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Statistical inference on high-dimensional
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1 Introduction

We consider correlation tests for “high-dimension, low-sample-size (HDLSS)”
data. Recently, Aoshima and Yata [2] created the two disjoint models: the
strongly spiked eigenvalue (SSE) model and the non-SSE (NSSE) model. In this
talk, we focus on the SSE model. Suppose that we take samples xj, j = 1, . . . , n,
of size n (≥ 4), which are independent and identically distributed (i.i.d.) as a
p-variate distribution. Let xj = (x⊤

1j,x
⊤
2j)

⊤ and assume that xij ∈ Rpi , i = 1, 2,
with p1 ∈ [1, p − 1] and p2 = p − p1. We also assume that xj has an unknown
mean vector, µ = (µ⊤

1 ,µ
⊤
2 )

⊤, and unknown covariance matrix,

Σ =

(
Σ1 Σ∗
Σ⊤

∗ Σ2

)
(≥ O),

that is, E(xij) = µi, Var(xij) = Σi, i = 1, 2, and Cov(x1j,x2j) = E(x1jx
⊤
2j) −

µ1µ
⊤
2 = Σ∗. Let σij be the j-th diagonal element of Σi for i = 1, 2; j = 1, . . . , pi,

and assume σij > 0 for all i, j. We denote the correlation coefficient ma-
trix between x1j and x2j by Corr(x1j,x2j) = P , where P = diag(σ11, . . . ,
σ1p1)

−1/2Σ∗diag(σ21, . . . , σ2p2)
−1/2. Here, diag(σi1, . . . , σipi) denotes the diago-

nal matrix of elements, σi1, . . . , σipi . Then, we consider testing the following
hypotheses :

H0 : P = O vs. H1 : P ̸= O. (1)

2 Correlation test under the SSE model

We assume that p1 is fixed. We also assume the following condition:

(A-i)
λmax(Σ2)√

tr(Σ2
2)

→ 1, p2 → ∞, where λmax(Σ) is the largest eigenvalue of Σ2

The model (A-i) is one of the SSE models and is called the “uni-SSE model” in
Ishii, Yata and Aoshima [3].

Aoshima and Yata [1] gave a test statistic for testing (1) and Yata and
Aoshima [4] improved the test statistic by using the extended cross-data-matrix
(ECDM) methodology. They gave asymptotic normality of the test statistic under
one of the NSSE models.
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Let ∆ = tr(Σ∗Σ
⊤
∗ )(= ∥Σ∗∥2F ), where ∥·∥F is the Frobenius norm. We in-

troduce an unbiased estimator of ∆ by the ECDM methodology. We define
n(1) = ⌈n/2⌉ and n(2) = n−n(1), where ⌈x⌉ denotes the smallest integer ≥ x. Let

V n(1)(k) =

{
{⌊k/2⌋ − n(1) + 1, . . . , ⌊k/2⌋} if ⌊k/2⌋ ≥ n(1),

{1, . . . , ⌊k/2⌋} ∪ {⌊k/2⌋+ n(2) + 1, . . . , n} otherwise;

V n(2)(k) =

{
{⌊k/2⌋+ 1, . . . , ⌊k/2⌋+ n(2)} if ⌊k/2⌋ ≤ n(1),

{1, . . . , ⌊k/2⌋ − n(1)} ∪ {⌊k/2⌋+ 1, . . . , n} otherwise

for k = 3, . . . , 2n − 1, where ⌊x⌋ denotes the largest integer ≤ x. Also, let #A
denote the number of elements in a set A. Note that #V n(l)(k) = n(l), l = 1, 2,
V n(1)(k) ∩ V n(2)(k) = ∅ and V n(1)(k) ∪ V n(2)(k) = {1, . . . , n} for k = 3, . . . , 2n− 1.
It should be noted that

i ∈ V n(1)(i+j) and j ∈ V n(2)(i+j) for i < j (≤ n). (2)

Let

xl(1)(k) = n−1
(1)

∑
j∈V n(1)(k)

xlj and xl(2)(k) = n−1
(2)

∑
j∈V n(2)(k)

xlj, l = 1, 2

for k = 3, . . . , 2n− 1. We consider the following quantity:

∆̂ij = (x1i − x1(1)(i+j))
⊤(x1j − x1(2)(i+j))(x2i − x2(1)(i+j))

⊤(x2j − x2(2)(i+j))

for all i < j (≤ n). Let un = n(1)n(2){(n(1) − 1)(n(2) − 1)}−1. Yata and Aoshima
[4] proposed an unbiased estimator of ∆ by

T̂n =
2un

n(n− 1)

n∑
i<j

∆̂ij.

Theorem 2.1. Assume (A-i) and some regularity conditions. Then, it holds that
as m = min{p, n} → ∞

n(T̂n −∆)

λmax(Σ2)
+ tr(Σ1) ⇒

p1∑
s=1

λ1sχ
2
1s,

where λ1s is the s-th eigenvalue of Σ1, χ
2
1s stands for a chi-square random variable

with 1 degree of freedom and χ2
1s, s = 1, ..., p1 are mutually independent.

[1] M. Aoshima, K. Yata, Two-stage procedures for high-dimensional data, Se-
quential Anal. (Editor’s special invited paper) 30 (2011) 356–399.

[2] M. Aoshima, K. Yata, Two-sample tests for high-dimension, strongly spiked
eigenvalue models. Statist. Sinica 28 (2018) 43–62.

[3] A. Ishii, K. Yata, M. Aoshima, Hypothesis tests for high-dimensional covari-
ance structures. Ann. Inst. Statist. Math. 73 (2021) 599–622.

[4] Yata, K., Aoshima, M. (2016). High-dimensional inference on covariance
structures via the extended cross-data-matrix methodology. J. Multivariate
Anal. 151 (2016) 151–166.
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Statistical Properties of
Matrix Decomposition Factor Analysis

Yoshikazu Terada∗

Graduate School of Engineering Science, Osaka University
Center for Advanced Integrated Intelligence Research, RIKEN

Exploratory factor analysis, often referred to as factor analysis, is an important tech-
nique of multivariate analysis (Anderson 2003). Factor analysis is a method for exploring
the underlying structure of a set of variables and is applied in various fields. In factor
analysis, we consider the following model for a p-dimensional observation x:

x = µ+ Λf + ε, (1)

where µ ∈ Rp is a mean vector, m is the number of factors (m < p), Λ ∈ Rp×m is a factor
loading matrix, f be a m-dimensional centered random vector with the identity covariance,
ε be a p-dimensional uncorrelated centered random vector, which is independent from f ,
with diagonal covariance matrix Var(ε) = Ψ2 = diag(σ2

1, . . . , σ
2
p). Each component of f

and ε are called the common and unique factors, respectively.
For a constant cΛ > 0, let ΘΛ := {Λ ∈ Rp×m | |λjk| ≤ cΛ (j = 1, . . . , p; k = 1, . . . ,m)}

be the parameter space for the factor loading matrix Λ. For positive constants cL, cU > 0,
define the parameter space for Ψ as ΘΨ := {diag(σ1, . . . , σp) | cL ≤ |σj| ≤ cU (j =
1, . . . , p)}. Let Φ = [Λ,Ψ] ∈ Rp×(m+p), and define ΘΦ = {Φ = [Λ,Ψ] | Λ ∈ ΘΛ and Ψ ∈
ΘΨ}. For the factor model (1) with Φ = [Λ,Ψ], the covariance matrix of x is represented
as ΦΦ> = ΛΛ> + Ψ2.

