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n 日時：2025 年 12 月 1 日（月）〜 12 月 3 日（水） 

n 会場：九州大学 西新プラザ 

n 開催責任者：川野 秀一（九州大学） 

n 内容・目的：計測技術の高度化と AI 技術の急速な進展により、さまざまな

分野で大規模かつ複雑なデータが日々取得されています。これらの豊富なデ

ータから真に価値ある知見を導き出すためには、データサイエンスの核とな

る統計科学の理論および方法論の発展が不可欠です。本シンポジウムでは、

統計科学や機械学習の理論・方法論に関する研究から実社会への応用事例ま

で、データサイエンスの最前線を探究する幅広い研究発表を募ります。デー

タサイエンス分野における最新の研究動向や各分野が直面している課題に

ついて知見を共有し、さらにはこの機会を通じて若手研究者の育成を図るこ

とで、データサイエンス研究の更なる発展を目指します。 
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2025 年度科研費シンポジウム 
「データサイエンスの基盤を⽀える次世代統計理論・⽅法論の挑戦と⾰新」 

講演プログラム 
 
12 ⽉ 1 ⽇（⽉） 
12:55 ~ 13:00 オープニング 
 
13:00 ~ 13:30 岩重 ⽂也（広島⼤学），橋本 真太郎（広島⼤学） 
 Bayesian Computation for a Mixture of Finite Mixtures 
13:30 ~ 14:10 草野 彰吾（熊本⼤学），内⽥ 雅之（⼤阪⼤学） 
 ⾼頻度データに基づく拡散過程に対する SEM の擬似 BIC 
14:10 ~ 14:50 寺⻄ 蓮（久留⽶⼤学），江村 剛志（広島⼤学） 
 M スプライン基底を⽤いた，B スプラインコピュラの構成 
 
14:50 ~ 15:20 休憩 
 
15:20 ~ 15:50 瀬⾕ のどか（東京医科⼤学），⽥栗 正隆（東京医科⼤学），藤後 修（東
京医科⼤学），鎌⾕ 研吾（統計数理研究所） 
 過去データを利⽤した共変量適応的ランダム化法と対応するブートストラップ法
の提案 
15:50 ~ 16:30 中北 誠（理化学研究所 AIP），⿃⾕部 智規（⾦沢学院⼤学），中妻 照雄
（慶應義塾⼤学），星野 崇宏（慶應義塾⼤学，理化学研究所 AIP） 
 Algorithms for Fast Gibbs Sampling in Hierarchical Bayesian Panel Modeling 
16:30~ 17:10 柳川 堯（久留⽶⼤学） 
 RxS 分割表による医療データの総括・統合とその解析 
 
12 ⽉ 2 ⽇（⽕） 
10:00 ~ 10:30 海野 哲也（筑波⼤学），⽮⽥ 和善（筑波⼤学），⻘嶋 誠（筑波⼤学） 
 ⾼次元共分散構造の⾃動スパース推定とその⼀致性 
10:30 ~ 11:10 ⼩林 亮太（東京⼤学），藤⽥ 葵（東京⼤学），中⼭ 悠理（東京⼤学），⼭
本 泰智（東京⼤学） 
 TopiCLEAR: ⽂書ベクトルのクラスタリングに基づくトピック抽出技術 
11:10 ~ 11:50 森本 孝之（関⻄学院⼤学），⾚間 陽⼆（東北⼤学），川崎 能典（統計数
理研究所） 
 Analyzing Japanese Equity Returns with Equi-Correlation Structures 
 



11:50 ~ 13:30 休憩 
 
13:30 ~ 14:00 Ziyue Wang（東北⼤学），荒⽊ 由布⼦（東北⼤学） 
 Spectral decomposition in dynamic systems of distributional data 
14:00 ~ 14:40 永井 勇（中京⼤学） 
 GMANOVAモデルの最尤推定量における直接的な罰則のプラグイン型最適化 
14:40 ~ 15:20 Xin Guan（東北⼤学），寺⽥ 吉壱（⼤阪⼤学） 
 Regularized k-POD clustering for missing data 
 
15:20 ~ 15:50 休憩 
 
15:50 ~ 16:20 栗⽥ 絵梨（東京理科⼤学） 
 単調⽋測データに対する Mardia の正規性検定統計量について 
16:20 ~ 17:00 ⼆宮 嘉⾏（統計数理研究所），栁原 宏和（⼤阪公⽴⼤学） 
 ⾼次元スパース回帰のための AIC の漸近的性質 
17:00 ~ 17:40 吉⽥ 朋広（東京⼤学） 
 ディープラーニングと確率過程の統計推測 
 
12 ⽉ 3 ⽇（⽔） 
10:00 ~ 10:30 ⽇野 雅喜（総合研究⼤学院⼤学），加藤 昇吾（統計数理研究所），江村 
剛志（広島⼤学） 
 ゼロ過剰ガンマフレイルティによる⼆変量治癒コピュラモデル―治癒率と⽣存時
間の従属関係 
10:30 ~ 11:10 ⾙野 友祐（神⼾⼤学） 
 微⼩撹乱パラメータを持つ線形放物型確率偏微分⽅程式モデルのパラメータ推定
およびその応⽤ 
11:10 ~ 11:50 ⼊江 薫（東京⼤学） 
 形状制約下での関数パラメータの事後分析 
 
11:50 ~ 13:30 休憩 
 
13:30 ~ 14:00 平⽊ ⼤智（東京⼤学），⼤森 裕浩（東京⼤学） 
 Dynamic factor stochastic volatility in mean model  
14:00 ~ 14:30 梶⾕ ⽂乃（広島⼤学），江村 剛志（広島⼤学） 
 ジョイントフレイルティコピュラモデルを⽤いた⽋測を含む肺腺癌データの解析 
14:30 ~ 15:10 栁原 宏和（⼤阪公⽴⼤学） 



 Modified AIC for canonical-link GLMs with known scale parameter 
 
15:10 ~ 15:15 クロージング 
 
 
※ 発表者が複数⼈の場合、下線は登壇者を表す。 



報告書
岩重 文也, 橋本 真太郎

広島大学大学院先進理工系科学研究科

本発表では，有限混合の混合（mixture of finite mixtures, MFM）に対して近年開発されたベイ
ズ計算アルゴリズムを中心的に取り上げた．Argiento and De Iorio (2022) で開発された blocked

Gibbs sampler と Frühwirth-Schnatter et al. (2021) で開発された telescoping sampler は同時期
に提案されており，両者の論文の中で二つのアルゴリズムの関係性については述べられていなかっ
た．本発表では，telescoping sampler の導出方法に基づくことで，本質的に二つのアルゴリズム
が同等であることを確認した．また，telescoping sampler は混合重みの分布が混合数 M に依存
する dynamic MFM への適用を念頭に提案されていること，blocked Gibbs sampler はディリク
レ分布以外の混合重みを使えることに注目し，telescoping sampler を dynamic MFM に適用可能
となるように拡張した．本研究の理論的な成果として，アルゴリズムを拡張する際に必要な交換
可能な分割確率関数（EPPF）と M の完全条件付き分布を導出した：

命題 1. DMFM の EPPF p(C) は次で与えられる:

p(C) =
∫ ∞

0

un−1

Γ(n)
Ω(u; k)du,

ただし，

Ω(u; k) =
∞∑

m=0

(m+ k)!

m!
ψ(u;m)m


k∏

j=1

κ(nj ;u,m)

 qM (m+ k).

