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Algorithms for Fast Gibbs Sampling in Hierarchical
Bayesian Panel Modeling
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Abstract

The ancillarity-sufficiency interweaving strategy (ASIS) has been proved to be a
powerful tool for improving Markov chain Monte Carlo (MCMC) computation and
widely applied for Bayesian estimation of dynamic linear models as well as panel
data models. The previous studies, however, demonstrated the efficacy of ASIS only
through applications to real-world data or numerical simulations. In this paper, we
attempt to examine the performance of ASIS in the context of hierarchical Bayesian
modeling of panel data in a more rigorous fashion. First we prove that ASIS can
generate almost uncorrelated random sequences of individual effects in the panel
data linear regression model in a simplified setting. Then we demonstrate the

efficacy of ASIS in more general settings with Monte Carlo experiments.

Keywords: ASIS, hierarchical Bayesian modeling, MCMC, panel data

1 Introduction

Bayesian hierarchical models are increasingly popular in panel data analysis. However,
MCMC convergence can be slow, especially in models with strong parameter dependence.
The ancillarity—sufficiency interweaving strategy (ASIS) improves efficiency by combining

centered and non-centered parameterizations.
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2 Theoretical Contributions

We derive convergence rates under sufficient augmentation (SA) and ancillary augmen-
tation (AA). By applying ASIS, the sample of global mean ) become independent of

the previous sample u~1). ASIS exploits this property to achieve optimal convergence.

3 Simulation Study

Simulations across various (N, T') settings show that ASIS outperforms both SA and AA
in terms of Monte Carlo standard error (MCSE) and autocorrelation. The predicted

trade-off between SA and AA holds, and ASIS consistently yields the most efficient sam-

pling.

4 Real Data Application

We analyze U.S. state-level panel data on cigarette consumption, controlling for income,
price, and tax. ASIS outperforms SA and AA in estimating global means and regres-
sion coefficients. The empirical results reinforce ASIS’s robustness in applied Bayesian

analysis.

5 Conclusion

We provide the first theoretical justification for ASIS in hierarchical panel models and
show its effectiveness across sample sizes. ASIS ensures efficient MCMC sampling, with
applications in economics, health, and social sciences. Future work includes extensions

to non-Gaussian and dynamic models.
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Analyzing Japanese Equity Returns with Equi-Correlation Structures
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Spectral Decomposition in Dynamic Systems of Distributional Data
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1 Introduction

In recent years, data arising from complex systems have increasingly been modeled or represented as
distributions or other structured objects that evolve over time, reflecting advances in sensing, computa-
tion, and large-scale data collection. Such representations are useful in diverse fields such as economics,
population studies, and machine learning, where understanding and forecasting the evolution of entire
distributions is essential for explaining system behavior and detecting structural changes.

This study proposes a new statistical framework, called the Koopman-Wasserstein framework, for
analyzing and forecasting the dynamics of distribution-valued data. By combining the spectral theory
of the Koopman operator with Wasserstein geometry, the framework enables consistent representation
and prediction of how probability distributions evolve over time.

Recent studies have modeled data as evolving probability distributions (Panaretos and Zemel (2019);
Zhang et al. (2022); Chen et al. (2023)). This direction is motivated by applications where the shape of the
distribution carries essential information, such as regional housing prices and demographic age—mortality
patterns. Embedding such data in Euclidean space distorts the geometry defined by the Wasserstein
distance. However, existing approaches, such as Wasserstein regression (Chen et al. (2023); Zhang et al.
(2022)) and Fréchet regression (Petersen and Miiller (2019)), which are based on Euclidean embeddings,
focus on static distributions and do not model temporal dependence. Building on our previous study
(Wang and Araki (2025)), which introduced a Koopman—Wasserstein framework for distributional time
series forecasting, the present work extends the theory to spectral analysis of stochastic dynamics and
provides new theoretical results on consistency and prediction accuracy.

2 Model Assumptions
Let {X;}¢>0 be a d-dimensional It6 diffusion:
dXt = b(Xt) dt+O'(Xt) th, X() ~ o, (].)

where b : R? — R? and ¢ : R — R%¥4 are Lipschitz and twice continuously differentiable. Assume that
the process is ergodic with a unique stationary density ps(z) satisfying [ ||z||?ps(z) dz < occ.
The associated Fokker—Planck operator is

LY =-V-(b)+ iV (O'O'T'), (2)

and admits a discrete spectrum {(\;, ¢;)} in L?(ps) under these regularity conditions.
The Koopman semigroup {K;};>0 acts on observables f € L?(ps) as

Kif(@) =EIf(X)) | Xo=a],  Lf = (b,Vf)+ 100" V2f). (3)

We assume reversibility (detailed balance), ensuring that £ is self-adjoint in L?(p,). These assumptions
imply an orthonormal eigenbasis {¢;} representing the diffusion dynamics.

3 Estimation Method

We estimate the spectral structure of the Koopman operator using Extended Dynamic Mode Decom-
position (EDMD; Williams et al. (2015)) with importance weighting. Let W¥(z) = (¢1(x),..., % (x))"
be bounded and linearly independent basis functions with 11 = 1. Let {2z}, be samples from the
stationary process and p, a kernel estimator of p,. Define weights

= 0.
Zzzl Ds (ZZ)
Then set

M
GM = Zwk \I/(zk)\lf(zk)T, (5)
k=1

M
A =Y wp U(z11)®(2) (6)
k=1



and estimate R
Ky =An G}LW (7)

where GRI denotes the Moore-Penrose pseudoinverse. We assume max, w, = Op(1/M) and J =
o(M/?).

The estimated Koopman spectrum converges to the true spectrum, and the Wasserstein forecast
achieves the optimal parametric rate. Proofs are omitted due to space limitations. The results may not
hold for non-stationary or degenerate diffusions or when dictionary functions are unbounded.

