + 12 + 22 + · · ·+ 242 = 702. This is in fact (by a
theorem of Watson) the only nontrivial (m≥ 2) solution to 02 + 12 + · · ·+ m2 = n2. As
it happens,ρ = (70,0,1, . . . ,24) does giveρ⊥/〈ρ〉 ∼= Λ, although this is not easy (due to
Conway and Curtis). The vector(1,0, . . . ,0) is a corner of the fundamental domain of the
reflection group. The hyperplanes passing through this corner correspond to roots of the
form (0, . . . ,0,−1,1,0, . . . ,0), and(0,1,1,0, . . . ,0). This gives the diagramD25, where the
last vector is one of the degree one vertices adjacent to the degree three vertex.

Other corners have somewhat less nice reflection groups associated to them.

TheD25 lattice is{x1, . . . ,x25|xi ∈Z,∑xi even}. The roots are vectors with 2 entries±1
and 0 elsewhere:(0, . . . ,±1,0, . . . ,±1,0, . . . ,0), and the simple roots are(0, . . . ,0,−1,1,0, . . . ,0)
and(1,1,0, . . . ,0). The Weyl vector of this reflection group is(0,1,2, . . . ,24).

Cusps:The Niemeier lattices other thanΛ correspond to orbits of primitive norm 0 vectors
of II1,25 under its automorphism group, which correspond to orbits of cusps of the funda-
mental domain of the reflection group underΛ ·Aut(Λ), which correspond to orbits of deep
holes ofΛ. All of these sets have 23 elements. Actually, deep holes themselves correspond
to cusps, since we are looking at orbits under the same group of automorphisms.

If L is a Niemeier lattice,II1,25
∼= L⊕ II1,1. As withΛ, we can take coordinates(λ,m,n),

setw = (0,0,1) a norm zero Weyl vector, and we can retrieveL by takingw⊥/〈w〉.
Next week’s seminar will be the remaining 3/4 of today’s seminar.

Week 6, 13 Oct 2003,II1,25 (continued)

We have the following four classes:

1. Isomorphism classes of Niemeier lattices

2. Orbits of primitive norm 0 vectors inII1,25 under Aut(II1,25)

3. Orbits (underΛ ·Aut(Λ)) of cusps of the fundamental domain of reflection

4. Orbits of{deep holes}∪{∞} underΛ ·Aut(Λ)

The correspondence between 1 and 2 works for anyII1,8n+1. The correspondence be-
tween 2 and 3 works for hyperbolic reflection groups in general, withΛ ·Aut(Λ) is replaced
by Aut(fundamental domain).
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Write II1,25 = Λ(−1)⊕
(

0 1
1 0

)
, and write elements as(λ,m,n) with norm−λ2+2mn.

Let ρ = (0,0,1) be the Weyl vector in a chosen fundamental domain, soρ⊥/ρ ∼= Λ. Now
suppose(v,m,n) is a norm 0 vector inII1,25. Thenv/m∈ Λ⊗Q. If (v,m,n) is in the
fundamental domain

{((v,m,n),(λ,1,λ2/2−1))≥ 0∀λ ∈ Λ}

then(v/m−λ)2 ≥ 2 for all λ (Exercise).

More generally, the map(v,m,n) 7→ v/m gives a (non-smooth) one-to-one correspon-
dence between the boundary of the fundamental domain and(Λ⊗R)∪∞. [Draws a picture
of a spiky blob inscribed in a circle]

Example: Let L = E8. What does the corresponding cusp look like? We writeII1,25 =

L⊕
(

0 1
1 0

)
, and write elements as(v,m,n),v ∈ E3

8 with norm−v2 + 2mn. A norm 0

vector corresponding toL is w = (0,0,1). What are the simple roots whose hyperplanes
pass throughw, and what are the angles between them?

Let (r,m,n) be a vector inII1,25, orthogonal tow, and with norm−2. The orthogonality
condition impliesm= 0, so we have(r,0,n). The norm condition impliesr2 = 2, sor is a
root ofE3

8, and there are 720 of these.

The vectors(r,0,n) then form the roots of theaffine reflection group ofE8. Pick
some fundamental domain of the affine reflection group, and write down the simplest set
of simple roots for the group. We have(r i ,0,0) for r i a simple root ofE3

8 (24 choices),
and(r ′,0,1) for r ′ a root ofE3

8 in the fundamental domain, and sort of(0,1,−1), whose
hyperplane doesn’t actually pass through the cusp, but comes close to it. [Draws three
copies of affineE8, and draws an extra vertex, connected to each of the three diagrams by
the vertex furthest out from the branch.]