また，Un = u および C が与えられた下で Mna の分布は，

p(Mna = m | Un = u, C) ∝ (m+ k)!

m!


k∏

j=1

κ(nj ;u,m)

ψ(u;m)mqM (m+ k).

ディリクレ分布以外の例として，正規化逆ガウス分布に基づく DMFM を提案した．計算アル
ゴリズムの導出のために逆ガウス分布のキュムラントが必要であるが，第二種の修正ベッセル関
数を用いて陽に表せることを示した．

命題 2. κIGau(n;u) := (−1)n dn

dunψIGau(u) は，

κIGau(n;u) = αnψIGau(u)(1 + 2u)−n/2Kn−1/2

(
α
√
1 + 2u

)
K1/2

(
α
√
1 + 2u

) ,

ただし，Km はオーダー m の第三種の修正ベッセル関数である．

数値実験と実データ解析を通して正規化逆ガウス分布に基づく MFM, DMFM を取り上げ，ディ
リクレ分布に基づく MFM, DMFM との性能比較を行った．数値実験では，混合重みが非常に小
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さい混合成分を設定し，観測データ数が少ない場合に出現しにくい混合成分が存在する状況を想
定した．このような状況下において，正規化逆ガウス分布に基づく MFM, DMFM がディリクレ
分布に基づく手法よりクラスタリングの精度が良くなることを確認した．特に，観測データが限
られている状況において精度の差が顕著に現れた．この結果は，正規化逆ガウス分布がディリク
レ分布よりも情報量が少ないため，データ数が少ない場合でも安定した事後解析が可能であるこ
とによって説明できる．
実データ解析においては，甲状腺データを用いてクラスタ数と混合数の事後解析を行った．正

規化逆ガウス分布を用いた場合，ディリクレ分布よりも妥当な結果を得ることができた．また，M
の事前分布にバリエーションを与えたが，事前分布の選択に結果が依存しないことを確認した．
今後の展望として，より広いクラスで統一的に MFM や DMFM の性質を記述することが挙げ

られる．例えば，h の分布として，無限分解可能な分布を仮定し，クラスタ数の事前分布やクラス
タサイズの事前分布を解析しやすい形で導出すること，normalized completely random measures

に基づく Bayesian nonparametric prior (James et al., 2010) との理論的関係などが挙げられる．
また，ディリクレ分布に基づく MFM は Pitman–Yor 過程の特殊ケースであり，そこから得られ
る分割の分布は Gibbs type である (Gnedin and Pitman, 2006)．しかし，ディリクレ分布を仮定
しても，DMFM の分割の分布は Gibbs type ではなく，一般の単体上の分布による MFM も同様
である．したがって，Gibbs type を含む形で，DMFM や MFM から導出される分割の分布を統
一的に記述できるかは興味深い問いである．

参考文献
Argiento, R. and M. De Iorio (2022). Is infinity that far? a bayesian nonparametric perspective

of finite mixture models. The Annals of Statistics 50 (5), 2641–2663.

Frühwirth-Schnatter, S., G. Malsiner-Walli, and B. Grün (2021). Generalized mixtures of finite

mixtures and telescoping sampling. Bayesian Analysis 16 (4), 1279–1307.

Gnedin, A. and J. Pitman (2006). Exchangeable gibbs partitions and stirling triangles. Journal

of Mathematical sciences 138 (3), 5674–5685.

James, L. F., A. Lijoi, and I. Prünster (2010). On the posterior distribution of classes of random

means.
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高頻度データに基づく拡散過程に対する
SEM の擬似 BIC

熊本大学 大学院先端科学研究部 草野 彰吾
大阪大学 大学院基礎工学研究科 内田 雅之

近年, ICT技術の急速な発展により, 極めて短い時間間隔で観測される時系列データ（高頻度データ）が
容易に取得できるようになった. 高頻度データの解析においては連続時間確率過程を用いたモデリングが有
効であることから, 高頻度データに基づく連続時間確率過程の統計的推測に関する研究が盛んに行われてい
る. 最近, Kusano and Uchida [2] は, 拡散過程に対する構造方程式モデリング（SEM）を提案し, 高頻度
データを用いた SEM の実行を可能にした. SEM は潜在変数間の関係を統計的に検証する手法であるため,

モデルに関する十分な事前情報が必要である. しかし, 背後の構造が複雑な場合や事前情報が不十分である
場合には, モデルの候補が複数存在し, 候補モデルの中から最適なものを 1つ選択する必要がある. そこで,

Kusano and Uchida [3]では, 拡散過程に対する SEMにおいてモデル選択を行うために, 擬似尤度に基づく
擬似赤池情報量規準を提案し, その数学的正当化を与えた. 一方で, この情報量規準はモデル選択の一致性を
もたないことが知られている. そこで, 本研究では拡散過程に対する SEMの擬似ベイズ情報量規準を考える.

拡散過程モデルでは一般に尤度関数を陽に表現することが困難であるため, 通常の赤池情報量規準 (AIC)

やベイズ情報量規準 (BIC)を直接適用することができない. この問題に対して, Uchida [4]は擬似尤度に基
づいた AIC型の情報量規準を, Eguchi and Masuda [1]は擬似尤度に基づいた擬似 BICを提案した. この
状況は本研究でも同様であるため, 拡散過程に対する SEMモデルに基づく擬似尤度Lm,n(θm)を用いて擬似
BICを構成する. また, 擬似最尤推定量 θ̂m,nを

Lm,n(θ̂m,n) = sup
θm∈Θm

Lm,n(θm)

と定義する. ただし, θm ∈ Θm ⊂ Rqm は拡散過程に対する SEMモデルにおけるm番目の候補モデルのパ
ラメータである. また, Θmは凸でコンパクトなパラメータ空間で, 局所リプシッツ境界をもつとする. この
とき, 周辺擬似尤度

hm,n =

∫
Θm

exp
{
Hm,n(θm)

}
πm,n(θm)dθm

の漸近展開に基づいて, 以下の 2つの擬似 BICを考える:

QBIC
(m)
1,n = −2Hm,n(θ̂m,n) + log detnΓ̃m,n(θ̂m,n),



QBIC
(m)
2,n = −2Hm,n(θ̂m,n) + qm log n.