4 Theoretical Results and Applications

We establish that, under the stated modeling assumptions, the spectrum of the associated Koopman
operator converges to the true spectrum, and that the prediction error measured in the Wasserstein
metric converges accordingly. We conduct experiments on U.S. housing price data and compare our
approach with the WAR method; the results demonstrate that our method achieves smaller Wasserstein
prediction errors and exhibits robustness in the presence of structural changes in the data.

For scenarios in which the model assumptions are violated—where the Koopman operator may be
non-self-adjoint or non-normal, as in gradient-descent-driven training dynamics of neural networks—we
analyze the approximate spectrum obtained via Hankel-DMD. Our empirical findings indicate that wider
networks yield spectral points closer to the real axis, implying faster convergence, while the discrepancies
between narrow networks are more pronounced than those between wider networks.

5 Discussion and Significance

The proposed Koopman—Wasserstein framework connects stochastic dynamics and distributional geom-
etry through spectral representation. The proposed framework introduces a mathematically consistent
way to represent, analyze, and forecast distributional dynamics by com-bining the Koopman operator
with Wasserstein geometry.

This research lies at the intersection of several major trends in mathematics, statistics, and in-
formation science. Mathematically, it links operator theory and stochastic analysis with geometric statis-
tics, providing a spectral foundation for analyzing distribution-valued processes. In statistics, it extends
the scope of functional data analysis to non-Euclidean domains, offering a unified viewpoint for dy-
namic distributions. In information science, it contributes to interpretable modeling of complex systems,
complementing data-driven machine learning methods with rigorous operator-theoretic structure.

The significance of this work is twofold. Theoretically, it provides the first consistent spectral esti-
mator for distributional dynamics, unifying operator-theoretic and statistical perspectives. Practically,
it enables interpretable, geometry-preserving forecasting of evolving distributions. The empirical re-
sults illustrate how the method captures both smooth and abrupt distributional changes. The Koop-
man—Wasserstein framework thus provides a new foundation for the statistical analysis of complex dy-
namic systems.

This research was supported by JSPS KAKENHI Grant Numbers 25H01464 and 23K28042.
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Regularized k-POD Clustering for Missing Data
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1 Introduction

Clustering is an important technique that groups data points without labels into several clusters. Notably,
the k-means clustering is one of the most popular clustering methods, the main idea of which is to find &
cluster centers and then cluster data points by assigning them to their nearest centers. Since the classical
k-means clustering requires the data matrix to be complete, then in the case of missing data, directly
conducting k-means on an incomplete data matrix is infeasible.

To deal with missingness for clustering, the traditional approach is to pre-process the incomplete
data matrix by deletion or imputation to construct a new complete data matrix for conducting k-means
clustering. However, these approaches do not work for large proportions of missingness or need a long
computational time. Recently, the k-POD clustering was proposed by Chi et al. (2016) as a natural
extension for k-means clustering to missing data, which can be applicable for even large missingness
proportions within a short computational time. However, the k-POD clustering is not consistent with
k-means in general, even under the missing completely at random mechanism (Terada & Guan 2025).
That is, as n — oo, the estimated cluster centers of the k-POD clustering and k-means clustering would
converge to different limits. Moreover, since the inconsistency is essentially due to the difference of loss
functions between k-POD and k-means, it is challenging to propose a general de-biasing method.

In this work, our aim is to reduce the estimation bias of existing k-POD clustering, and we focus
on a special case when there exist some features irrelevant to the cluster structure. To this end, we
propose regularized k-POD clustering by introducing a regularization function of cluster centers to the
loss of k-POD clustering, which shrinks cluster centers feature-wisely. This offers a significant advantage
of reducing the bias of estimated cluster centers, particularly in irrelevant features. Our numerical exper-
iments verify the effects of reducing estimation bias and improving clustering accuracy, and applications
to real-world single cell RNA-sequencing data also show the better performance of the proposed method.

2 Methodology

2.1 Notations and preliminaries

Write X = (zij)nxp € R"*P for the data matrix with n data points Xi,...,X,, in R?. The k cluster
centers {p1,..., i} are encoded by a matrix M = (u;)exp € R¥*P_ where the I-th row represents the
[-th cluster center. The membership between data points and cluster centers is denoted by a binary
matrix U = (uii)nxr € {0,1}"**, where u; = 1 if and only if i-th data point X; is assigned to I-th
cluster. Since one data point is assigned to a unique cluster, it must satisfy that Ul, = 1,,, where 1 is
the all-one vector.

For a complete data matrix X, the k-means clustering can be expressed as

i X — UM|2 1
min X — UM||F, (1)

where || - || is the Frobenius norm of a matrix, calculated as (_, ; 0L1<2j)1/2 for A = (a;j). If there exist
missing entries in X, the loss function cannot be directly calculated.

For an incomplete data matrix, the k-POD clustering records all observed positions in X by a set
Q cA{l,...,n} x{1,...,p}, and introduces a mapping P onto the set {2 to replace the missing entries
with zero. That is, Pg : R"*P — R™*?, and (Pn(X));; = xi; if (¢,7) € Q, 0 otherwise. Then, the k&-POD
clustering is given by

min |[Po(X — UM)|3. 2)

)
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2.2 Proposed method

Suppose that the data matrix X = (xij)nxp is column-wised centered, that is, %Z?:l zi; = 0 for all
Jj=1,...,p. Write X; € RP for the i-th data point (i = 1,...,n) and X(;) € R" for the j-th column of X
(j =1,...,p). Denote by € the set of observed positions of X and suppose that the number of clusters
k is fixed.