Consequences:

1. What is (ρ,w)? ρ is a norm 0 vector with(ρ, r) = 1 for all simple rootsr, and
w = ∑mir i , wherer i run through all simple roots in some component of affineE8.
(ρ,w) = ∑mi(ρ, r i) = ∑mi , which is the Coxeter numberh of that component of
the root system. ForE8, h = 30. This implies a result of Niemeier, namely that all
components of the Dynkin diagram of a Niemeier latticeL have the same Coxeter
number.

2. The rank of the root system is 24, ifL 6= Λ. We omit the proof, although it follows
easily from the fact thatL corresponds to a deep hole.

We use these two properties to classify Niemeier lattices, by listing all admissible root
systems. We will make a table of simply laced affine diagrams, and assign positive integers

6



to the vertices such that the number on any vertex is half the sum of those on the adjacent
vertices, and such that these numbers are smallest possible. The Coxeter number of the
diagram is the sum of these numbers.

Diagram Coxeter numberh
An n+1
Dn 2n−2
E6 12
E7 18
E8 30

Then we make a list of possible Coxeter numbers, and the diagrams which correspond
to them.

2 3 4 5 6 7 8 9 10 11 12
A1 A2 A3 A4 A5,D4 A6 A7,D5 A8 A9,D6 A10 A11,D7,E6

13 14 15 16 17 18 19 20 21
A12 A13,D8 A14 A15,D9 A16 A17,D10,E7 A18 A19,D11 A20

22 23 24 25 . . . 30 . . . 46
A21,D12 A22 A23,D13 A24 . . . A29,D16,E8 . . . A45,D24

Now, we pick diagrams from each column so that their subscripts add to 24:A24
1 , A12

2 ,
A8

3, A6
4, A4

5D4, D6
4, A4

6, A2
7D2

5, A3
8, A2

9D6, D4
6, A11D7E6, E4

6, A2
12, D3

8, A15D9, A17E7, D10E2
7,

D2
12, A24, D16E8, E3

8, D24.

Amazing fact: Each of these Dynkin diagrams corresponds toexactly oneNeimeier lat-
tice. The only known proofs of this are through case-by-case analysis.

This gives rise to a “Leech lattice calculus” which is mostly due to Conway. Suppose
we find an affine Dynkin diagram inΛ. Then it is contained in the Dynkin diagram of some
Niemeier lattice. For example: [Some messy drawing involving three copies of affineE8

with an extra vertex connecting them by the long ends.] Take an affineD16 here [circles a
D16]. It must be contained in an affineD16E8, and this must contain anorthogonal affine
E8, so we can deduce the existence of this vertex here [Draws another vertex, and connects
it to the second vertex in the long path of the copy ofE8 not included in theD16.] This
must have inner product 2 with the norm 0 vector ofE3

8, so these edges must exist. [draws
edges to the ends of the length 3 paths of theE8’s involved with theD16. Since there is an
affineE6 here, we must haveE4

6. [I didn’t understand this, either]

Next week, Noah Snyder will talk about the Leech lattice.

Week 8, 27 Oct 2003, Applications ofII1,25
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Recall:Λ is the Dynkin diagram ofII1,25 = Λ⊕
(

0 1
1 0

)
. The fundamental domain of

II1,25 has something to do withΛ(affine), where walls correspond to points ofΛ, and cusps
(i.e. norm 0 vectors) correspond to deep holes (23 orbits), which correspond to Niemeier
lattices other thanΛ.

Next, we will see howΛ controls unimodular lattices in small dimensions(≤ 25).

Recall that the Smith-Minkowski-Siegel mass formula implies the number of unimod-
ular lattices isvery rapidly increasing in dimensions at least about 28.

SupposeL is unimodular, and dimension 25 (and if dim(L) < 25, replace withL⊕
Z25−dim(L)). Look atLeven, which is the sublattice of vectors of even norm inL. Levenhas
index 2 inL, so(Leven)′/Leven is cyclic of order 4. Look at a norm 4 vectorv of II1,25. v⊥

has dimension 25, is negative definite, and(v⊥)′/v⊥ is cyclic of order 4. In fact, this gives
bijections between:

1. orbits of norm 4 vectors inII1,25

2. even latticesM of dimension 25 such thatM′/M ∼= Z/4

3. 25 dimensional unimodular lattices

Orbits of negative norm vectors inII1,25 are not interesting. Any two such vectors are
conjugate if they have the same norm, and are equal multiples of primitive vectors.

For norm 0 vectors, we have a bijection between primitive norm 0 vectors and Niemeier
latticesw⊥/w. There are 24×Z>0 orbits, given bynw, with w primitive andn a positive
integer.

For positive norm vectors, we have 121 orbits of norm 2 vectors, 665 orbits of norm 4
vectors, and about 3000 orbits of norm 6 vectors.