We assume that the factor model (1) is true with some unknown parameter Φ∗ =
[Λ∗,Ψ∗] ∈ ΘΦ. Let Σ∗ = Φ∗Φ

>
∗ = Λ∗Λ

>
∗ + Ψ2

∗ denote the true covariance matrix. It should
be noted that the statistical properties described later still hold as a minimum contrast
estimator even when the factor model (1) is not true. Let (x1, f1, ε1), . . . , (xn, fn, εn) be
i.i.d. copies of (x, f, ε), where (f1, ε1), . . . , (fn, εn) are not observable in practice. Through-
out the paper, it is assumed that n > m+p. In factor analysis, we aim to estimate (Λ∗,Ψ∗)
from the observations Xn = (x1, . . . , xn)>. Here, we note that the factor model (1) has an
indeterminacy. For example, for any m×m orthogonal matrix R, a rotated loading matrix
Λ∗R can also serve as a true loading matrix. Thus, let Θ∗Φ = {Φ ∈ ΘΦ | Σ∗ = ΦΦ>} be the
set of all possible true parameters.

There are several estimation approaches to estimate the parameter Φ = [Λ,Ψ]. The the-
oretical properties of these estimation approaches have been extensively studied. Moreover,
most of these estimators can be formulated as minimum discrepancy function estimators.

∗This research was supported by JSPS KAKENHI Grant (JP20K19756, JP20H00601, JP23H03355, and
JP24K14855).
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Thus, we can apply the general theory of minimum discrepancy function estimators to
derive the theoretical properties of the estimators (Shapiro 1983, 1985).

In the early 2000s, a novel estimator based on matrix factorization was developed for
factor analysis. According to Adachi & Trendafilov (2018), this method was originally
developed by Professor Henk A. L. Kiers and first appeared in Socan’s dissertation (Socan
2003). This method is called matrix decomposition factor analysis (MDFA for short). The
MDFA algorithm always provides proper solutions (i.e., no Heywood cases in MDFA); thus,
it is computationally more stable than the maximum likelihood estimator. From the aspect
of computational statistics, matrix decomposition factor analysis has been well-studied, and
several extensions have been developed.

In matrix decomposition factor analysis, the estimator is obtained by minimizing the
following principal component analysis-like loss function:

Ln(µ,Λ,Ψ, F, E) =
1

n

n∑
i=1

‖xi − (µ+ Λfi + Ψei)‖2,

where ei = (ei1, . . . , eip)
>, E = (e1, . . . , en)> ∈ Rn×p, and F = (f1, . . . , fn)> ∈ Rn×m.

Certain constraints are imposed on the common factor matrix F and the normalized unique
factor matrix E. Unlike classical factor analysis, matrix decomposition factor analysis
treats the common factors F and normalized unique factors E as parameters that are
estimated simultaneously with Φ = [Λ,Ψ]. The number of parameters linearly depends on
the sample size n, and the standard asymptotic theory of classical M-estimators cannot be
directly applied to analyze its theoretical properties. As a result, the statistical properties
of the MDFA estimator have yet to be discussed, leading to the open problem: Can matrix
decomposition factor analysis truly be regarded as “factor analysis”?

In this talk, we establish the statistical properties of matrix decomposition factor anal-
ysis to answer this question. We show that as the sample size n goes to infinity, the
MDFA estimator converges to the true parameter Φ∗ ∈ Θ∗Φ. First, we formulate the MDFA
estimator as the semiparametric profile likelihood estimator and derive the explicit form
of the profile likelihood. Next, we reveal the population-level loss function of matrix de-
composition factor analysis and its fundamental properties. Then, we show the statistical
properties of matrix decomposition factor analysis.

References
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High-Dimensional Statistics in Astrophysics and its
Perspective

Tsutomu T. Takeuchi
1,2∗, Kazuyoshi Yata, Kento Egashira,

Makoto Aoshima, Nanase Harada, Kohji Yoshikawa, Aki Ishii, Hiroma Okubo,
Ryusei R. Kano, Wen E. Shi, Aina May So, Hai-Xia Ma,

Sena A. Matsui, Koichiro Nakanishi, Sucheta Cooray, Kotaro Kohno

1. Division of Particle and Astrophysical Science, Nagoya University, Japan,
2. Research Center for Statistical Machine Learning, Institute of Statistical Mathematics, Japan,

1 Main Result
If we denote the dimension of data as d and the number of samples as n, we often meet a case
with n≪ d. Traditionally in astronomy, such a situation is regarded as ill-posed, and they thought
that there was no choice but to throw away most of the information in data dimension to let
d < n. The data with n≪ d is referred to as high-dimensional low sample size (HDLSS). To deal
with HDLSS problems, a method called high-dimensional statistics has been developed rapidly
in the last decade.

In this work, we first introduce the high-dimensional statistical analysis. We apply two
representative methods in the high-dimensional statistical analysis methods, the noise-reduction
principal component analysis (NRPCA) and automatic sparse principal component analysis (A-
SPCA), to a spectroscopic map of a nearby archetype starburst galaxy NGC 253 taken by the
Atacama Large Millimeter/Submillimeter Array (ALMA). The ALMA map is a typical HDLSS dataset.
First we analyzed the original data including the Doppler shift due to the systemic rotation. The
high-dimensional PCA could describe the spatial structure of the rotation precisely. We then
applied to the Doppler-shift corrected data to analyze more subtle spectral features. The NRPCA
and A-SPCA could quantify the very complicated characteristics of the ALMA spectra. Particularly,
we could extract the information of the global outflow from the center of NGC 253. This method
can also be applied not only to spectroscopic survey data, but also any type of HDLSS data. The
main result is published in Takeuchi et al. (2024) and Takeuchi et al. (2024), Toukei SUuri, in
press.

2 Further Development for the Next Generation Data
The original data of this study were recently updated to the one with much higher quality. The
new data contains information of very weak spectral lines from molecules or radicals (ionized

∗E-mail: tsutomu.takeuchi.ttt@gmail.com.
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Figure 1: The bright regions of NGC 253 map cut out by the mask. Left: the mask region map.
White regions have significant intensity signals. Center: the cut-out region with significantly
bright emission. Right: the bird’s view of the signal.

molecules) in NGC 253. To analyze such data, it would make sense to apply an analysis method
which can deal with nonlinear correlation of data features. Kernel PCA is one of such possibilities.
We will develop this study with such methods as our next step.

References
Takeuchi, T. T., Yata, K., Egashira, K., et al. 2024, ApJS, 271, 44
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Figure 2: Responsible features to characterize PCs from the RPCA for the ALMA map of NGC 253,
after the Doppler shift correction due to the systemic rotation. Information on the details of this
figure is found in Takeuchi et al. (2024).
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High-dimensional inference on a cross data matrix-based method

Abstract

The concept of the cross-data matrix originates from the work of Yata and Aoshima (2010),
who demonstrated that the cross-data matrix-based principal component analysis (CDM-PCA)
method can effectively reduce noise and enhance the performance of principal component anal-
ysis (PCA) in high-dimensional, low-sample-size settings. This innovative approach has in-
spired numerous subsequent studies. For instance, Wang, Huang, and Chen (2020) established
the asymptotic normality of estimates for principal component directions, while Wang and
Huang (2022) derived finite-sample approximations and explored the asymptotic behavior of
CDM-based PCA through matrix perturbation theory. More recently, Hung and Huang (2023)
introduced a more stable variant of CDM-PCA, termed product-PCA (PPCA). This formula-
tion offers a more convenient structure for theoretical analysis and has been shown to be more
robust than PCA in preserving the correct ordering of leading eigenvalues, even in the presence
of outliers.

In this talk, I will discuss recent advances in the cross-data matrix-based methods for
high-dimensional data analysis, which will be presented in two parts. First, I will introduce
cross-data matrix-based Multilinear Principal Component Analysis (CDM-MPCA) along with
its numerical studies. In the second part, I will present the limiting spectral distribution (LSD)
for the singular values of large cross-data matrix-based sample covariance matrix. Additionally,
I will compare this distribution with the Marchenko–Pastur law (MP law), which characterizes
the asymptotic behavior of the singular values of large sample covariance matrix.