We define the regularized k-POD clustering with respect to membership U € {0,1}"** Ul = 1,,,
and cluster centers M € RF*P by

min |[Po(X — UM%+ X - J(M). (3)

The first term is the loss of the k-POD clustering, and J(M) is a regularization function with respect to
M. To shrink the estimated cluster centers feature-wisely, we consider two types of J(M):

The Iy penalty :  Jo(M) = Y 1(|[M;] > 0)

Jj=1

P
The group lasso penalty :  J1(M) = ijHM(j)H7
j=1

where M(;) = (pj,..- ,/ij)T denotes the j-th column of cluster centers M with p;; being the j-th
component of the [-th cluster center ({ =1,...,k). The function 1(-) is the indicator function and w; is
the weight for M;). Both types of J(-) are column-wised, which means that all elements of My, that is
{11 -, pr;} would be shrunk together. The Iy type Jo(-) constrains the number of non-zero columns
of M, while the group lasso type Ji(-) constrains the weighted sum of Iy norms of M in each feature.
Therefore, with a suitable regularization parameter A, the estimated cluster centers would be sparse in
features.

We apply the majorization-minimization algorithm (MM algorithm) to solve Eq. (3). Specifically,
given current U®Y) and M®) | t € N, the (t 4+ 1)-th iteration consists of two steps. Step 1 imputes missing
entries of X by the corresponding entries of multiplication matrix of current U® and M®, so that we
can get a new complete data matrix X(**1) . Step 2 updates Ut and M+ by applying regularized
k-means clustering on the imputed data matrix X(*+1). Repeat the iteration until the loss converges.

3 Experiments

In this work, we compare the proposed method with other methods via numerical experiments, the results
of which show a lower bias in estimating cluster centers as well as higher accuracy in clustering. Moreover,
applications to real-world data also show the better performance of the proposed method. More details
will be introduced in this talk.
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Abstract. We propose a bivariate cure frailty copula model for survival data. Using a zero-inflated gamma
frailty, the framework simultaneously accommodates a subpopulation of long-term survivors and a continuous
positive frailty. Dependence between marginal cure rates is parameterized by an odds ratio, while dependence
between uncured survival times is captured by a copula. We derive Kendall’s tau for the proposed model to
measure the degree of dependence. We also develop statistical inference methods based on maximum likelihood
estimation. Simulation studies and an application to a real dataset demonstrate accurate and stable parameter
estimation, highlighting the model’s utility for analyzing paired time-to-event outcomes with cure fractions.

Keywords: Cure model - Mixture model - Gumbel copula - FGM copula - Kendall’s tau

In survival analysis, a subset of individuals often never experience the event of interest during follow-up; their
survival times are effectively infinite and they are treated as “cured.” Cure models accommodate such long-term
survivors by assigning a positive probability mass at infinity. Frailty models introduce unobserved random effects
to represent heterogeneity or within-cluster correlation, and copula models deal with the dependence structure
between event times. Existing bivariate approaches that combine these ideas (e.g., Rouzbahani et al., [2]) typically
rely on discrete frailties, do not explicitly parameterize dependence between cure indicators, and lack closed-form
expressions for dependence measures such as Kendall’s tau. Fully unified frameworks that treat cure, frailty, and
copula-based dependence simultaneously, with interpretable parameters for both cure status and event times, remain
limited.

To address these issues, we proposed a bivariate cure frailty copula model based on a zero-inflated gamma frailty.
For each margin j = 1,2, the frailty is defined by

Zp=(1-X;)W,

where X; € {0,1} is a cure indicator and W is a continuous positive frailty shared by both margins. When X, =1,
the individual is cured on margin j and Z; = 0; when X; = 0, the individual is susceptible and Z; = W > 0.
The shared frailty W follows a gamma distribution with E[W] = 1 and Var(W) = v, so Z; is zero-inflated but
continuous on (0, 00). This avoids the somewhat artificial assumption of a discrete frailty while still allowing an
explicit cured fraction via the point mass at zero.

The marginal cure rates are p; = P(X; = 1), and the joint distribution of (X1, X3) is parameterized via the
odds ratio
P(Xl == ].,XQ = ].)P(Xl = O,XQ = 0)
P(X;=1,X=0P(X;=0,Xo=1)"

Given p1, p2, and R, the four joint probabilities pi1, P19, Po1, Poo are obtained explicitly. The parameter R controls
dependence between cure indicators: R = 1 corresponds to independence, R > 1 to positive association, and
0 < R < 1 to negative association, providing a simple scalar description of dependence at the cure-status level.
Conditional on the frailty, we adopt the joint frailty copula model (Wang and Emura [3]). Using the Laplace
transform of the gamma distribution, we derive closed-form expressions for the unconditional bivariate survival

R:
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function when Cjy is chosen as a Gumbel copula, a Farlie-Gumbel-Morgenstern (FGM) copula, or the independence
copula. For example, with the Gumbel copula, the bivariate survival function takes the form

1 q-1/y
S(t1,t2) = p11 +po1 (1 + ’Yﬁt(fl)il/7 +p1o(1+ ’Wﬂ?)il/ﬂY + Doo {1 +v {(Tlt?l)oﬂ + (TQtSZ)OH} " }

In all cases, the joint survival admits a mixture representation with mixing ratio equal to the joint cure probabilities.
The marginal cure rates can also be modeled as functions of covariates via logistic regression,

o exp(xgﬁj)
Pij 1+ exp (x;';ﬁj) ’
allowing direct interpretation of covariate effects on the probability of being cured.

A key contribution is the derivation of Kendall’s tau for bivariate survival data with a cure fraction. Using
Pimentel’s framework for zero-inflated data (Pimentel [I]), we obtain closed-form expressions: for the cure zero-
inflated gamma Gumbel model, the non-cured component corresponds to BB1 copula, and for the cure zero-inflated
gamma independence model to Clayton copula, both with known Kendall’s tau. This yields explicit formulas for
Kendall’s tau in terms of p1,ps, R, 6, and -y, enabling a familiar rank-based interpretation of dependence even with
cured individuals.