ただし, πm,n(θm)は θmの事前分布で,

Hm,n(θm) = log(2πhn)
np/2Lm,n(θm), Jm,n =

{
−n−1 ∂2

∂θm∂θ⊤m
Hm,n(θ̂m,n) > 0

}
であり,

Γ̃m,n(θ̂m,n) =


−n−1 ∂2

∂θm∂θ⊤m
Hm,n(θ̂m,n) (on Jm,n),

Iqm (on Jc
m,n)

である. まず, 正則条件の下で, これら 2種類の情報量規準がモデル選択の一致性をもつことを示す. また,

候補モデルの中に誤特定モデルが含まれている場合についても考え, 候補モデルの中に正しく特定されたモ
デルが 1つ以上含まれているならば, 正則条件の下で, 誤特定モデルを選択する確率が漸近的に 0となること
を示す. さらに, 数値シミュレーションを行い, 提案した 2種類の情報量規準の漸近挙動を検証する.

References

[1] Eguchi, S. and Masuda, H. (2018). Schwarz type model comparison for LAQ models. Bernoulli,

24(3), 2278-2327.

[2] Kusano, S. and Uchida, M. (2024). Sparse inference of structural equation modeling with latent

variables for diffusion processes. Japanese Journal of Statistics and Data Science, 7, 101-150.

[3] Kusano, S. and Uchida, M. (2025). Quasi-Akaike information criterion of SEM with latent variables

for diffusion processes. Japanese Journal of Statistics and Data Science, 8(1), 217-264.

[4] Uchida, M. (2010). Contrast-based information criterion for ergodic diffusion processes from dis-

crete observations. Annals of the Institute of Statistical Mathematics, 62, 161-187.
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M スプライン基底を用いた，B スプラインコピュラの構成  

寺西 蓮1  江村 剛志2（講演者）  

 

概要：B スプラインコピュラは，B スプライン基底関数の線形結合として表現されるコピュ

ラである．Bスプラインコピュラは相関構造を柔軟に表現できるが，ユーザーにとって計算

上の困難がある．この研究の主な目的は，計算に便利な 5つの Mスプライン基底関数を使用

して，Bスプラインコピュラの特殊なケースを提案することである．提案する Bスプライン

コピュラの順位相関係数などの理論的特性も調べる．  

 

キーワード： 非対称コピュラ，Bernstein コピュラ, 有向従属, パラメトリックコピュラ, 

放射対称, 裾従属，ノンパラメトリックコピュラ 

 

1. はじめに 

コピュラは 2つの変数間の相関構造を記述するためのツールである （江村 2025）．コピュラ

に対するノンパラメトリック推定法は，統計学における基礎的な問題の１つである．最も古

典的なノンパラメトリック推定量は，経験コピュラ （Empirical copulas）である(Deheuvels 

1979)．ただし，経験コピュラの周辺分布は，離散型一様分布となることから，コピュラの

条件の１つである，周辺分布の連続型一様性を満足しない．このため，経験コピュラは，コ

ピュラの推定量であるものの，それ自身はコピュラにならない．  

上述の経験コピュラの問題に対応したノンパラメトリック推定量がいくつか考案され

ている．経験チェス盤コピュラは，離散的な経験コピュラに多重線形補間を施し，連続にし

たコピュラである(Durante and Sempi 2016; Genest et al. 2017)．Bernstein コピュラ

(Sancetta and Satchell 2004)は，Bernstein 多項式によるコピュラの構成法である．この

考え方は，後に経験ベータコピュラ(Segers et al. 2017)や B スプラインコピュラ(Shen et 

al. 2008)にも用いられている． 

B スプラインコピュラ（Shen et al. 2008）は B スプライン基底関数の線形結合として

定義される．さらに，Dou et al. (2021) は，B スプラインコピュラの理論的特性を導き出

し，Dou et al. (2025) はパラメータを推定のための EM アルゴリズムを提案した． 

B スプラインコピュラは相関構造を柔軟に表現できるが，多くのユーザーにとって計算

上の困難がある．例えば，スプライン基底関数(ノット数を含む)の決定が必要であることや，

多数のパラメータを持つこと，さらにパラメータ空間に制約があることが挙げられる．これ

 

1 久留米大学・バイオ統計センター 

2 広島大学・情報科学部(Email:takeshiemura@gmail.com) 
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まで，Bスプラインコピュラ関数を計算するためのソフトウェアは公開されていない． 

本稿では，計算に便利な Mスプライン基底関数を使用して，Bスプラインコピュラの特

殊なケースを提案する．特に，Emura et al.(2017), Shih and Emura (2021), Teranishi 

et al.(2025)でハザード関数のモデル化のために提案された，5つの Mスプライン基底関数

を使用する．一般に，Mスプライン基底関数は, 積分すると 1になるように Bスプライン基

底を標準化したものである．提案する Bスプラインコピュラのケンドール順位相関やスピア

マン順位相関などの理論的特性も調べる．加えて，提案するコピュラの数値例を与え，さま

ざまな従属構造がモデル化できることを示す．さらに，Rパッケージ splineCox 内に新たに

作成したR関数 spline.copulaを紹介する． 提案するBスプラインコピュラの特別な場合は，

ユーザーに対して簡便で実用的な計算ツールを提供することを目的としている． 
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過去データを利用した共変量適応的ランダム化法と
対応するブートストラップ法の提案
瀬谷のどか1 　田栗正隆1 　藤後修1 　鎌谷研吾2

1 東京医科大学　 2 統計数理研究所

【概要】
共変量適応的ランダム化 (covariate adaptive randomization; CAR) は，それまでの割付と共
変量の情報をもとに共変量の偶然の不均衡を抑えるようにランダム割付を行うデザインであ
り，単純なランダム割付より平均治療効果の推定効率 (推定精度)を高めるとして，臨床試験
において広く用いられている．しかし，既存の CAR法では，精度の高い推定と妥当な推論
を両立することが難しい．本研究では，推定精度を高めるために，過去の臨床試験データや
リアルワールドデータ (過去データ)を利用した CAR法を提案する．さらに，CAR法の下
での推定精度を適切に評価するために，割付デザインを考慮した不等確率でサンプリングを
行うブートストラップ法を提案する．
以下では，CAR法とブートストラップ法のそれぞれについて，既存法の問題とそれを解
決するための提案法のアイデアを簡単に説明する．当日は，提案法の詳細な説明に加え，そ
の理論的な性質，数値実験による性能評価の結果と実際の臨床試験データへの適用結果も報
告した．

【CAR法】
被験者 i = 1, . . . , n の共変量を Xi ∈ Rp，割付を Ai ∈ {0, 1} (1: 新薬，0: 対照)，アウト
カムを Yi ∈ R とする．被験者 j の割付時に利用可能な試験内データは X̄ j B {Xi} ji=1 と
Ā j−1 B {Ai} j−1

i=1 のみである．Xi には連続共変量 (例: 年齢)と離散共変量 (例: 性別)の両方が
含まれることが多いものの，層別ランダム化や最小化法といった伝統的な CAR法では少数
の離散共変量しか扱えないため，推定精度の向上に限界がある．Ma et al. (2022)は，Xi の
各要素の 1次項や 2次項，交互作用項を含む q > p次元の共変量特徴 ϕ(Xi) : Rp → Rq の不
均衡が小さくなるように割付を行う CAR法を提案した．具体的には，被験者 1の割付確率
を P[A1 = 1 | X1] = 0.5，被験者 j ≥ 2の割付確率を