1
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On Estimation of a Matrix Mean under Matrix Loss

Yuan-Tsung Chang (The Institute of Statistical Mathematics),
Nobuo Shinozaki (Faculty of Science and Technology, Keio University)

William E. Strawderman (Department of Statistics, Rutgers University)

International Symposium on Theories, Methodologies and Applications for Large Complex
Data, Dec. 4-6, 2024, at Tsukuba International Congress Center

Abstract Consider estimating an n× p matrix means of matrix random variables Xn×p under
matrix quadratic error loss function. Abu-Shanab, Kent and Strawderman (2012) studied the
independent normal distributions version and proposed a matrix version of shrinkage estimators
which is dependent on a tuning constant a. We generalize their results to a broad class of
models including estimation of Poisson means, estimating of Binomial samples sizes, estimating
of natural parameters of discrete and continuous exponential families.

1 Introduction

Let

Xn×p = (X1,X2, . . . ,Xp) = (xij)n×p (1)

be an n× p matrix of independent random variables such that

E(X) = Θ = (θ1,θ2, . . . ,θp) = (θij)n×p. (2)

The object is to estimate Θ and, in particular, to find an estimator which improves over the
unbiased estimator

δ0(X) = (δ01(X1), . . . , δ0p(Xp)) = (X1,X2, . . . ,Xp) (3)

We make the following assumption throughout.

Assumption (1): There exists an estimator of the form

δ(X) = X + g(X),

such that for each j, δ(Xj) = Xj + g(Xj) dominates the estimator δ0(Xj) = Xj under scalar
quadratic loss

Lj(θj ,dj) =

n∑
i=1

(θij − dij)2w2
ij(θij). (4)

It follows from Assumption (1) that the difference in risk between δ(Xj) and Xj satisfies

∆j(θj , δ(Xj)) = E[Lj(θj ,Xj + g(Xj))− Lj(θj ,Xj)]

=

n∑
i=1

w2
ij(θij)E[g2ij(Xj)] + 2

n∑
i=1

w2
ij(θij)E[(Xij − θij)gij(Xj)]

≤ 0. (5)

1



We consider domination of the matrix estimator (3) by the matrix estimator

δa(X)n×p = (X +G(X)) = (X1 + ag(X1), . . . ,Xp + ag(Xp)), (6)

where g(Xj) = (g1j(Xj), . . . , gnj(Xj))
t satisfies Assumption (1). Under the matrix loss L(Θ, D)p×p

where the jk-th component is given by

(L(Θ, D))jk =

n∑
i=1

wij(θij)wik(θik)(dij − θij)(dik − θik). (7)

The risk of D(X) is defined by R(Θ, D(X)) = E{L(Θ, D)}. Let two estimators of Θ be Θ̂1

and Θ̂2 those are depending on X. Θ̂1 dominates Θ̂2 if ∆R = R(Θ, Θ̂2) − R(Θ, Θ̂1) is positive
semipositive definite for all Θ and for some Θ, ∆R is positive definite.

Abu-Shanab, Kent and Strawderman (2012) studied a version of that problem where Xij ∼
N(θij , σ

2) and showed that if a shrinkage estimator of the form Xj +g(Xj) satisfies Assumption
(1), then the matrix estimator δa(X)n×p dominates Xn×p for 0 < a ≤ 2/p.
Hence, a shrinkage estimator with a smaller (by a factor of 2/p) shrinkage constant also dominates
X for the matrix loss (7).

Our main result, Theorem 1, generalizes this result to the more general setting of (1) without
the restriction to the normality. Hence it applies to a broad class of models studied in the liter-
ature including, but not limited to estimation of Poisson means under weighted and unweighted
quadratic loss, estimation of Binomial sample sizes under weighted and unweighted loss, estima-
tion of natural parameters of discrete and non-discrete exponential families. Note also that Xij

may be interpreted as general unbiased estimator of θij and need not be the original observation.
Note also that domination in the matrix loss sense implies (and is equivalent to) simultaneous
domination for all scalar losses of the form α

′
L(Θ, D)α for all α ∈ Rp.

Some motivation for this version of matrix loss is discussed in Abu-Shanab, Kent and Straw-
derman (2012). The main result is given in Section 2.

2 The main result

Theorem 1 Let X,Θ, δa(X), L(Θ, D) be as (1), (2), (6) and (7), respectively. Suppose that
Assumption (1) holds. Then the matrix estimator δa(X) dominates δ0(X) = X under matrix
loss L(Θ, D) for 0 < a ≤ 1/p.

3 Some illustrative applications

We give some applications of Theorem 1 in the following.
1) Simultaneous estimation of Poisson matrix means
2) Simultaneous estimation of binomial sample sizes
3) Application to the exponential density families

Acknowledgments Professor William Edward Strawderman, Sr., PhD, passed away on October
1st, 2024. We are deeply saddened that this paper becomes a memorial to him. May he rest in
peace.
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Automatic sparse estimation of high-dimensional

cross-covariance matrix

Tetsuya Uminoa, Kazuyoshi Yatab, and Makoto Aoshimab

aGraduate School of Science and Technology, University of Tsukuba
bInstitute of Mathematics, University of Tsukuba

A common feature of high-dimensional data is that the data dimension is high, however,
the sample size is relatively small. This is the so-called“ HDLSS” or“ large p, small n”
data situation where p/n → ∞; here p is the data dimension and n is the sample size. Such
data situations occur in many areas of modern science such as genomics, medical imaging,
text recognition, finance, chemometrics, and so on.

Suppose we take samples, xj , j = 1, . . . , n, of size n (≥ 4), which are independent and
identically distributed (i.i.d.) as a p-variate distribution. Here, we consider situations where
the data dimension p is very high compared to the sample size n. Let xj = (xT

1j ,x
T
2j)

T and
assume xij ∈ Rpi , i = 1, 2, with p1 ∈ [1, p − 1] and p2 = p − p1. We assume that xj has an
unknown mean vector, µ = (µT

1 ,µ
T
2 )

T , and unknown covariance matrix,

Σ =

(
Σ1 Σ∗
ΣT

∗ Σ2

)
(≥ O),

that is, E(xij) = µi, Var(xij) = Σi, i = 1, 2, and Cov(x1j ,x2j) = E(x1jx
T
2j)− µ1µ

T
2 = Σ∗.

Aoshima and Yata [1] and Yata and Aoshima [4, 5] considered testing the cross-covariance
matrix by

H0 : Σ∗ = O vs. H1 : Σ∗ ̸= O (1)

for high-dimensional settings. When (p1, p2) = (p− 1, 1) or (1, p − 1), (1) implies the test of
correlation coefficients. Aoshima and Yata [1] gave a test statistic for the test and Yata and
Aoshima [4, 5] improved the test statistic by using a method called the extended cross-data-
matrix (ECDM) methodology.

In this talk, we consider the problem of estimating the cross-covariance matrix, Σ∗. There
have been several studies on sparse estimation of the entire covariance matrix. For example,
Bien and Tibshirani [3] proposed a sparse estimator of the covariance matrix based on L1-
penalties, and Bickel and Levina [2] proposed a thresholding estimator of the covariance
matrix. However, to our knowledge, sparse estimation of the cross-covariance matrix does not
seem to have been studied in high-dimensional settings.