For statistical inference, we derived the full likelihood for right-censored bivariate survival data, together with
closed-form first and second derivatives with respect to all parameters. The likelihood accounts for four observation
types per individual (event on margin 1 only, event on margin 2 only, events on both margins, and censoring on
both margins). The parameter vector (0,7, p1,p2, R, a1,71, @2,72) is estimated by maximum likelihood using the
optim function in R.

Finite-sample performance was evaluated by Monte Carlo simulation of the cure zero-inflated gamma Gumbel
model under two dependence settings (R = 3 and R = 0.5) and sample sizes n = 200,400 (200 replications each).
The copula parameter 6, marginal cure rates pi, p2, and Weibull parameters aq,ry, as, ro were well estimated even
at n = 200, while the frailty parameter v and odds ratio R showed some bias that decreased at n = 400, with
coverage probabilities approaching the nominal 95% level.

Finally, the model was applied to the Diabetic Retinopathy Study dataset from the survival package in R,
comprising paired times to vision loss in 197 patients, with one eye randomized to laser treatment and the other
left untreated. For the dependence between marginal cure rates, we considered four specifications 0 < R < 1, R =
1,1 < R, R = co. Models with and without covariates in the cure components (using age and a risk score) were
compared via AIC and BIC, and the specification R = 1 was consistently favored, indicating no association between
the marginal cure rates of the two eyes. The overall Kendall’s tau for the joint survival times was estimated as
7 = 0.455, indicating moderate positive association attributable to shared frailty. When the fitted marginal survival
functions from the cure zero-inflated gamma Gumbel model (without covariates) were overlaid on the Kaplan-Meier
curves, the model-based curves closely matched the empirical ones and provided identifiable estimates of the cure
fractions, which cannot be recovered from Kaplan-Meier alone.

In summary, the proposed model provides a unified cure frailty copula framework for bivariate survival data
with long-term survivors, offering interpretable parameters for cure status, frailty, and event-time dependence, as
well as closed-form Kendall’s tau. Simulation results and the diabetic retinopathy application demonstrate accurate
and stable parameter estimation, supporting the model’s usefulness for analyzing paired time-to-event outcomes
with cure fractions.
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278 © C R3 x (0,00) (&3 V87 MUYEA, 0 := (0p,01,m1,02) € O IFRKIT A=K,
0" = (05,00, 177, 05) XEMET 0" € Tt © 5 5. WHID o € (0,1) 1A LT Q-7 —F—
WA %

WtQ: Z /‘l:,olég/2wl1,l2(t)el1,l2

I la>1

TEDD. 72720 {wyy 1y by to>1 ISR LIRGEEHET 50 VBB TH D, pp € (272, 00)
I UT, e,y 2) = 2sin(rlyy) sin(mlp2)e” WV Fm2)/2 0y 00 = 72 (12 +13) + po by ls €
N, (y,2) € D, TH5. e € (0,1) IFBHOBW/NHEN T A -2 LT 5. SHERZEMT —
2EUTXym = {X,(yj,21)}, 0<i < N,0<j<M,0< k<M 2&FZX5. kL,
ti =iA =i/N, y; =j/M, zp = k/Ms, M := MMy &9 %.

2 REUISA—SDHE

01,n1, 0 DE/NI Y ST A MEEIZDOWTHE R B, ZERIEE &7 —X X%)m = { X4, (yj,2K) }
0<i<NO<j<m,0<k<mgaBEEZXS. 272U, m := mymz, m = O(N),
N=0(m), A=1/N, be (0,1/2) XL T,

b<po<y1 < - <Ym <1-b, b<Z<21 < <Zp, <1-0

L95. Fit,

Y1ty Zp—1+ 2k .
yjzw7 Zk:lT? ]:17"'7m17k:17"'7m2

L35,
TijrX = X0,(95, 26) — Xt, (Ui-1,2%) — (Xt (T, Zk—1) — Xt, (Uj—1, 2h-1))
- (Xtifl (gj, Ek) - Xtifl (%;1, gk) - (Xtifl (gjv gk—l) - Xtifl (gjflv gk—l))>'



L, IROAV N T ANEEAEEZ D

m2 mi N 2
mN K, 1,0 ZZ{ 2 NA« Z J,kX)z_e_ﬁyj_nzk@,a(éb)} .

k=1 j=1 i=1

FFE U, Jo BUHEO0 O LREA Y VBB U, r = 2N o 5 0 i3 LT,

wd%%:%iﬁémlgif(%(f%ﬂ—a%($;)+9¢r 2)

Y35, 22 R2x(0,00) DEDEEE L, 01, m1, 02 DENTY b T A MEERE (R, 7, 0,) =
argmin Uy, (/1,77,92),51 =Ry, =10y T 3. ERIRMEDTF, Nym — 00, e >0 D&
(k ,77,02)6_
= (91,771,92) E—EME2 L.

B BT po DHESHWHREICOWTHER S, BREMEEF—2 X0\, = (X (5, 21)),
0<i<n,0<j<M,0<k<M, 2%2%. 2L, n<NIZHLT

~ N | 2
B =i, = {J’ i=0,1,....n
n

N?
LT . BRI o, g, (¢) EESRIEE E 7 -2 XP), 2HVT
My Mo
T () = DN Xelyj1, 262100V g1, (R)8) 0, (7)
j=1 k=1

TEMY 5. 22T,
ax/2
= (a/\Q)[e(wl) (a sin(wlx) — 7l cos(rlx)), a,x €R, €N,
57['y]gl(a) =gy )~ aly1:a), 67a(0) =gz :a)— gzt a)
Thsd. a7 A MEEE

~—

gz :a

no ~ ZAA, A~ " 2 —2)\A
. (Zy,05(t:) — €272, 4, (tim1)) 1 —e =7
ViR ) =Y S oy A nlog
i=1 T2y i

LEHEL, Ny fliyay) = arginf VEA, i 2 Rpypy) £F 5. 0p 3 £ O o O I & 13
A

é\o = —/)\\11,12 + (/9\2<g21ﬁ2 + 7T2(l% + l%)),ﬁo = ﬁl1,lz — Wz(l% + l%) TEE 5. LFRIZMHEDTF,
n—o00,e—0 DEE (B, o) lE—EMEB X OWHEEHIMEE FE.