P[A j = 1 | Ā j−1, X̄ j] =


ρ if Imb(1)

j < Imb(0)
j ,

1 − ρ if Imb(1)
j > Imb(0)

j ,

0.5 if Imb(1)
j = Imb(0)

j ,

(1)

とする CAR法である．ここで，0.5 < ρ ≤ 1および

Imb j =

 j∑
i=1

(2Ai − 1)ϕ(Xi)


T  j∑

i=1

(2Ai − 1)ϕ(Xi)





であり，Imb(a)
j は A j = aとした場合の Imb j である．この CAR法の下で，平均治療効果の

推定量 θ̂n B
∑n

i=1 AiYi/
∑n

i=1 Ai −
∑n

i=1(1 − Ai)Yi/
∑n

i=1(1 − Ai) の漸近分散が最小になるには，
ϕ(Xi)が

g(Xi) B {m(1)(Xi) − E[m(1)(Xi)] + m(0)(Xi) − E[m(0)(Xi)]}/2 ∈ {βTϕ(Xi) | β ∈ Rq} (2)

を満たす必要がある (Ma et al., 2022)．ここで，m(a)(Xi) = E[Yi | Ai = a, Xi]である．
ロジスティック回帰モデルのように m(a)(Xi) が ϕ(Xi) の要素の線形結合で表せない場合，
一般に (2)式は満たされないため，この CAR法が θ̂n の漸近分散を最小にすることは難しい．
さらに，この CAR法の下では，一般に ∑n

i=1(2Ai − 1)ϕ(Xi) = op(
√

n)であり最適な Op(1)と
はならないため (Ma et al., 2022)，現実的な中程度の nの場合には推定精度が低くなり得る．
ϕ(Xi) = (1, g(Xi))T と取ることができれば，これらの問題は解決し得るが，g(Xi)に含まれる
m(a)(Xi)は未知であり，また割付時に全ての被験者の Xi や Yi を得ることができない制約か
ら，試験内データによる m(a)(Xi)の推定は難しい．本研究では，試験開始前に過去データか
ら m(a)(Xi)を予め学習し，それを用いて g(Xi)の不均衡

∑n
i=1(2Ai − 1)g(Xi)が小さくなるよう

に割付を行う CAR法を構築することで，これらの問題を解決する．

【ブートストラップ法】
(1)式からも明らかなように，CAR法の下では被験者同士のデータが独立にならないため，
推論が難しい．Ma et al. (2022)のモデルベースの方法は，アウトカムモデルの正しい特定を
必要とする．Shao et al. (2010)のブートストラップ検定は，区間推定には使えず，Zhang and

Zheng (2020)の層別ブートストラップ法は，本研究で提案するような連続共変量を扱う CAR

法には使えないという難点がある．これら 2 つの既存のブートストラップ法における難点
は，ブートストラップ標本において割付デザインを再現するために，元の割付を使用せずに割
り付け直しをしていることに起因する．本研究では，この問題に対処するため，割り付け直し
を伴わずに CAR法に対応した尤度を得る新たなブートストラップ法を提案する．具体的に
は，単純なブートストラップ標本の尤度∏n

i=1 f (Y∗i | A∗i , X∗i ) f (A∗i | X∗i ) f (X∗i )と CAR法の下で
の尤度∏n

i=1 f (Y∗i | A∗i , X∗i ) f (A∗i | Ā∗i−1, X̄
∗
i ) f (X∗i )の比をとった∏n

i=1 f (A∗i | Ā∗i−1, X̄
∗
i )/ f (A∗i | X∗i )

に比例する不等確率でサンプリングを行うブートストラップ法を提案する．

参考文献
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Algorithms for Fast Gibbs Sampling in Hierarchical

Bayesian Panel Modeling

Makoto Nakakita1 Tomoki Toyabe2 Teruo Nakatsuma3

Takahiro Hoshino1,3

Abstract

The ancillarity-sufficiency interweaving strategy (ASIS) has been proved to be a

powerful tool for improving Markov chain Monte Carlo (MCMC) computation and

widely applied for Bayesian estimation of dynamic linear models as well as panel

data models. The previous studies, however, demonstrated the efficacy of ASIS only

through applications to real-world data or numerical simulations. In this paper, we

attempt to examine the performance of ASIS in the context of hierarchical Bayesian

modeling of panel data in a more rigorous fashion. First we prove that ASIS can

generate almost uncorrelated random sequences of individual effects in the panel

data linear regression model in a simplified setting. Then we demonstrate the

efficacy of ASIS in more general settings with Monte Carlo experiments.

Keywords: ASIS, hierarchical Bayesian modeling, MCMC, panel data

1 Introduction

Bayesian hierarchical models are increasingly popular in panel data analysis. However,

MCMC convergence can be slow, especially in models with strong parameter dependence.

The ancillarity–sufficiency interweaving strategy (ASIS) improves efficiency by combining

centered and non-centered parameterizations.

1Center for Advanced Intelligence Project, RIKEN
2Department of Economics, Kanazawa Gakuin University
3Faculty of Economics, Keio University



2 Theoretical Contributions

We derive convergence rates under sufficient augmentation (SA) and ancillary augmen-

tation (AA). By applying ASIS, the sample of global mean µ(t)
α become independent of

the previous sample µ(t−1)
α . ASIS exploits this property to achieve optimal convergence.

3 Simulation Study

Simulations across various (N, T ) settings show that ASIS outperforms both SA and AA

in terms of Monte Carlo standard error (MCSE) and autocorrelation. The predicted

trade-off between SA and AA holds, and ASIS consistently yields the most efficient sam-

pling.

4 Real Data Application

We analyze U.S. state-level panel data on cigarette consumption, controlling for income,

price, and tax. ASIS outperforms SA and AA in estimating global means and regres-

sion coefficients. The empirical results reinforce ASIS’s robustness in applied Bayesian

analysis.

5 Conclusion

We provide the first theoretical justification for ASIS in hierarchical panel models and

show its effectiveness across sample sizes. ASIS ensures efficient MCMC sampling, with

applications in economics, health, and social sciences. Future work includes extensions

to non-Gaussian and dynamic models.
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RxS 分割表による医療データの総括・統合とその解析 
久留米大学バイオ統計センター 

柳川 堯 

 

次の、二つの話題を提供した. 

1. 順序カテゴリーを効果指標とする臨床試験 

2. 2 変量がともに順序カテゴリーである RxS 表の相関の検定 

 

第 1 の話題： 順序カテゴリーを効果指標とする臨床試験 

1.1  はじめに 

認知症薬や疼痛薬などの臨床試験では、ベースラインの効果と比べて「著

明効果あり」,「効果あり」, 「効果なし」等の順序カテゴリーで薬剤の臨

床効果を,表 1のような 2xk 表に分類して評価する場合がある. 