Recently, Yata and Aoshima [6] proposed a new sparse PCA (SPCA) method called the
automatic SPCA (A-SPCA). A-SPCA does not depend on any threshold (tuning) values. In
this talk, by applying the idea of A-SPCA to the estimation of the cross-covariance matrix,

1



we propose a new sparse estimator of Σ∗. We show that the proposed estimator is consistent
without any threshold (tuning) values.
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Augmented Estimation of Principal
Component Subspace in High Dimensions

Dongsun Yoon
Seoul National University

In this paper, we introduce a novel estimator, called the Augmented Prin-
cipal Component Subspace, for estimating the principal component subspace
for high-dimensional low-sample size data with spiked covariance structure.
Our approach augments the naive sample principal component subspace by
incorporating additional information from predefined reference directions.
Augmented principal component subspace asymptotically reduces every prin-
cipal angle between the estimated and the true subspaces, thereby outper-
forming the naive estimator regardless of the metric used. The estimator ’
s efficiency is validated both analytically and through numerical studies,
demonstrating significant improvements in accuracy when the reference di-
rections contain substantial information about the true principal component
subspace. Additionally, we suggest AugmentedPCA using this estimator, and
explore connections between our method and the recently proposed James-
Stein estimator for principal component directions.
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James-Stein Estimator of Spiked Leading
Eigenvector of High-dimensional Covariance

Matrix

Giheon Seong
Seoul National University

Recently, a James-Stein shrinkage (JS) estimator has gained attention as
a powerful tool for estimating the leading eigenvector of covariance matri-
ces. In a series of seminal works, the efficacy of the JS estimator has been
demonstrated under a spiked covariance model, using the high-dimensional,
low-sample-size (HDLSS) asymptotic regime, where the number of variables
increases while the sample size n remains fixed. We extend the application of
the JS shrinkage to the regime of n, p→ ∞ with appropriate rate and reveal
a key condition involving a signal-to-noise ratio, for the JS estimator to be
useful. This approach utilizes geometric representation, a phenomenon that
arises in high-dimensional asymptotics, to interpret the structure of param-
eters and estimators on a sphere within a lower-dimensional space. Further-
more, we develop shrinkage estimators for principal component variance and
scores, enabling their application in high-dimensional principal component
analysis.
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General measures of Attribution Disclosure
Risk for gauging privacy of synthetic data

Yongjae Kim
Seoul National University

As the demand for synthetic data continues to grow, there is an increasing
need for rigorous measures to assess whether synthetic data is safe or poses
significant privacy risks. Correct Attribution Probability (CAP) is a widely
used risk measure; however, its theoretical foundation has not been fully
established within a solid statistical framework. In this paper, we propose
a statistical framework for defining CAP and introduce a modified version
to clarify its theoretical meaning. We also demonstrate the limitations of
CAP as a comprehensive risk measure and argue why it cannot serve as an
all-encompassing solution. Furthermore, we develop a generalized version
of CAP, termed Attribution Disclosure Risk (ADR), which provides a more
comprehensive and versatile assessment of synthetic data risk, incorporating
CAP as a special case at both the population and sample levels. Numerical
studies demonstrate that our proposed measure consistently captures the
risk inherent in synthetic data and offers flexibility to accommodate various
intruder scenarios, applicable to both simulated and real datasets.
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Regularized k-POD Clustering for High-Dimensional
Missing Data

Xin Guan∗1 and Yoshikazu Terada1,2

1Graduate School of Engineering Science, Osaka University
2RIKEN Center for Advanced Intelligence Project

1 Introduction
Clustering is an important technique that groups data points without labels into several clusters. Notably,
the k-means clustering is one of the most popular clustering methods, the main idea of which is to find
k cluster centers and then cluster data points by assigning them to their nearest centers. The k-means
clustering has been widely used in various fields for its easy and fast implementation based on heuristic
algorithms like Lloyd’s algorithm, and not relying on specific assumptions of data distribution. However,
the issue of clustering for missing data, especially the k-means clustering for missing data receives far less
attention, even though the problem of missing data is ubiquitous in real-world applications for imperfect
data collection process.

The main challenge is that the classical k-means clustering requires the data matrix to be complete,
and thus directly conducting it on an incomplete data matrix is infeasible. The traditional approach
is to pre-process the incomplete data matrix by complete-case analysis or multiple imputation to con-
struct a new complete data matrix for conducting k-means clustering, which is not appropriate for large
proportions of missingness and high-dimensional data.

Alternatively, the k-POD clustering proposed by Chi et al. (2016) is a natural extension for k-
means clustering to missing data and can be applicable for even large missingness proportions and high-
dimensional data. Write X = (xij)n×p ∈ Rn×p for the data matrix with n data points X1, . . . ,Xn in Rp.
The k cluster centers {µ1, . . . ,µk} are encoded by a matrix M = (µlj)k×p ∈ Rk×p, where the l-th row
represents the l-th cluster center. The membership between data points and cluster centers is denoted
by a binary matrix U = (uil)n×k ∈ {0, 1}n×k, where uil = 1 if and only if i-th data point Xi is assigned
to l-th cluster. Since one data point is assigned to a unique cluster, it must satisfy that U1k = 1n, where
1 is the all-one vector. For a complete data matrix X, the k-means clustering can be expressed as

min
U,M

∥X−UM∥2F , (1)

where ∥ · ∥F is the Frobenius norm of a matrix, calculated as (
∑

i,j a
2
ij)

1/2 for A = (aij). If there exist
missing entries in X, the loss function cannot be directly calculated. Denoting all observed positions in
X by a set Ω ⊂ {1, . . . , n} × {1, . . . , p}, the k-POD clustering introduces a mapping P onto the set Ω to
replace the missing entries with zero. That is, PΩ : Rn×p → Rn×p, and (PΩ(X))ij = xij if (i, j) ∈ Ω, 0
otherwise. Then, the k-POD clustering is given by

min
U,M

∥PΩ(X−UM)∥2F . (2)

The optimization procedure consists of filling in missing entries by the corresponding cluster means and
conducting k-means clustering on the new data matrix alternatively.

However, the k-POD clustering is not consistent even under the missing completely at random mech-
anism (Terada & Guan 2024). The estimated cluster centers of the k-POD clustering and k-means
clustering converge to different solutions as n → ∞. The direct reason for the bias simply comes from
the difference between loss functions of k-means and k-POD. Specifically, all positions of X are used by
k-means, while only observed positions, i.e., (i, j) ∈ Ω, are included by k-POD, and thus in general, one
can hardly expect the same solutions based on these two different loss functions.

In this talk, we proposed regularized k-POD clustering for high-dimensional missing data. Specifically,
we introduce a regularization function of cluster centers to the loss of k-POD clustering, which shrinks
cluster centers feature-wisely. This offers a significant advantage of reducing the bias of estimated cluster
centers, in the case when noise features exist that have no contribution to the true cluster structure,
which is common in high-dimensional space.

∗Corresponding author: xin@sigmath.es.osaka-u.ac.jp (XG)



2 Methodology and optimization
Suppose that the data matrix X = (xij)n×p is column-wised centered, that is, 1

n

∑n
i=1 xij = 0 for all

j = 1, . . . , p. Write Xi ∈ Rp for the i-th data point (i = 1, . . . , n) and X(j) ∈ Rn for the j-th column of X
(j = 1, . . . , p). Denote by Ω the set of observed positions of X and suppose that the number of clusters
k is fixed.

We defined the loss function of regularized k-POD clustering with respect to membership U ∈
{0, 1}n×k, U1k = 1n, and cluster centers M ∈ Rk×p to be

L̂n(U,M) = ∥PΩ(X−UM)∥2F + λ · J(M). (3)

The first term is the loss of the k-POD clustering, and J(M) is a regularization function with respect to
M. To shrink the estimated cluster centers feature-wisely, we consider two types of J(M):

The l0 penalty : J0(M) =

p∑
j=1

1(∥M(j)∥ > 0)

The group lasso penalty : J1(M) =

p∑
j=1

wj∥M(j)∥,

where M(j) = (µ1j , . . . , µkj)
T denotes the j-th column of cluster centers M with µlj being the j-th

component of the l-th cluster center (l = 1, . . . , k). The function 1(·) is the indicator function and wj is
the weight for M(j). Both types of J(·) are column-wised, which means that all elements of M(j), that is
{µ1j , . . . , µkj} would be shrunk together. The l0 type J0(·) constrains the number of non-zero columns
of M, while the group lasso type J1(·) constrains the weighted sum of l2 norms of M in each feature.
Therefore, with suitable regularization parameter λ, the estimated cluster centers M̂ would be sparse
in columns. In addition, the group lasso type contains weights. We consider the weights based on the
k-POD estimator M̃, that is, wj = 1/∥M̃(j)∥. If the estimated cluster centers of the k-POD clustering
in a feature are relatively concentrated, the corresponding weight would be relatively large, which makes
the group lasso estimator in the corresponding feature more likely to be zero.