3 BEYIalL—Yav

N =103, My = My =200 & LC SPDE (1) O#fffR%E &KL, SHET — X IZHKI VWi
KBS I 2L —>a v aFS. BRIIZIE, B/NI Y T2 MEER (0,,7,0,) B &
QLI E & (0o, 10) ZFHR L, T OHNEEH) & KEET 5.

£ 3Rk

[1] Y. Tonaki, Y. Kaino, and M. Uchida. (2026). Small dispersion asymptotics for an SPDE in
two space dimensions using triple increments. Journal of Statistical Planning and Inference,
241, 106333.
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AL GREUREEREFFHR)

Z25

ETNMCEEND RAOBE (BB T X —%) OHEHIREZE 2 5, BBICX > T MBI HH
P M7 ¥ OTEIRFIRY (shape constraints) /-3 Z e 2 EiE SN b, BRI T TOREB I X -2 D
HEHNCBI S 2O TH, XA XFEFEDOVIZEMD . BRI X -2 0FEENMEET 2L ZH L
T BWRIGEFREAATDNT NS, BRI X — 2B 2 Mg Z KRBT 5 201203, BIZER Lo
B 2 80E LR U2 S 70003, TEREIRNE THATORER & U THATOMOMBUICE W TRISIN S,
ZD XD BRERDMEOMKAEL LT, BBHEDOEDZETNMET 2 4k BEBEEBIERMIC X 2 5150515
N3, R#EHETIZ. ZhPNDHEOWTIHIRGIRN 2 MG L 25eE =8N T %,

B—OWFE T, BBEDO MY fmZ AT 2 2 & T, BN - iR 3 2 e R\ T %
FEIZOWTHES % (Okano et al., 2024), YIKTIEHT O RERE T % Uil Horseshoe prior W3
2T, PR D XS RIBIROBEBERI T2 e TE S, FAUIDKET — 210 L TIRETFIEZH
ALy Za, FLEZOFZAWRKERIBH I Nz, Zhud M I NE TRV RV &
WS RHEER D Tail-robustness & WHHEEZ KL 72dDTH D, AL THEANFHEZ 52 T3,

F_OMER T, RFERE2BBEEOHECIGH T2 (Miyatake et al., 2025), B HFRICHEMNT % &
WHIRIUE. MO AERE T LVOBUEMRDRECEN S, SMEDTHONBED ZETMET 2 2 L2505
ZHNEERFFRVIET VDRI T 4 VT 4 BHETNMIHIGT 5, Lo T, H —DOWMIEDOBREL, RI77 4V
T4 ETMIET A EZHAGDE S 8T BRI OHEED ATREICR 5, BiEHI LT, 2
ZF % FitzHugh-Nagumo €7 VOBUEMROFEETICH W & 2 A, IERA X FHEE DG & LT
AEEICHEE SR SE 5Nz, ZHE Horseshoe prior 2SRERDfICE 2 b D Bbh 3,

BEoOWZE T, BEEBEMICE S AEICOWTHETT %2 (Hiraki et al., 2024), EfRICE, BLO
H 5 BEBIIARAXE LTERS A, BIREMTH D, TH D, »oBREFER T (R THRE SR
ZMD) TEMNEFEIND, £ T, 2o DRI 2 TR T2 3R (R—=2 Mo mEEuR ) 25
JEREE e LTERA L. B D H 3 BiEe BARBIBOME & TR S Z e T BIRH 2 REES %, £ 7 M
INTICIRE T 225, ERREDER LicHliEh s Z e s, <wba 7HEHE v 7 AL nikicid Pélya-gamma
ERFOTRPREL 125, LR OWIRFERIZRE Y 3246 2 LT, FiffORFEEEN 20— 1L > fhifgss
EFohd, BEFEZHVWLE 2T, n—L Y YHlRORRIIET VERMNK - #ETE 2, Fh. L~
W HEROFEIE Y =R 2 W S IRETEIE L 72 205, ZOFHBEAHT D S ICHEKITAHETH %,

AFEEIIHE R (—EAT). PREZ GRERYE). B2l (BERAKRY). BREE (KIRKE). B
HdE GREURY: - BYLSAREAT . FARKRE (EKRY) L oHFEFIRICED <,

WS

LHHIZEBICEOE, ZEIICDH 2 ZARDRLDONEZHE L.



B 5EJL% Tl Hiraki et al. (2024) THW iz, BEBBUERICE D BB I X —2DET Y Y 7T LT
D D o Te KO AECBVTIE, BLOD 5B f(x) 2. FIEBE hy(z) VT,

K
fl@) =" uhi(),
k=1

Y EF LT B BIECf DSHIRNL Ficlh, 2o f(0) = 0, f(1) = 1 2\ 5 BIRELEi#72F X 5 R
WRIUZWEAICIE. SRS by, CRBOBREIE L. R (01, 0x) BEEEICHY GEaoM
BEDAID 1K E510) FHUEEN. 20 &5 BIEBHRON L LT, ~—XBHO R GERL
NI — ZBIR) 5L — bR 53,

s ZD5h., FRBOHKIDORBBEMEICOWTIEMY D 72 ThbH, Bl MDA EZEK L I2WIEE
IR FREUIIEATHIUE X K. IR EICHEI I ATV B BB RV, RO 1 TH2 vl
X, BRI R T ETREY S,

o FATHIA TR D ARSI N D Z D2 W» (AR, BIBOIEMZHEE 2 V5 1T R
RETRERODEVWIERTTbH D, L, AFEOBELTH 20— »YlliffidzoEsE (V=
FRED WCEBEREWRYD D, HELREE X VR W E IS E /NGB X N S AN D B, FET
FHIFIEL DEF L L DL XN, BIRZDTRWEES & OB Z B S HOMERE T
b5,

s [RICHFAMDAEIRET 2HEIC, 257 7a—F (Okano et al., 2024 1Z72) & OEWICEI L TERM
WD oTec, BEEBRMRLEBIEZ R INTORWY, FEDOBEWEIHE 5010 TH S, BOERE. IFEHIN
FTOREED BEE T 2 0MHARER DI EERKEM Y Yu—FTHhH b, — . ZR7 Tu—F
MCMC 12 & 2 EEGHBIEFHICH S TH D, MCMC OFREDE NI AT ->TWwWb, HINICK -
THWDF 20TV Bbhs,