 

表 1 順序カテゴリーデータ 

 𝐶! 𝐶" … 𝐶# 計 
Placebo 群 𝑚! 𝑚" … 𝑚# m 
Test 薬剤群 𝑛! 𝑛" … 𝑛# n 

𝐶!, 𝐶", … , 𝐶#は順序カテゴリー 

 

1.2 問題の定式化 

Placebo 群が従う分布関数を F, F に従う確率変数を X; Test 薬剤群が従う

分布関数を G, G に従う確率変数を Y とする. このとき, 「薬剤効果あり」

は「G(x)>F(x) for any x」で表される. F, G を未知とした時, 従来

𝐻$: 𝐹(𝑥) = 𝐺(𝑥) vs. 𝐻!: 𝐹(𝑥) < 𝐺(𝑥)の検定には Wilcoxon 検定などのノン

パラメトリック検定が適用されてきた.  

しかし,臨床試験では検定だけではなく薬剤の効果の推定が重んじられ

る. 表 1 から薬剤効果の推定を行うため本研究では F(Y)がベータ分布 

Be(1,β)に従うことを仮定した。この仮定の下では  

・「G(x)>F(x) for any x」が「β>1」と同値なこと、 

・X=x での Test 薬剤の Placebo に対する薬剤効果が 

						G(x) − F(x) = 1 − t − (1 − 𝑡)% , ただし, t=F(x) 

で表されることを証明し、薬剤効果の新しい検定法と推定法を提案した. 

また, ベータ分布の適合度検定, および症例数の決定方式も提案した.  



 

第 2 の話題： 2 変量がともに順序カテゴリーである RxS 表の相関の検定 

2.1 はじめに 

² 臨床医学の分野でも多量のデータ(Real world data)が蓄積しており、ある

疾患の患者に提供された様々な治療法の中で、どの治療法が有効であった

かのエビデンスを Real world data から検証することが求められている

(Evidence Based  Medicine) 

² 臨床データは、大小さまざまな施設（病院）に蓄積されているが,施設間で

の治療法・診断法にズレがある. 例え同一施設内であっても, 医師は患者

個人の症状に最も適切と判断した治療法で治療を行うため, 医師間による

ズレがある.ズレがあるデータを単に集積・統合して解析すればよいとうわ

けには行かない.  

² このような背景から得られるデータは, 個々の値(実数値)よりも「無効」、

「やや有効」、「かなり有効」、「著効」などのカテゴリーを用いて、まとめ

直し、カテゴリーデータとして集積・統合して解析すれば, 施設間差（ズ

レ）の影響が最小化でき, 有効な evidence が取り出せる可能性が高い.  

 

2.2  目的と概要 

本研究では, 表 2 に統合・集積された ordered categorical data にスポ

ットライトを当て, Aと Bの関連性の検定法の開発を目的として、新しい検

定法を提案した. とともに,応用例として, 4施設から集積・統合された基本

理学療法の有効性の検証に適用した.  

表 2 R x S 分割表(個数) 

 

 

 

 

 

 

{𝑨𝒊},{𝑩𝒋}は, 順序カテゴリー変数 

{𝑨𝒊}にはスコア c1,c2,…,cr (c1<c2<…<cr); 

{𝑩𝒋}にはスコア d1,d2,…,ds (d1<d2<…<ds)を割り付ける. 

  B  
 

 

 

A 

 𝑩𝟏 𝑩𝟐 … 𝑩𝒔 total 

𝑨𝟏 𝑛!! 𝑛!"  𝑛!+ 𝑛!. 
𝑨𝟐 𝑛"! 𝑛""  𝑛"+ 𝑛". 

…      

𝑨𝒓 𝑛.! 𝑛."  𝑛.+ 𝑛.. 
total 𝑛.! 𝑛."  𝑛.+ N 



高次元共分散構造の自動スパース推定とその一致性
筑波大学・数理物質科学研究群 海野　哲也
筑波大学・数理物質系 矢田　和善
筑波大学・数理物質系 青嶋　誠

1 はじめに
本講演では，自動スパース推定を用いた高次元共分散構造に対するスパース推定について考え
た．独立な要素数が O(p2)個である共分散行列の推定は，特に高次元では推定精度・計算コストの
両面で非常に困難な問題である一方，様々な応用分野において重要な課題である．共分散行列のス
パース推定は，高次元における共分散構造の解釈性の向上という応用上重要な側面を有することに
加え，共分散構造にスパース性が存在する場合には推定精度の向上にも寄与することから，これま
でに多くの研究がなされてきた．共分散行列に対するスパース推定は，一般的に ℓ1 罰則法に基づ
く手法と閾値法に基づく手法が知られている．例えば，Bickel and Levina [1] は閾値法によるス
パース推定を提案し，その高次元における漸近的性質を解明した．さらに，Bien and Tibshirani

[2]は ℓ1 罰則に基づくスパース推定を提案した．しかしながら，これらの方法論で得られる推定量
が一致性を有するには適切な正則化パラメータの選択が必要であり，最適なパラメータ探索のため
のクロスバリデーションは，高次元において計算コストの増大や結果の安定性に関する問題が生
じる．
スパース推定における正則化パラメータ選択に関する問題を回避した推定法として，最近，Yata

and Aoshima [4]は正則化パラメータを必要としない，高次元主成分ベクトルの新たなスパース推
定の方法論を提案し，高次元において高速かつ高精度に推定できることを示した．さらに，Umino

et al. [3]は同手法を高次元相互共分散行列のスパース推定に応用した．本講演では，Umino et al.

[3]で提案された手法を高次元共分散行列の非対角成分全体に拡張することで，正則化パラメータ
を必要としない高次元共分散行列のスパース推定法を提案し，その一致性について議論した．

2 標本共分散行列の漸近的性質
平均ベクトルに p 次元ベクトル µ，共分散行列に p 次の半正定値行列 Σ を持つ母集団から，

n(≥ 4) 個の p 次元データベクトル x1, . . . ,xn を無作為に抽出したとする．Σ の (r, s) 成分を
σ(r,s) と表記し，Σから対角成分，非対角成分を抜き出した行列をそれぞれΣD，ΣND とする．す
なわち，ΣD = diag(σ(1,1), . . . , σ(p,p))かつ ΣND = Σ−ΣD とする．さらに，∥ · ∥2F を行列のフ
ロベニウスノルムとして，∆ = ∥Σ∥2F , ∆D = ∥ΣD∥2F かつ ∆ND = ∥ΣND∥2F とし，∆ND > 0で
あることを仮定する．
Σの従来型の不偏推定量を S =

∑n
j=1(xj −x)(xj −x)T /(n− 1), x =

∑n
j=1 xj/nとし，Σと

同様に S = (s(r,s)), SD = diag(s(1,1), . . . , s(p,p))かつ SND = S − SD とする．このとき，次の
結果が得られる．

1



命題 1. 適当な正則条件のもと，p, n→ ∞で以下が成立する．

∥SD −ΣD∥2F
∆D

= oP (1) and
∥SND −ΣND∥2F

∆ND
=

tr(Σ)2

n∆ND
{1 + oP (1)}+ oP (1).