We applied the majorization-minimization algorithm (MM algorithm) to minimize the proposed loss
function Eq. (3). we propose Algorithm 1 for regularized k-POD clustering. Specifically, given current
U(t) and M(t), t ∈ N, the (t + 1)-th iteration consists of two steps. Step 1 imputes missing entries of
X by the corresponding entries of multiplication matrix of current U(t) and M(t), so that we can get a
new complete data matrix X̂(t+1). Step 2 updates U(t+1) and M(t+1) by applying regularized k-means
clustering on the imputed data matrix X̂(t+1). Repeat the iteration until the loss (Eq. (3)) converges.
Note that Algorithm 1 is a general framework for any type of J(·), and the difference in results comes
from Step 2.
Algorithm 1 Regularized k-POD clustering
Input: incomplete data matrix X, set of observed positions Ω, number of clusters k.
Parameters: regularization parameter λ, weights {wj}

Initialize U(0) and M(0)

while Loss function (3) does not converge do
1: Impute X̂(t+1) = PΩ(X) + PΩc(U(t)M(t))

2: Update U(t+1) and M(t+1) by applying regularized k-means on X̂(t+1)

end while
Output: U(t+1) and M(t+1)

The results of numerical experiments have been introduced in this talk, which verified the better
performance of the proposed method.
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NON-SPARSE HIGH-DIMENSIONAL STATISTICS:
STRUCTURED MODEL, NEURAL NETWORK, AND

UNIVERSALITY
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Abstract. In this talk, we present several results in high-dimensional
statistics. Specifically, we consider the linear regression model with the
universality, an estimation problem of the single-index model, and the rig-
orous learnability of high-dimensional neural networks with many neu-
rons. The analysis in these studies uses the theory of the high-dimensional
central limit theorem, the nonlinear component of the proportionally
high-dimensional regime, and detailed analysis of macro-level dynamic
of a group of neurons.

1. Outline

1.1. Linear Regression. We consider a linear regression model with 𝑝-
dimensional covariates and a parameter. Suppose that we observe i.i.d.
𝑛 pairs {(𝑋𝑖, 𝑌𝑖)}𝑛𝑖=1 of a covariate 𝑋𝑖 ∈ R𝑝 and a target variable 𝑌𝑖 ∈ R
generated from the following linear model with the true parameter 𝜃0 ∈ R𝑝:

𝑌𝑖 = 𝑋⊤
𝑖 𝜃0 + 𝜉𝑖, 𝑖 = 1, ..., 𝑛,

where 𝜉𝑖 is a centered noise variable. Let Σ = E[𝑋𝑖𝑋
⊤
𝑖 ]/𝑛 be a covariance

matrix of the covariate.
We are interested in the statistical inference of an estimator of 𝜃0 in the

model. Rigorously, we define an empirical risk minimizer problem with a
loss function ℓ and a regularizer 𝑅0:

𝜃̂X ∈ argmin
𝜃∈R𝑝

{
1
𝑛

𝑛∑
𝑖=1

ℓ0(𝑌𝑖 − 𝑋⊤
𝑖 𝜃) + 𝑅0(𝜃)

}
.

Then, we are interested in a probability law of the estimator 𝜃̂X. Here, we are
particularly interested in the proportional limit of the coefficient dimension
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2 NON-SPARSE HIGH-DIMENSIONAL STATISTICS

𝑝 and sample size 𝑛: 𝑛, 𝑝 → ∞ and 𝑝/𝑛 → ∃𝜅 ∈ (0,∞). When data
follow a Gaussian distribution, an asymptotic distribution of 𝜃̂X has been
well studied.

Even when the data do not follow a Gaussian distribution, if the asymptotic
properties are preserved, this is referred to as the universality. For the
universality of the asymptotic distribution of an estimator to hold, an existing
research has shown that it holds when all 𝑝 elements of the data vector 𝑋𝑖

are independent. In contrast, in [TI24], we demonstrate that universality
can also hold when the elements of the data vector 𝑋𝑖 exhibit a class of
dependence known as block dependence.

1.2. Single-Index Model. We next consider the single-index model: for a
pair (𝑋,𝑌 ) of 𝑝-dimensional random features 𝑋 and random responses 𝑌 ,
we consider the following model

E[𝑌 | 𝑋] = 𝑔(𝛽⊤𝑋), (1)

where 𝑔 : R→ R is an unknown link function that monotonically increases,
and 𝛽 ∈ R𝑝 is an unknown deterministic coefficient vector. Suppose that we
observe i.i.d. 𝑛 pairs {(𝑋𝑖, 𝑌𝑖)}𝑛𝑖=1 of a feature vector 𝑋𝑖 ∈ R𝑝 and a target
variable 𝑌𝑖 ∈ R that follow the single-index model (1).

Our goal is to estimate both the coefficient 𝛽 and the link function 𝑔(·).
Here, We consider the proportional high-dimensional regime: we are par-
ticularly interested in the proportional limit of the coefficient dimension 𝑝

and sample size 𝑛: 𝑛, 𝑝 → ∞ and 𝑝/𝑛 → ∃𝜅 ∈ (0,∞).
[SUI24] develops a methodology for statistical inference for the single-

index model, by deriving the asymptotic normality of an estimator. This
method is based on an analysis of the first-order method and the de-
convolution technique for statistical models.
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Title:  Difference between Large Statistical Model and Medium Statistical Model  

Abstract: 
 In this talk, we will show that the large statistical model will have a very different 

performance compared with the medium model. For example, when the sample size is fixed and 
the dimension of data increases (convergence regime), the power function of the log-likelihood 
ratio test for the covariance matrix will tend to one. Moreover, under the convergence regime, 
the estimated number of factors in the factor model will be more accurate. Moreover, we will 
give some other examples to show the difference between large statistical model and medium 
statistical model.  

 Shurong Zheng 
(School of Mathematics and Statistics, Northeast Normal University)



Principal component analysis 

for zero-inflated compositional data 
  

Sungkyu Jung 
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Abstract: Recent advances in DNA sequencing technology have heightened 
interest in microbiome data, which is often high-dimensional and presents 
challenges due to its compositional nature and zero-inflation. In this talk, I 
will introduce new PCA methods for zero-inflated compositional data, based 
on a framework called principal compositional subspace. These methods aim 
to identify both the principal compositional subspace and corresponding 
principal scores that best approximate the data while maintaining its 
compositional properties. Theoretical properties such as existence and 
consistency of the principal compositional subspace are investigated. 
Simulation studies show these methods achieve lower reconstruction errors 
than existing log-ratio PCA methods in linear patterns and perform 
comparably in curved patterns. The methods successfully uncover the low-
rank structure in four microbiome compositional datasets with excessive 
zeros. 
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Abstract

Principal component analysis (PCA) is a widely used technique for dimension
reduction. As datasets continue to grow in size, distributed-PCA (DPCA) has become
an active research area. A key challenge in DPCA lies in efficiently aggregating results
across multiple machines or computing nodes due to computational overhead. Fan
et al. (2019) introduced a pioneering DPCA method to estimate the leading rank-r
eigenspace, aggregating local rank-r projection matrices by averaging. However, their
method does not utilize eigenvalue information. In this article, we propose a novel
DPCA method that incorporates eigenvalue information to aggregate local results via
the matrix β-mean, which we call β-DPCA. The matrix β-mean offers a flexible and
robust aggregation method through the adjustable choice of β values. Notably, for
β = 1, it corresponds to the arithmetic mean; for β = −1, the harmonic mean; and as
β → 0, the geometric mean. Moreover, the matrix β-mean is shown to associate with
the matrix β-divergence, a subclass of the Bregman matrix divergence, to support
the robustness of β-DPCA. We also study the stability of eigenvector ordering under
eigenvalue perturbation for β-DPCA. The performance of our proposal is evaluated
through numerical studies.