Okano, R., Hamura, Y., Irie, K., and Sugasawa, S. (2024), “Locally adaptive Bayesian isotonic regression with half
shrinkage priors,” Scandinavian Journal of Statistics, 5(1), 109-141. arXiv:2208.05121

Miyatake, Y., Irie, K. & Matsuda, T. (2025). “Quantifying uncertainty in the numerical integration of evolution equa-
tions based on Bayesian isotonic regression,” Japan Journal of Industrial and Applied Mathematics, 42, 983-1001.
arXiv:2411.08338

Hiraki, D., Hamura, Y., Irie, K., & Sugasawa, S. (2024). “State-space modeling of shape-constrained functional time
series,” arXiv:2404.07586.
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o SURIYLH I TRV A LY RORM A B RIMAURET G - TR O Pk & Fr
of%.ﬂ?ﬁhﬁﬁwﬁgﬁﬁn(A)ﬁi%ﬁ2ﬂmnwVﬁﬁﬁ@ﬁT—&®@mtﬁ&%®ﬁk
LR BFZEAERE | BRI (KRS
o GAMEHIF : 2025 12 H 1 H-12A 3 H
R JUNKRY: Pk 7 5

2 DURSILATR - ARk
21 12B 180 &8ty ay

1 HEIX 6 HOREEDHEEE 2 X N7z, FAD Bayesian time-series ZHK L TW3 22 dH b, ot d
FIRMTH o =03 dbded: (FRIL2EZEAT AIP) @ TAlgorithm fo Fast Gibbs Sampling in Hierarchical
Bayesian Panel Modeling| T®H o7z, NA XRERFIDOHFRTIE D PRI L 7o 72 ASIS 2 W5 FEOR)
RUEZHEGHN A OFm T ANETH D, HERET VT L TOAMRELG Z TWVED, IEFITREIC
BARIHETD o7,

MATEEIA (JREKFE) OV IFRARY Y 7ICBI 37 7 AX—DHEFTHITONWT, £ L THEES
(BEAKRZ) OEMHES ST — X D BIC I2oWT D Z#iEIZ. FOMENRTHEZ 774 F 2 2A0HL
HIEEDODH D, IEFICHERFEDNETH - 72,

22 12B 2B @Ftv>iay (HREEHEER)

2HHDEY Y a2 vid 32 TED, Fhzhdty > a rT3HDNE - AP THEIN, ¥
DNED & THERENS DTH o720, FHSHREEAE (FILKF) o ZH#EIX DCC 2w 5 Bk oty
BUTAI ORGSR RT 8 TI7 7=~ - JL U FDIT 7 7 X —FET VIOV TRBE S X 28R %E ZHRRICZ -
TV, ZHULEFEDO 7 afFBETHICHHETINETH D, HELEAZEOLNI D THo 7,

¥/, HHEAE FHEEKF) 2 Ziyue A EILKT) O THENAED. FAOBEKRICEH T 2NETHDIE
FICHE LI e AT E, HHAEIKRIMOIG OMEEZ R LET V) Y7 2R INTED., Ziyue A



XSS (Wasserstain distance) %W MENG - A FRIZIT > Tz, ZNSIEFADSHRDOIFE
W2 MM ERETH D, IEWICTHEER TH - 7=,

23 12A3H @Etvy>ary (REEBER)

SHEHDE Y > a vy TiIfA R &% 6 HORREFIC X 2L LRI NI,

22O0HDE Y ¥ a VITTHREFIFHEEELIT - 7z, #HEIZ 'Dynamic factor stochastic volatility in mean
model] THH, NEEFZLE~ 7 ufRFRRY T — X OREZ R 2 DICENLBNEFE 7L 2IRRT %
T, MEADNLELRRNIB I 2LZBOEH 2N T2 05 DD TH S, AMEHICHBWT, HEFRAE
(BEAKRY) ZIATLHET 5. FRRIIENM 2R T 2045006, IEFICERRIHEM - BEERD Z
R W2 Wie, MATIERA GUNREE) ML (RERY) ICIE@EHERICERNAFIIOWTES
EIETOWE Wiz, IFEICINED D 25HE BTV R, SHROMAEE S —EEET 2FFETH %,

i THEHICB W TIE, FAOERT 24 XFMFHAICEET 2D LT, ATLAEE (BHEKY). I51
EHET—& (ARE2) BT 2b0r LTHERE (P RY) O Z#EIZIFE ICHEKENS D TH -
720 FRHCATLEEIC K 2 TIKAEFY TN TOBEEST X — X DFEHK M 1X prior information % @Y€ TV
CEENZBRDIPIRC RS 2 BIRIZRNABETH D, EENRSHOREEZEC X R 2FED DD 5 ZiEiH
THolo ZOMTIMELFECLIZRES LV IHEHD DD, REFDMRDEFRN— a Y 2RODIZH
RBWigar oz,