上記の結果より，SD はΣD の精度の良い推定量となるものの，SND には tr(Σ)2/n = O(p2/n)

の巨大なノイズが発生し，

∥SND −ΣND∥2F
∆ND

= oP (1)

の意味での一致性を有するには p, n→ ∞のもと tr(Σ)2/(n∆ND) = o(1)なる条件が必要となる．
さらに SND について，以下が成立する．

命題 2. 適当な正則条件のもと，p, n→ ∞で以下が成立する．

tr(ΣNDST
ND)

∆ND
= 1 + oP (1).

上記の結果と命題 1は，SND に対し，対角成分がすべて 0かつ対称なランダム行列ΞND ∈ Rp×p

が存在して

SND = ΣND{1 + oP (1)}+ΞND,

tr(ΞNDΣT
ND) = 0 and ∥ΞND∥2F =

tr(Σ)2

n
{1 + oP (1)}

を満たすことを意味している．この結果と Yata and Aoshima [4]で提案された自動スパース推定
の考え方に基づけば，SND を補正した推定量 Σ̃ND を構築できる．講演では，自動スパース推定
による推定量の構成方法とその一致性について紹介した．
さらに，共分散行列全体ではなく特定のブロック構造に関心がある場合におけるブロック共分散
行列の推定も，応用上重要な課題である．講演では，Σ にブロック構造が仮定できる場合に，各
ブロックに対して上記の自動スパース推定を適用し，計算コストを削減する方法論も提案した．ま
た，数値実験を通じて従来法との比較を行い，提案手法の有効性を検証した．
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TopiCLEAR: 文書ベクトルのクラスタリングに基づく
トピック抽出技術

小林 亮太 1,2, 藤田葵 1, 中山悠理 1, 山本泰智 1

(1) 東京大学大学院 新領域創成科学研究科
(2) 東京大学 数理・情報教育研究センター

E-mail: r-koba@edu.k.u-tokyo.ac.jp

近年，X (旧Twitter), Facebook, Redditなどのソーシャルメディアの普及により，人々はニュー
スや事件に対する意見や感想をリアルタイムに発信できるようになった．ソーシャルメディアの投
稿 (ポストやツイートなど) を分析することで，多数の人々の興味・関心を分析することが可能と
なっている．そのため，ソーシャルメディアの投稿に見られる短文テキストの分析が重要な課題と
なっている．テキストデータから意味のあるテーマや話題 (トピック) を抽出するタスクは，トピッ
ク抽出 (Topic Extraction) と呼ばれ，Covid-19 ワクチン, 生成AI，政治, 自然災害など，さまざま
な話題に関する人々の興味・関心を分析する上で不可欠である．
トピックモデル [1]は，トピック抽出を行うための代表的な機械学習手法であり，テキストマイ

ニングや自然言語処理分野で広く利用されている．代表的な手法である Latent Dirichlet Allocation
(LDA)は，ニュース記事や学術論文などの文語的な文書分析で成功を収めてきた．しかし，トピッ
クモデルは単語の出現頻度に依存するため，短文や口語的なテキストでは性能が低下する [2]．ソー
シャルメディア投稿は，短さ，口語的表現，スペルミス，構文の不完全性などの特徴を持つため，
既存のトピックモデルでは分析が困難である．近年，事前学習言語モデルの登場により，テキスト
分析の方法論は大きく進化した．その中でも Sentence-BERT (SBERT) [3] は，文の意味的類似性
を高精度に定量化できる点で画期的である．SBERTは，文章を高次元ベクトル空間に変換し，コ
サイン類似度に基づいて比較することで，質問応答や検索などのタスクで高い性能を示している．
このような応用事例での有用性は，SBERTがトピック抽出など他のテキストマイニング課題にも
有効である可能性を示唆している．
本講演では，テキストデータからトピック抽出を行う手法 TopiCLEAR (Topic extraction by

CLustering Embeddings with Adaptive dimensional Reduction) [4] を提案する．提案手法 Topi-
CLEARは以下のステップで構成される:

1. SBERTによるテキスト埋め込み： 各テキストを高次元ベクトル空間に変換．
2. 暫定クラスタリング： ガウス混合モデル (GMM) により初期クラスタを生成する．
3. クラスタ洗練： 線形判別分析 (LDA) とGMMを反復適用し，トピック分離度を最大化．

1



提案手法 TopiCLEARの性能評価には，テキストデータと人間によって分類されたラベルを含
む 4種類のデータセット (20News, AgNewsTitle, Reddit, TweetTopic) を使用した．20Newsは標
準的なニュース記事についてのデータセットである．AgNewsTitle はニュースタイトルについて
の短文データセット，RedditとTweetTopicはソーシャルメディアのデータセットであるため，ト
ピックを抽出するのが難しいデータセットになっている．評価指標には、クラスタリング性能を測
る Adjusted Rand IndexとAdjusted Mutual Informationを採用し，人間によって分類されたラベ
ルとの類似度を計算した．比較対象として，7つの既存手法 (3つのトピックモデル: LDA, BTM,
ProdLDA，トピックモデルとテキスト埋め込みを融合させた手法: ETM, CTM，言語モデルに基
づく手法: BERTopic, LLM: Gemini 2.5) を用いた．その結果，提案手法 TopiCLEARはすべての
データセットで既存手法よりも人間の分類に近いトピックを抽出できることが示された．さらに，
TopiCLEARはストップワード除去やステミングなどの前処理が不要であるため，実運用上の優位
性を持つ．TopiCLEARの pythonコードは GitHub (https://github.com/aoi8716/TopiCLEAR)
で公開している．
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Analyzing Japanese Equity Returns with Equi-Correlation Structures
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科研費シンポジウム「データサイエンスの基盤を支える次世代統計理論・方法論の挑戦と革新」
2025年 12月 2日 九州大学 西新プラザ

1. ファクターリターンモデル
金融資産収益率の決定要因を説明する資産価格モデル (ファクターリターンモデル)は，過去さまざま提案されてい
る．代表的なモデルとして，Sharpeの CAPMや Fama and Frenchの 3ファクターモデル (FF3)，更にそれらを 4

ファクター (FF4)，5ファクター (FF5)に拡張したものがある．ここで言うファクターは線形回帰モデルにおける説
明変数のことであり，いわゆる因子分析の意味でのファクターでないことは注意しておく．
これらのモデルの有効性は北米や欧州の金融市場で確認されている一方で，必ずしも日本では観察できないとする
研究もある．また近年，多変量 GARCHモデルの一種から業種相関の指数系列を取り出し，資産価格モデルの説明
力向上を狙った興味深い研究がある．本報告では，業種間相関だけでなく，業種内での銘柄相関の指数系列を取り出
した上で，主成分系列に変換してモデルに投入することを提案し，既存のファクターリターンモデルとの組合せの中
で，より説明力を持った定式化を探索した結果を報告する．文中で引用する文献に関してはMorimoto et al. (2025)