Supposev is a positive norm vector inII1,25. We may assumev is in a fundamental
domain ofII1,25. Then the simple roots ofv⊥ form a sublattice ofΛ, taken as a subset of
the simple roots ofII1,25. There are two possibilities:

1. v⊥ has roots. Pick a rootr ∈ v⊥. Thenv+ r has normv2 + r2 = v2− 2, so we
can “reduce”v to a vector of smaller norm. With some effort, this process can be
reversed: knowing vectors of norm 2m allows us to find those of norm 2m+2 with
roots orthogonal to them. This works forII1,1+8n for all n.

2. v⊥ has no roots. RecallII1,25 has a Weyl vectorρ such that(ρ, r) = 1 for all simple
rootsr. We know(v, r) > 0 for all simple roots, asv is in the fundamental domain.
Thus, (v− ρ, r) ≥ 0 for all simple rootsr. In particular,v− ρ has positive norm
= v2−2(v,ρ) < v2, so we can recoverv as(v−ρ)+ρ and induct.
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Example: Find all 25 dimensional unimodular latticesL with no norm 2 vectors.L corre-
sponds to a norm 4 vectorv in the fundamental domain ofII1,25. Norm 2 vectors correspond
to norm−2 vectors ofv⊥, so there are no (simple) roots ofII1,25 orthogonal tov. Using
case 2,a := v−ρ is in the fundamental domain. We know 0≤ a2 < v2 = 4, soeither a2 = 0
or a2 = 2.

If a2 = 0, then(a,ρ) = 2, anda corresponds to some Niemeier latticea⊥/a. The
Coxeter number of the Niemeier lattice is(a,ρ) = 2 (becausea= ∑mir i norm 0,(r i ,ρ) = 1
implies(a,ρ) = ∑mi = Coxeter number), so the Niemeier lattice is of typeA24

1 . Anyway,
a is determined (up to conjugacy), sov = a+ ρ is determined. The corresponding lattice
v⊥ turns out to beZ⊕Λodd, whereΛodd is the “odd Leech lattice”, an odd 24 dimensional
unimodular lattice of minimal norm 3. It was discovered about 20 years beforeΛ, and I
think Witt discovered it but I’m not sure.

The second possibility is thata2 = 2 and(a,ρ) = 1. Vectors with specified inner prod-
uct with ρ are very easy to classify: any such vector is of the formnρ + ρ′, whereρ′2 = 0

and(ρ′,ρ) = 1. If we write II1,25 = Λ +
(

0 1
1 0

)
thenρ = (0,0,1) andρ′ is conjugate to

(0,1,0). This if a2 = 2, a is conjugate toρ+ρ′. There is only one possibility:v⊥ ∼= Λ⊕Z.

So the only 25 dimensional unimodular lattices with no norm 2 vectors areΛ⊕Z and
Λodd⊕Z.

Remark: In all dimensions≥ 23other than 25, there are unimodular lattices with no roots.

If L is a 25 dimensional unimodular lattice, then the Dynkin diagram of norm 2 roots
of L is a sublattice ofΛ. For example, ifL = Z25, the Dynkin diagram of norm 2 vectors is
D25, soD25⊂ Λ. We saw this explicitly in(70,0,1,2, . . . ,24).

How do you prove thatΛ has covering radius
√

2?

One way is to do a huge calculation, which was how Conway, Parker and Sloane proved
it.

Another way is to recall thatΛ has covering radius≤
√

2, if and only if II1,25 has a
Weyl vectorρ, if and only if the Dynkin diagram of any Niemeier lattice has rank 0 or 24
and all components have the same Coxeter number. This was first proved by Niemeier, and
a “clean proof” was found by Venkov.

Recall that ifL is an even unimodular lattice, then its theta function

θL(τ) = ∑
λ∈L

e2πi(λ2/2)τ

is a modular form of level one and weightdim(L)
2 . We modify the function (first done by

Hecke) to:

∑
λ∈L

p(λ)e2πi(λ2/2)τ
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wherep is a harmonic polynomial. This gives a level one, weightdim(L)
2 + deg(p) form.

Now, we takeL to be a Neimeier lattice, andp(λ) = (λ,α)2− λ2α2

24 , whereα is any fixed
vector inL. The 24 in the denominator is the dimension ofL, and makes the polynomial
harmonic.

Key point: The space of level one cusp forms of weight 14 is 0, so

∑
λ2=2n

(λ,α)2 =
1
24
×2n×α2×|L(2n)|

where the last term is the number of norm 2nvectors inL. Forn= 1, we have∑λ2=2(λ,α)2 =
α2

12× # norm 2 vectors ofL. This easily implies the above properties of the root system of
L.

Exercise: We need the fact that ifR is a connectedroot system of norm 2 vectors, and
α ∈ R, then the number of vectors having inner product

2 1
1 2n−4
0 with α is ∗
−1 2n−4
−2 1
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