3 EHbIC

FEREETH 2)IEeE OUNRT) . EHOFIRE GRBRY) . £RADHIZEICT F AL R W72
WEAETZEBLDETE2BMEDTT 2D 7D TEHHWELET,
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1 JEEB RS IEWAEE - T739-8511 WKL —TH3I®E2 5
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Wk AT — 2121, R L W EBEOA Ny FRFEET D, LavL, Hif7e Cox Hfi Y —
RET LTI, TROHDA R FEMNLEREL T L TLE S EWIHIRENRD D, -, BEOWEN LKA
SNTZT —FIAHAET HARBUNOREM 2+ ICBEETE RV E W BB b IEHMENL TV D,

AW ClL. Gene Expression Omnibus (GEO) 2%k S u7-fififlfis BE 853 BT —& v, Mgt~ ~ U v
7 A (ECM: Extracellular Matrix) BHE&E{n+CTd 2D CD36, COL11AL, HWMR DREIBIEIRB LN, Fis - HERIZR ED
BERERTHTRICE X DHEBLZFTM L, £9, FHH7e Cox EIFET L ZHAWT, XL AEFITxT 2884 [
BNCER L=, EHIC, PaA vy NI AAT 4 ab a7 NE0M L, B3 LTI 585 [ S
Liz, RETMZEY . RBIMOREME (Z VA VT 1) BEOA X MNEAOKTFRERERIRHCHEET 5 2 & 23]
REE 72T,

Mz T, EF—ZIZBWTHESCHELCOFERBHI SN TWRIZHE b 5T, B E TOMIM (TTP) 2AKHIL
TWAREFINTFET D LW O BEICEH L, 24N (0S) oF#RERANT TP 2fi5Ed 2 FEET Ial—v
a XV RRE LT,

F—U—F TV RFRA b, RAEFEY, YaAr bETA, abta T EEENN, BEFREE, Y
— RFET/V, KRHAME

1. [FUSHIC
EFEER T — 2 ICEERPHET E Vo 2 EED 4 RV FEE L, A7 Cox BIRETF LD & 5 f@trclt.

NOEDARY P EMTERELTCLEIMERS 2, 72, @F Cox DRIFIZ, HEOWMELLEFONLZT —XD
KEHEE 2 ZETE R, LELARD, BAY ) AEOREN LT — X <—2TH %, Gene Expression
Omnibus (GEO) % Cancer Genome Atlas (TCGA)IC (3, BFICHELZERDOA XV PRI N T2 05
3. %7, ThooF—2 %A LE@TICE T, 4y FEOHBCRBEHBEEEAEBEINS 2 L3R E
v,

AHFZETIXLGE0 F— & _R— 2 Z& gk SNz GSE30219 (Rousseaux et al., 2013),GSE31210 (Yamauchi et al., 2012) .
GSE68465 (Shedden et al., 2008), GSE50081 (Der, S et al., 2014). 33X TY GSE37745(Botling J et al., 2013)
DF—4+% v bRV, #Mlgst~<t Y v 2 2 (ECM: Extracellular Matrix) BhELGE (5T CD36, COL11AI, HMMR
DRI B LV, Elfp - WA O RRTFAEGFETRICE 2 2 ELFNiT 2 2 &2 &2 5, ECM BE# 5713
[ D e RS, IR IC R G T3 C e AN TH Y, B o ECM BIELE (5 7R MfilsE o T
FHIICHRTH 2 WHEMEAER S LT3 (Chaietal., 2024), 2 D7z, ARHI%TH ECM BHEE G T % AT mt R
LT3 LT, MEICET 2 PRIFIICEIOEEZOND, LA LA, Hilly A ER T o T ol
WG O T — 2 R AT T 2 54, KRB REM (71447 4 GIA - #)112024)) 2, BlllEhz 4~y FH
DOHBIMGE % BT 2 C L 3L v, R T, 3 HA 7% Cox BIIRIC X Y WT 03T L R Ic G 2 28 %
MAICFHE L 7z, D&, Yaf vy 7L 40T 4 a2 7%ET A (Emuraetal 2017,2019) % F v CHET- 235 &
EFICH 2 BB RIS L 2, CoETMICEY ., RBIMOREY (ZL4 0T 1) &4V FEOREER
% (av=9) 2AKICERB T2 ENTEE, Yaf VY 7LAAT 4 a2 TETADRRELAVS &, #EIE



T RRETOREZ T TR, ARV MNHOBED ZEHE T2 A TER, Ioic, EROEFRMT -2 Tl
BHRELPACOFEIBH I N TV R I b b, T - B oWl (TTP) BKHEIL T 57— X BTEE
T2, 20X BRAfEEEL T — 2k L <, 24 (0S) oz v CERT - R colif s
2hERY IaL—va VICX OVRE L7,

Y Z BN

[1] Botling, J., Edlund, K., Lohr, M., Hellwig, B., et al. (2013). Biomarker discovery in non—small
cell lung cancer: integrating gene expression profiling, meta—analysis, and tissue microarray validation.
Clinical Cancer Research, 19(1), 194-204.

[2] Chai, Y., Ma, Y., et al. (2024). Identification and validation of a 4-extracellular matrix gene
signature associated with prognosis and immune infiltration in lung adenocarcinoma. Heliyon, 10(2).

[3] Director’ s Challenge Consortium for the Molecular Classification of Lung Adenocarcinoma, Shedden,
K., Taylor, J. M., Enkemann, S. A., et al. (2008). Gene expression—based survival prediction in lung
adenocarcinoma: a multi—site, blinded validation study. Nature Medicine, 14(8), 822-7

(4] Der, S. D., Sykes, J., Pintilie, M., Zhu, C. Q., et al. (2014). Validation of a histology—independent
prognostic gene signature for early-stage, non—small-cell lung cancer including stage IA patients.
Journal of Thoracic Oncology, 9(1), 59-64
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[7] Rousseaux, S., Debernardi, A., Jacquiau, B., Vitte, A.-L., Vesin, A., Nagy-Mignotte, H., Moro-
Sibilot, D., Brichon, P.-Y., Lantuejoul, S., Hainaut, P., Laffaire, J., de Reyniés, A., Beer, D. G.,
Timsit, J.-F., Brambilla, C., Brambilla, E., & Khochbin, S. (2013). Ectopic activation of germline and
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& Gotoh, N. (2012). Epidermal growth factor receptor tyrosine kinase defines critical prognostic genes

of stage I lung adenocarcinoma.