を参照されたい．

2. 多変量GARCHモデルからの情報抽出
N 個の資産価格系列 {pit}Tt=1 (i = 1, . . . , N)に対し，時刻 tにおける資産 iの収益率を rit = log pit−log pi,t−1, i =

1, . . . , N と書き，収益率ベクトルを rt = (r1t, . . . , rNt)
′ とする．このとき条件付き共分散行列Ht = E[rtr

′
t|Ft−1]

をどうモデル化するかが問題となるが，Ht を対角行列 Dt = diag(
√
h1t, . . . ,

√
hNt) と，時変相関行列 Rt とで

Ht = DtRtDt と分解し，hit とRt のモデリングを別々に考えるのが基本的な方針である．
収益率ベクトルに対する条件付き分散行列は，パラメータを節約するために，一変量 GARCH モデル (しばしば

GARCH(1,1)を仮定)を相関行列でつなぎ合わせて得る．つまり，各資産 iに関して hit = ωi + αir
2
i,t−1 + βihi,t−1

を推定して hit を得る．それを使って標準化残差 ϵit = rit/
√
hit が得られる．ベクトルで表現すれば ϵt = D−1

t rt で
ある．
標準化されていない相関プロセス Qt を Qt = (1 − a − b)Q̄ + a(ϵt−1ϵ

′
t−1) + bQt−1 で定義する．ここで Q̄

は標準化残差の無条件共分散，a, b (a ≥ 0, b ≥ 0, a + b < 1) は未知パラメータである．これを使って相関
行列を Rt = diag(Qt)

−1/2Qtdiag(Qt)
−1/2 で与える．Rt は正定値で相関行列構造を満たす．これは Dynamic

Conditional Correlation (DCC) モデルと呼ばれる． DCCの相関行列は，無制約のフル構造では n(n − 1)/2個の
時変相関を持つ．これを高次元 (数百次元)でも推定が容易になるよう，各 tで任意の 2資産の相関がすべて同じ (等
相関) という仮定を置く．これは Dynamic Equicorrelation (DECO) モデルと呼ばれる (Engle and Kelly, 2012)．
DECO も Qt に関して DCC 同様の逐次式を与える．パラメータが求まれば，各時点での Qt の値も定まる．その
(i, j)要素 qt,ij を使って

ρt =
2

N(N − 1)

∑
i<j

qt,ij√
qt,iiqt,jj

により等相関 ρt を推定する．この集約は各時点 tで行われるので，結果的に ρt は時系列で得られる．

3. 業種間相関指数 (IEC)から業種内相関指数 (IIEC)へ
資産時系列に業種インデックス (東証 33業種)の日次データを，2014年 1月 6日から 2023年 12月 29日までの期
間で取る．この設定で推定される {ρt}は，業種間等相関 (industry equicorrelation) と言える．時系列 ρt からここ
では移動平均法でそのトレンド τt を推定し，トレンドからの乖離 ξt = ρt − τt を，Industry Equi-Correlation index

(IEC指数) と呼ぶ．IEC指数は反景気循環的性質を持ち (countercyclical)，資産価格モデルの説明力向上に役立つ
ことをWang et al. (2020)は示した．



我々は Wang et al. (2020) の方法を拡張すべく，データを個別株に取り直して業種ごとに IEC 指数を抽出
する．結果，業種内の等相関構造を集約した時系列 ρj,t が 33 本できる (j = 1, . . . , 33)．これを Intra-Industry

Equi-Correlation index (IIEC指数)と呼ぶ．ただ，IECとは異なり IIECは多変量時系列なので，ρj,t の主成分 (時
系列)を求め，トレンド除去後に資産価格モデルの説明変数として追加する．今回示す実証分析では第 1主成分のみ
を使用し，PCAt と言及する．

4. 実証分析の設定と評価指標
我々は，従来実証ファイナンスで受け入れられてきたファクターリターンモデルの追加的説明変数として IEC指数

ξt や PCAt を導入するが，ベースとなるファクターリターンモデルの定式化は極めて標準的である．即ち，推計式の
右辺に来るマーケットインデックス，時価総額に基づくスプレッド，時価簿価比率に基づくスプレッド，前期騰落率
から抽出するスプレッド，収益性に基づくスプレッド，投資の大きさに基づくスプレッドは，すべて Ken Frenchの
データライブラリーで公開されているデータを用いる．左辺の収益率は，時価総額を軸として残りの 4ファクターと
のクロスセル (5× 5× 4)に落とし込んだ資産の平均収益率から構成される 100個のテストポートフォリオリターン
であるが，これも同ライブラリーで提供されている．
モデルの実証比較のための指標としては，Fama-MacBeth(FMB)回帰，Hansen-Jagannathan(HJ)距離，Gibbons-

Ross-Shanken(GRS)検定を採用する．FMB回帰では，時系列回帰で資産ごとに得られた係数 (ファクターエキスポ
ジャー)を，今度は tを止めてリターン ri,t を βi に回帰する．これで各時点のリスクプレミアムが推定される．基本
的に pricing errorの小さいモデルが良いモデルという基準になるが，第 2段階目の回帰の R2, AIC, RMSE等を重
みづけた複合指標でモデルを評価する．HJ距離は，pricing errorを資産ベクトルの分散共分散行列を挟んだ 2次形
式で評価するものであり，HJ距離が小さい方が平均分散フロンティアに近く，価格付けのパフォーマンスが良いと
見なせる．GRS 検定は，ファクターリターンモデルの定数項を αi と書くとき，「すべての資産で αi がゼロ」とい
う帰無仮説の同時検定を行うもので，帰無仮説が棄却されるとモデルが失敗していることを意味する．ファクターの
Sharpe ratioを基準に，いずれかの αi がデータから説明がつかない程大きいかどうかを検定する方法である．

5. 日本の株式市場での分析結果
今回の分析から以下の事柄が観察された．モデルに含めるファクター間の相関を観察すると，IECも PCAも既存
のファクターとの相関は低く，何らかの意味で新しい情報が抽出できていると思われる．IECと PCAの相関は高く，
第 1主成分は IECと類似の成分が出てきている可能性がある．
FMB回帰の結果を見ると，FF4あるいは FF5に含めて推定された PCA項だけが 5%有意となった．最もR2が大
きく，かつRMSEも最小となったのは，FF5+IEC+PCAの定式化であったが，AICで判断すると，FF4+IEC+PCA

の定式化が最小 AIC を達成した．R2, AIC, RMSE 等を重みづけた複合指標でモデルを評価すると，FF4+PCA，
FF5+IEC+PCA，FF5+PCAの順で好成績を収めている．この 3者はほぼ同等であり，4位以下は大きく引き離さ
れる．概してモメンタム効果を入れると (FF4)モデルの適合度は向上するが，従来日本のデータで否定的な結論が得
られている FF5が選ばれているのはこれまでとは異なる実証結果である．
今回は全部で 16個の定式化を比較したが，FMB回帰の複合スコアでの順位，HJ距離での順位，GRS検定での順
位を合算して総合ランキングをつけると (順位和が小さければ小さいほど良い)，FF5+IEC+PCAがベストモデルと
結論された．

参考文献
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Spectral Decomposition in Dynamic Systems of Distributional Data
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1 Introduction
In recent years, data arising from complex systems have increasingly been modeled or represented as
distributions or other structured objects that evolve over time, reflecting advances in sensing, computa-
tion, and large-scale data collection. Such representations are useful in diverse fields such as economics,
population studies, and machine learning, where understanding and forecasting the evolution of entire
distributions is essential for explaining system behavior and detecting structural changes.