Keywords: distributed computing; eigenvalue perturbation; generalized matrix mean; ma-
trix divergence; PCA
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In the era of “big data”, the analysis of high-dimensional tensor data has become
increasingly important in various fields, including genomics, economics, image
analysis, and machine learning. High-order tensor data often exhibit intrinsic
low-rank structures [14, 25]. To capture these low-rank structures, the “signal
plus noise” tensor model has been widely adopted [9, 11, 15]. Let n1, . . . , nd ∈
N+ denote d dimension numbers, where d ≥ 3, and let N = n1 + · · ·+ nd. The
d-fold rank-R spiked tensor model is defined as:

T =

R∑
r=1

βrx
(r,1) ⊗ · · · ⊗ x(r,d) +

1√
N

X, (1)

where β1 ≥ · · · ≥ βR > 0 are the signal-to-noise ratios (SNRs), {x(1,l), · · · ,x(R,l)}
are mutually orthogonal unit vectors Rnl for each 1 ≤ l ≤ d [13], and X =
(Xi1···id)n1×···×nd

∈ Rn1×···×nd is a noise tensor with independent and iden-
tically distributed (i.i.d.) entries, each having zero mean and unit variance.
Specifically, the rank-1 spiked tensor model [21] is given by:

T = βx(1) ⊗ · · · ⊗ x(d) +
1√
N

X, (2)

where β > 0 is the single SNR of the model.
The primary focus of most existing literature is on recovering the signal vec-

tors {x(1,l), . . . ,x(R,l)}, 1 ≤ l ≤ d from the observed tensor T , with a particular
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emphasis on the computational efficiency of recovery algorithms. In the case of
the rank-one model (2) with symmetric and i.i.d. Gaussian noise X, [10] showed
that computing the maximum likelihood (ML) estimator of βx(1)⊗ · · ·⊗x(d) is
in general NP-hard, and [1] provided a comprehensive discussion on the relation-
ship between the computational complexity of the ML estimator and the value of
the SNR β. To reduce the computational complexity, [21] proposed the use of the
power iteration method and approximate message passing (AMP) algorithms.
These two methods have been extensively investigated by [5, 7, 12, 15, 20]
for AMP and by [11] for power iteration. Moreover, [21] introduced the tensor
unfolding method, which involves unfolding the tensor data T into matrices, en-
abling the recovery of signals through Principal Component Analysis (PCA). [6]
conducted a comprehensive study of the tensor unfolding method for the general
asymmetric model (2) under fairly general noise distribution assumptions.

However, when the SNRs fall below the phase transition threshold, these
recovery methods often fail. In such cases, a less ambitious but potentially more
achievable goal is to test the alignment of a signal in T with a given directional
tensor a(1)⊗· · ·⊗a(d), where a(j), 1 ≤ j ≤ d are d given directional unit vectors
in Rnj , respectively. This leads to the following tensor signal alignment test
between two hypotheses:

H0 : a(l) ⊥ x(r,l) for 1 ≤ l ≤ d, 1 ≤ r ≤ R.
H1 : there exists at least one 1 ≤ l ≤ d, 1 ≤ r ≤ R such that a(l) 6⊥ x(r,l).

(3)

Despite the tensor signal alignment test appearing more tractable than signal
recovery, to the best of our knowledge, there is no established and rigorously
justified procedure for addressing this problem. The difficulty stems from the
high dimensionality of the tensors and the lack of a meaningful test statistic.

We leverage the tensor contraction operator Φd, originally proposed in [22],
which maps an arbitrary tensor T and unit vectors {a(j)} to a matrix R:

Φd : Rn1×···×nd × Sn1−1 × · · · × Snd−1 −→ RN×N ,

(T ,a(1), · · · ,a(d)) 7−→ R =


0n1×n1

T 12 · · · T 1d

(T 12)′ 0n2×n2
· · · T 2d

...
...

. . .
...

(T 1d)′ (T 2d)′ · · · 0nd×nd

 . (4)

Here, for a pair of indices 1 ≤ j1 < j2 ≤ d, T j1j2 is an nj1 × nj2 matrix,
called second order contraction matrix of T along the directions {a(j1),a(j2)},
as introduced in [16]. It is defined by:

T j1j2 =

[
nj∑

ij=1,j 6=j1,j2

Ti1···id

d∏
l=1,l 6=j1,j2

a
(l)
il

]
nj1
×nj2

. (5)
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From a mathematical perspective, the contraction operator Φd has several ad-
vantages. Firstly, Φd is linear in T . When applied to the R-rank tensor in (1),
we have

R = Φd(T ,a(1), · · · ,a(d))

=

d∑
r=1

βrΦd(x(r,1) ⊗ · · · ⊗ x(r,d),a(1), · · · ,a(d)) +
1√
N

Φd(X,a(1), · · · ,a(d)),

= S + M . (6)

where S is the contracted signal matrix containing the R tensor signals, and M
is the residual matrix representing pure noise. Under the null hypothesis H0,
S = 0 implying R = M . In contrast, under the alternative H1, S 6= 0, result
in R 6= M .

Furthermore, both the contracted signal matrix S and noise matrix M are
symmetric, with S having a finite rank. This allows us to analyze the contracted
data matrix R using linear spectral statistics (LSS), a powerful tool from random
matrix theory. Central limit theorems for LSS of random matrices have received
much attention in high-dimensional statistics, see [2, 3, 17, 19, 26] for a few
classical references. In our case, by employing an appropriate LSS of R with an
established asymptotic distribution, we can effectively distinguish between the
two hypotheses.

We first establish that the eigenvalue distribution of R has a limit ν when
the d dimensions {nj} grow to infinity in comparable rates. Next, we introduce
the following test statistic:

T̂
(d)
N = ‖R‖22 −N

∫ ∞
−∞

x2ν(dx). (7)

Here, ‖R‖22 =
∑N

i,j=1R
2
i,j is a linear spectral statistic of R. As one of the main

results of this paper, we establish that under the null hypothesis H0,

T̂
(d)
N − ξ(d)N

σ
(d)
N

d−→ N (0, 1), (8)

where ξ
(d)
N and σ

(d)
N are known parameters that can be calculated numerically.

Under the alternative hypothesis H1,

T̂
(d)
N − ξ(d)N

σ
(d)
N

−D(d)/σ
(d)
N

d−→ N (0, 1), (9)

where D(d)/σ
(d)
N is a positive mean drift. Consequently, the asymptotic normal

distribution in (8) enables us to construct a test for a given significance level
α, while the distribution in (9) guarantees a positive power for the test, which

depends on the magnitude of D(d)/σ
(d)
N .



/Alignment and matching tests for high-dimensional tensor signals 4

When d = 2, the tensor model (1) reduces to a finite-rank perturbed or
spiked random matrix. In this context, the signal alignment test in (3) can be
seen as a tensor extension of existing tests for the presence of spikes along given
directions, as studied by [4, 8, 18, 23, 24].

However, when d ≥ 3, a fundamental difference emerges: the elements T j1j2

in the contracted data matrix R become correlated. This correlation signifi-
cantly increases the complexity of studying the matrix, making the analysis
more challenging compared to the d = 2 case. The presence of these correlations
necessitates the development of novel techniques to effectively analyze the eigen-
value distribution and establish the asymptotic properties of the test statistic

T̂
(d)
N in high dimensions.

The main contributions of this article are as follows.

(i) We conduct an in-depth analysis of the contracted data matrix R, whose
entries display significant correlations and deviate from traditional random
matrix models in which the elements of the noise matrix are typically
assumed to be independent of one another, including

(a) The characterization of its limiting spectral distribution (LSD) through
a vector Dyson equation, along with entrywise behaviors of the resolvent.

(b) The establishment of CLT for a broad class of its LSS.
(ii) We establish a rigorous procedure for the tensor signal alignment test (3)

by establishing the normality asymptotic of the test statistic and deriving
its power function under a general alternative hypothesis.

(iii) We also address the problem of testing for the matching of two high-
dimensional low-rank tensor signals. To tackle this problem, we employ
an approach similar to the one established for the tensor signal alignment
test.