Modified AIC for Canonical-Link GLMs with Known Scale Parameter
KERINILKEE BEEWFSERT BN ZERD

AFELRTIE, Nelder & Wedderburn (1972) 1T & D 2R Sz —fRALKIEE 7L (Generalized Linear Model;
GLM) 1281} 2 ZHCER D 7= O FRMIERE Y (Akaike Information Criterion; AIC) DEIEIZ-DWTHL
D% >5. GLM &, McCullagh & Nelder (1989) % Fahrmeir & Tutz (2001) 72 ¥ OFEHER 724G E DO EEEH
WWRENTWS K1, EHERET L, B YA T 4 v ZEIFET L, R7 Y VEIFETF AR EZ2UET 2INH
MRRETETATH D, HERDHPY > 7B EYNCHET 2 2T, 7T —2MEICHET 2
ZENTES.

Akaike (1973;1974) 12 & D 2R & h 7z AIC &, Kullback-Leibler (KL) |&#i& (Kullback & Leibler, 1951)
WED K VR ZBEBOHHENMEHEERTH D, HEHETVDORINBILED —2 512, “2x I X =2 L
WHETILOEMEXICT 2 EHIEEZIMNZ 2 2 TERIND. ZOMHELERNG ZIIHTE TIA L
KU, B85 5 50 U ERIZBEICBWT D, 2R H CEEOMGE T O HERE R H XA T
5. LAL, AIC 13V R 7 BEETH L THNERNICIEIMETH 2 D OO, FEABD I KE L RWIHEIZE
NAZAPELRT L, FERE LCBRICE R ET VR RINT 3EARH 2 Z e AH6ATWS. ZOKR
FRVIRT 2720, 2 DIFRHZIT L TN 7 AMIEICE T 2TH%EHED ST X 7.

IED A2 ARGE U7 EREIFE 7 1B W T, Sugiura (1978) Ik D, EOETLEEUBAET VO RT
) 27 BB O RHEER L 725 Corrected AIC (CAIC) AMER XNz, Z D%, Hurvich & Tsai (1989)
W& b CAIC X ABIOMIER AIC, 3bbH AIC, PRERIN, 26 5MAL R LR, BETIE “BIE
AIC” 2 WZIR AIC, 26T OO0 —INTH 5. 1272 L, BB MREDKILT 2 DIFERIFE T L DIE
A EIRE LG E B LA, DD HPE TV TRESNRHEEREZERT 2 2 L ZIEHICH LV, 1
PRAT 4 v ZHEEReRT Y YEIFTE, BRKETFADRTAL 7 2% O(n~t) OIEE THIE L7z CAIC 232
ZENTWS (Yanagihara, Sekiguchi & Fujikoshi, 2003; Kamo, Yanagihara & Satoh, 2013). X 512, Z
5 DFERIE Imori, Yanagihara & Wakaki (2014) 12 & D, 27 —18F7 X =X BBHIDOEED GLM A\ &
ERXNTWVW3.

—1, BEOETFTLEEERVE/NET LD RTDONAL 7 ZFIER, KT T NLDEGE IR TEBUCHE L
V. 2 OHEHE, AT TV TIREIRER O RIHE R (MLE) 25W0A MR (BEFE 7L T2 NME) T
BHZDIHL, WNETNVTIEEBNA 7 REFHFDEDTHS. ZOERAA 7 ADHEIZ LD, fIEDR
WKE BT NEMERSAPIEDE RO 725, IERERRE L-ERRET AT, @KETILTIES
4“5 Hi R I WTIEDATRETH 225, WNETF A TIRIEODI A /O GEHNDEDERH 5. KRz, A
A 7 ZFIE0H A ZF A OB OIARFEICIRIF L TED, ZORDBRKEFNLD XS IR R
RS 5 Z & 23T 72\, Fujikoshi & Satoh (1997) &, ML fER %2 AW CGE/NE T A LTH NS 7
ZMMIEZIT o7z AIC #1B2R L. OB RKREFTLDOMIEDAZITS “Corrected” fR & DEEZHAREIC T
%7-%, ZOFEEE “Modified AIC (MAIC)” & @iifa L7z, MAIC 1& CAIC 2 IHEWVEBKE T ILTHREL &
7257 0H, AIC % CAIC O/ NET LV TOEBNA 7 AZMIELTED, $1BRETVICBNT
b O(n~') DIEETAA 7 AMIED L XN TWA. Fujikoshi & Satoh [??] @ MAIC 13ZZE&[A)FE 71T
BOTHREINZHDOTHD, Z20FHILGA L LTEOFET L TO MAIC 28 22 TES. —77,
GLM IZBWTI, #/NE TN TH N 7 AFIEZTT S MAIC IIRZREEEIhTVRL.

HEIFEFTMICBOTE, VAZEBER/NCT 2ETADNEDETVELIGENET NV TH S Z &
FRANCEERH X LT W % (Yanagihara, Kamo, Imori & Yamamura, 2017 ZH8). GLM IZB W RO EE D
D LOIEAKRIEHTH 255, D & HHAINCIX, VR ZBEBER/NMNITEETADBEDET L E X
BNETNTHEZEPRBEINS. L722->T, GLM IZBWTH MAIC #EH T2 Z ik, )5 LER



TH5.

Fujikoshi & Satoh (1997) 12 & % MAIC TZ, #8/NEFILCBWT A 7 2 DML ER O £ EIHDMHEAR
RHEEBZHVWE I TAL TADBMEZINTWS., ZhE X HICHNTEMOSE 2 HE CEHTEL, 72
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