The contributions presented in this article are novel. One notable innova-
tion is that our tensor signal model in (1) allows for non-Gaussian and non-
symmetric signals. This sets our work apart from most existing literature on
high-dimensional tensor data models, which typically assumes symmetry or
Gaussianity for either the tensor signal, the tensor noise, or both.
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borová, L. (2017). Statistical and computational phase transitions in
spiked tensor estimation. 2017 IEEE International Symposium on Infor-
mation Theory (ISIT) 511–515.

[16] Lim, L.-H. (2005). Singular values and eigenvalues of tensors: a variational
approach. In 1st IEEE International Workshop on Computational Advances
in Multi-Sensor Adaptive Processing, 2005. 129–132. IEEE.

[17] Lytova, A. and Pastur, L. (2009). Central limit theorem for linear eigen-
value statistics of random matrices with independent entries. The Annals
of Probability 37 1778 – 1840.

[18] Naumov, A., Spokoiny, V. and Ulyanov, V. (2019). Bootstrap confi-
dence sets for spectral projectors of sample covariance. Probability Theory
and Related Fields 174 1091–1132.

[19] Pan, G. M. and Zhou, W. (2008). Central limit theorem for signal-to-
interference ratio of reduced rank linear receiver. Ann. Appl. Probab. 1232-
1270.

[20] Perry, A., Wein, A. S. and Bandeira, A. S. (2020). Statistical limits
of spiked tensor models. Annales de l’Institut Henri Poincaré. Probabilités
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On dimension-free concentration of logistic regression

Shogo Nakakita∗

The logistic regression model is a fundamental binary classification model in statistics and
machine learning. Given a sequence of R𝑝 × {0, 1}-valued independent and identically distrib-
uted (i.i.d.) random variables {(𝑿𝑖, 𝑌𝑖); 𝑖 = 1, . . . , 𝑛}, it supposes 𝑌𝑖 as conditionally Bernoulli-
distributed random variables such that for some 𝜽 ∈ R𝑝, for all 𝑖 = 1, . . . , 𝑛 and 𝒙 ∈ R𝑝,

𝑌𝑖 |𝑿𝑖 = 𝒙 ∼ Ber(𝜎(⟨𝒙, 𝜽⟩)), (1)

where 𝜎(𝑡) = 1/(1 + exp(−𝑡)) with 𝑡 ∈ R is the link function. Each component of 𝜽 explains the
relationship between the corresponding component of 𝑿𝑖 and the conditional probability P(𝑌𝑖 =
1|𝑿𝑖). The model is widely used for academic and industrial purposes as its interpretations are
simple.

Our interest is the estimation of 𝜽 with good prediction performance under high-dimensional
settings. To estimate 𝜽 , we frequently consider the minimization problem of the following empirical
risk function (or the (−1/𝑛)-scaled log-likelihood function):

R𝑛 (𝜽) :=
1

𝑛

𝑛∑︁
𝑖=1

(−𝑌𝑖 log𝜎(⟨𝑿𝑖, 𝜽⟩) − (1 − 𝑌𝑖) log(1 − 𝜎(⟨𝑿𝑖, 𝜽⟩)) . (2)

We expect that the minimization of R𝑛 (𝜽) is a good approximation of the minimization of the
unknown population risk function R(𝜽) := E[R𝑛 (𝜽)]. If it holds true, the minimizers of R𝑛 (𝜽) also
achieve small population risk and thus good prediction performance. Under the low-dimensional
setting where 𝑝 is fixed in 𝑛 and 𝑛 → ∞, the classical argument for maximum likelihood estimation
validates this idea. However, this idea becomes difficult to justify in situations where 𝑝 is large
relative to 𝑛. For example, Sur and Candès (2019) point out that the minimizers of the empirical
risk R𝑛 (𝜽) can perform poorly as the estimators of the minimizers of the population risk R(𝜽)
under high-dimensional settings. In contrast, our study examines when the minimization of R𝑛 (𝜽)
is a good approximation of the minimization of R(𝜽) even with large 𝑝.

In particular, we study uniform concentration bounds and a uniform law of large numbers as
their corollary for R𝑛 (𝜽) around R(𝜽) on 𝐵[𝑅], where 𝐵[𝑅] = {𝜽′ ∈ R𝑝; ∥𝜽′∥2 ≤ 𝑅} with 𝑅 ≥ 0 is
the known bounded parameter space. Let us consider the following ball-constrained minimization
problem (ball-constrained logistic regression) instead of the unconstrained minimization on R𝑝:

minimize R𝑛 (𝜽) subject to ∥𝜽 ∥2 ≤ 𝑅. (3)

This is a smooth convex optimization problem on a bounded convex set; it has solutions, which
we can find efficiently. Note that constraints on balls or spheres are not only mild but also typical
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in previous studies (Kuchelmeister and van de Geer, 2024; Hsu and Mazumdar, 2024). If we can
conclude that R𝑛 (𝜽) is uniformly close to R(𝜽) on 𝐵[𝑅], then solving the minimization problem
(3) (i.e., maximum likelihood estimation with the parameter space 𝐵[𝑅]) is a good approximation
of the minimization of R(𝜽) on 𝐵[𝑅]. If the following uniform law of large numbers holds, then
we can support this idea asymptotically:

lim
𝑛→∞

sup
𝜽∈𝐵[𝑅]

|R𝑛 (𝜽) − R(𝜽) | = 0 almost surely. (4)

The uniform law (4) is one of the most fundamental arguments in large-sample theory. It concludes
that the minimization of the empirical risk R𝑛 (𝜽) is asymptotically equivalent to the minimization
of the population risk R(𝜽) (van der Vaart, 2000). To derive sufficient conditions for the uniform
law under high-dimensional settings, we analyse non-asymptotic uniform concentration bounds on
sup𝜽∈𝐵[𝑅] |R𝑛 (𝜽) − R(𝜽) |.

Our study gives a dimension-free uniform concentration bound yielding a mild sufficient con-
dition for the uniform law of large numbers. We derive a bound such that for some explicit 𝑐 > 0
independent of Σ, 𝑛, and 𝑝, for any 𝛿 ∈ (0, 1], with probability at least 1 − 𝛿,

sup
𝜽∈𝐵[𝑅]

|R𝑛 (𝜽) − R (𝜽) | ≤ 𝑐

(√︂
∥Σ∥r(Σ) + (1 + ∥Σ∥)(1 + log 𝛿−1)

𝑛
+
∥Σ∥

√︁
1 + log 𝛿−1

𝑛

)
. (5)

It is noteworthy that this bound gives a mild and natural sufficient condition r(Σ)/𝑛 → 0 for the
uniform law of large numbers.
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Subspace Recovery in Winsorized PCA

Sangil Han
Seoul National University

We explore the theoretical properties of subspace recovery using Win-
sorized Principal Component Analysis (WPCA), utilizing a common data
transformation technique that caps extreme values to mitigate the impact
of outliers. Despite the widespread use of winsorization in various tasks
of multivariate analysis, its theoretical properties, particularly for subspace
recovery, have received limited attention. We provide a detailed analysis
of the accuracy of WPCA, showing that increasing the number of sam-
ples while decreasing the proportion of outliers guarantees the consistency
of the sample subspaces from WPCA with respect to the true population
subspace. Furthermore, we establish perturbation bounds that ensure the
WPCA subspace obtained from contaminated data remains close to the sub-
space recovered from pure data. Additionally, we extend the classical notion
of breakdown points to subspace-valued statistics and derive lower bounds
for the breakdown points of WPCA. Our analysis demonstrates that WPCA
exhibits strong robustness to outliers while maintaining consistency under
mild assumptions. A toy example is provided to numerically illustrate the
behavior of the upper bounds for perturbation bounds and breakdown points,
emphasizing winsorization’s utility in subspace recovery.
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High-dimensional bootstrap and asymptotic expansion
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Let X1, . . . , Xn be independent centered random vectors in Rd with finite variance. Set

Sn :=
1√
n

n∑
i=1

Xi.

The aim of this paper is to investigate the accuracy of bootstrap approximation for the maximum type statistic

Tn := max
1≤j≤d

Sn,j

when both n and d tend to infinity. Specifically, we consider the so-called wild bootstrap method: Let

w1, . . . , wn be i.i.d. random variables independent of the dataX1, . . . , Xn such that E[w1] = 0 and E[w2
1] =

1. Define the wild bootstrap version of Sn as follows:

S∗
n :=

1√
n

n∑
i=1

wi(Xi − X̄), where X̄ =
1

n

n∑
i=1

Xi. (0.1)

Given a significance level α ∈ (0, 1), let ĉ1−α be the (1 − α)-quantile of the conditional law of T ∗
n :=

max1≤j≤d S
∗
n,j given the data. The main result of this paper is an asymptotic expansion formula for the

bootstrap coverage probability P (Tn ≥ ĉ1−α). To state the result, we introduce some notation:

• φΣ is the density of N(0,Σ).

• fΣ is the density of Z∨ := max1≤j≤d Zj with Z ∼ N(0,Σ). Also, cG1−α is the (1−α)-quantile of Z∨.

• 1d is the all-ones vector in Rd.

• X3 := n−1
∑n

i=1X
⊗3
i .

Theorem (Asymptotic expansion of bootstrap coverage probability). Under regularity conditions,

P (Tn ≥ ĉ1−α) = α− (1− E[w3
1])Qn(c

G
1−α)− E[Rn(α)] +O

(
log3(dn)

n
logn

)
as d, n → ∞, where

Qn(t) := − 1

6
√
n
〈E[X3],

∫
(−∞,t]d

∇3φΣ(z)dz〉 (t ∈ R),
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Rn(α) :=
1√
n

〈
X3 ⊗ 1d,Ψ

⊗2
α

〉
2fΣ(cG1−α)

, Ψα :=

∫
(−∞,cG1−α]

d

∇2φΣ(z)dz

and 〈·, ·〉 denotes the Euclidean inner product of tensors.

As a corollary, we obtain the following blessing-of-dimensionality type phenomenon:

Corollary. Under the assumptions of the above theorem, if the covariancematrix ofSn has identical diagonal

entries and bounded eigenvalues as d, n → ∞, then

P (Tn ≥ ĉ1−α) = α+O

 log3(dn)

n
logn+

√
log3 d

dn

 ,

provided that E[w3
1] = 1.

This result shows that under the stated assumptions on the covariance matrix, the third-moment match

wild bootstrap is second-order accurate in the high-dimensional setting such that d � n even when applied

to a non-studentized statistic.

The full version of the paper is available at arXiv: https://arxiv.org/abs/2404.05006.
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On a test for assessing vector correlation for latent factor
models in high-dimensional settings
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We let x1, . . . ,xn be p-dimensional random sample with a population mean vector µ

and population covariance matrix Σ. We further partition xi, µ, andΣ into 2 components:

xi “

ˆ

x1i

x2i

˙

, µ “

ˆ

µ1

µ2

˙

, Σ “

ˆ

Σ11 Σ12

Σ21 Σ22

˙

,

where xgi and µg are pg ˆ 1 vectors, and Σgh is a pg ˆ ph matrix, g, h P t1, 2u. Note that

p “ p1 ` p2. The test for assessing the vector correlation can be fomulated as

H : Σ12 “ O vs. A : Σ12 ‰ O. (1)

Also, the data generation model is assumed to be a latent factor model expressed as

x “ µ ` Bf ` ϵ. (2)

Here, µ P Rp is the population mean vector, B is the p ˆ d non-random matrix B “

pb1, . . . ,bpqJ that satisfies rankpBq “ d, and elements b1, . . . ,bp are referred to as fac-

tor loadings. f P Rd and ϵ P Rp are random vectors for common and specific factors,

respectively. We assume that f and ϵ are independent. We let f “ pf1, . . . , fdq and

ϵ “ pϵ1, . . . , ϵpqJ. Furthermore, we assume that fi is iid with Epfiq “ 0, Epf2i q “ 1,

and Epf4i q “ κ ` 3 ă 8. and ϵj are iid with Epϵjq “ 0, 0 ă Epϵ2jq “ ψj ă 8,

Epϵ4jq “ ψ2
j pκ ` 3q ă 8 for i P t1, . . . , du, and j P t1, . . . , pu. Under these assumptions,

Epfq “ 0, Epϵq “ 0, covpfq “ Id and covpϵq “ Ψ “ diagpψ1, . . . , ψpq.

We further partition B, Ψ, and ϵ into 2 components:

B “

ˆ

B1

B2

˙

, Ψ “

ˆ

Ψ1 O
O Ψ2

˙

, ϵ “

ˆ

ϵ1
ϵ2

˙

,

where Bg is pg ˆ d nonrandom matrix that satisfies rankpBgq “ dg ą 0, Ψg is pg ˆ pg
diagonal matrix, and ϵg is pg-dimensional random vector.

To construct test (1), we introduced the following ρV coefficient of x1i and x2i given

by [2]:

ρV12 “
}Σ12}2F

}Σ11}F }Σ22}F
,

where } ¨ }F denotes the Frobenius norm. The ρV -coefficient measures the correlation

between two probability vectors. Because Σ12 “ O and ρV12 “ 0 are equivalent, the



estimator of ρV12 can be used to hypothesize testing (1). The RV coefficient introduced

by [4] can be interpreted as a naive estimator of ρV -coefficient. However, [3] states that

the RV coefficient takes high values when the sample size n is small, and when both p1
and p2 are large. Therefore, we defined the estimator of ρV12 with a high-dimensionality

adjustment as

MRV12 “
{}Σ12}2F

{}Σ11}F
{}Σ22}F

.

Here, for g P t1, 2u, {}Σgh}2F is an unbiased estimator of }Σgh}2F derived by [5].

Then, to construct a hypothesis test (1), we defined the test statistic as

T “ nMRV12 `
{trpΛ1q

{trpΛ2q
b

{trpΛ2
1q

{trpΛ2
2q

,

where, for P t1, 2u, {trpΛgq “
ř

pdg
i“1

pλgi, {trpΛ2
gq “

ř
pdg
i“1

pλ2gi and pλgi “ λipSggq{pg for

i P t1, 2, . . . , pdgu. Here, λipSggq is the i-th largest eigenvalue of matrix Sgg “ t1{png ´

1qu
řng

i“1pxgi ´ xgqpxgi ´ xgqJ, xgi “ p1{ngq
řng

i“1 xgi and pdg is a consistent estimator of dg
based on the ER method proposed by [1]. Besides, we derived the limiting null distribu-

tion of T under some assumptions, and constructed test procedure for testing (1). Also,

we compared, through simulations, the performance of the proposed test and existing

procedures suitable for test for assessing vector correlation in terms of size control and

power.
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Let the dimension N of data and the sample size T tend to ∞ with N/T →
c > 0. The spectral properties of a sample correlation matrix C and a sample
covariance matrix S are asymptotically equal whenever the population corre-
lation matrix R is bounded [1]. We demonstrate this also for general linear
models for unbounded R, by examining the behavior of the singular values
of multiplicatively perturbed matrices. By this, we establish: Given a factor
model of an idiosyncratic noise variance σ2 and a rank-r factor loading ma-
trix L which rows all have common Euclidean norm L. Then, the kth largest
eigenvalues λk (1 ≤ k ≤ N) of C satisfy almost surely: (1) λr diverges, (2)
λk/s

2
k → 1/(L2 + σ2) (1 ≤ k ≤ r) for the kth largest singular value sk of L,

and (3) λr+1 → (1 − ρ)(1 +
√
c)2 for ρ := L2/(L2 + σ2). Whenever sr is much

larger than
√
logN , then broken-stick rule [2, 3], which estimates rankL by a

random partition (Holst, 1980) of [0, 1], tends to r (a.s.). We also provide a
natural factor model where the rule tends to “essential rank” of L (a.s.) which
is smaller than rankL.
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