This study proposes a new statistical framework, called the Koopman–Wasserstein framework, for
analyzing and forecasting the dynamics of distribution-valued data. By combining the spectral theory
of the Koopman operator with Wasserstein geometry, the framework enables consistent representation
and prediction of how probability distributions evolve over time.

Recent studies have modeled data as evolving probability distributions (Panaretos and Zemel (2019);
Zhang et al. (2022); Chen et al. (2023)). This direction is motivated by applications where the shape of the
distribution carries essential information, such as regional housing prices and demographic age–mortality
patterns. Embedding such data in Euclidean space distorts the geometry defined by the Wasserstein
distance. However, existing approaches, such as Wasserstein regression (Chen et al. (2023); Zhang et al.
(2022)) and Fréchet regression (Petersen and Müller (2019)), which are based on Euclidean embeddings,
focus on static distributions and do not model temporal dependence. Building on our previous study
(Wang and Araki (2025)), which introduced a Koopman–Wasserstein framework for distributional time
series forecasting, the present work extends the theory to spectral analysis of stochastic dynamics and
provides new theoretical results on consistency and prediction accuracy.

2 Model Assumptions
Let {Xt}t≥0 be a d-dimensional Itô diffusion:

dXt = b(Xt) dt+ σ(Xt) dWt, X0 ∼ µ0, (1)

where b : Rd → Rd and σ : Rd → Rd×d are Lipschitz and twice continuously differentiable. Assume that
the process is ergodic with a unique stationary density ps(x) satisfying

∫
∥x∥2ps(x) dx < ∞.

The associated Fokker–Planck operator is

L∗ = −∇ ·
(
b ·

)
+ 1

2 ∇2 :
(
σσ⊤·

)
, (2)

and admits a discrete spectrum {(λi, φi)} in L2(ps) under these regularity conditions.
The Koopman semigroup {Kt}t≥0 acts on observables f ∈ L2(ps) as

Ktf(x) = E[f(Xt) | X0 = x] , Lf = ⟨b,∇f⟩ + 1
2 Tr

(
σσ⊤∇2f

)
. (3)

We assume reversibility (detailed balance), ensuring that L is self-adjoint in L2(ps). These assumptions
imply an orthonormal eigenbasis {φi} representing the diffusion dynamics.

3 Estimation Method
We estimate the spectral structure of the Koopman operator using Extended Dynamic Mode Decom-
position (EDMD; Williams et al. (2015)) with importance weighting. Let Ψ(x) = (ψ1(x), . . . , ψJ(x))⊤

be bounded and linearly independent basis functions with ψ1 ≡ 1. Let {zk}M
k=1 be samples from the

stationary process and p̂s a kernel estimator of ps. Define weights

wk = p̂s(zk)∑M
ℓ=1 p̂s(zℓ)

. (4)

Then set

GM =
M∑

k=1
wk Ψ(zk)Ψ(zk)⊤, (5)

AM =
M∑

k=1
wk Ψ(zk+1)Ψ(zk)⊤, (6)



and estimate
K̂M = AM G†

M , (7)

where G†
M denotes the Moore–Penrose pseudoinverse. We assume maxk wk = OP(1/M) and J =

o(M1/2).
The estimated Koopman spectrum converges to the true spectrum, and the Wasserstein forecast

achieves the optimal parametric rate. Proofs are omitted due to space limitations. The results may not
hold for non-stationary or degenerate diffusions or when dictionary functions are unbounded.

4 Theoretical Results and Applications
We establish that, under the stated modeling assumptions, the spectrum of the associated Koopman
operator converges to the true spectrum, and that the prediction error measured in the Wasserstein
metric converges accordingly. We conduct experiments on U.S. housing price data and compare our
approach with the WAR method; the results demonstrate that our method achieves smaller Wasserstein
prediction errors and exhibits robustness in the presence of structural changes in the data.

For scenarios in which the model assumptions are violated—where the Koopman operator may be
non-self-adjoint or non-normal, as in gradient-descent-driven training dynamics of neural networks—we
analyze the approximate spectrum obtained via Hankel-DMD. Our empirical findings indicate that wider
networks yield spectral points closer to the real axis, implying faster convergence, while the discrepancies
between narrow networks are more pronounced than those between wider networks.

5 Discussion and Significance
The proposed Koopman–Wasserstein framework connects stochastic dynamics and distributional geom-
etry through spectral representation. The proposed framework introduces a mathematically consistent
way to represent, analyze, and forecast distributional dynamics by com-bining the Koopman operator
with Wasserstein geometry.

This research lies at the intersection of several major trends in mathematics, statistics, and in-
formation science. Mathematically, it links operator theory and stochastic analysis with geometric statis-
tics, providing a spectral foundation for analyzing distribution-valued processes. In statistics, it extends
the scope of functional data analysis to non-Euclidean domains, offering a unified viewpoint for dy-
namic distributions. In information science, it contributes to interpretable modeling of complex systems,
complementing data-driven machine learning methods with rigorous operator-theoretic structure.

The significance of this work is twofold. Theoretically, it provides the first consistent spectral esti-
mator for distributional dynamics, unifying operator-theoretic and statistical perspectives. Practically,
it enables interpretable, geometry-preserving forecasting of evolving distributions. The empirical re-
sults illustrate how the method captures both smooth and abrupt distributional changes. The Koop-
man–Wasserstein framework thus provides a new foundation for the statistical analysis of complex dy-
namic systems.

This research was supported by JSPS KAKENHI Grant Numbers 25H01464 and 23K28042.

References
Yaqing Chen, Zhenhua Lin, and Hans-Georg Müller. Wasserstein regression. Journal of the American

Statistical Association, 118(542):869–882, 2023.
Victor M. Panaretos and Yoav Zemel. Statistical aspects of wasserstein distances. Annual Review of

Statistics and Its Application, 6:405–431, 2019.
Alexander Petersen and Hans-Georg Müller. Fréchet regression for random objects with euclidean pre-

dictors. Annals of Statistics, 47(2):691–719, 2019.
Ziyue Wang and Yuko Araki. Functional time series forecasting of distributions: A koopman–wasserstein

approach. Behaviormetrika, 2025. doi: 10.1007/s41237-025-00278-1.
Matthew O. Williams, Ioannis G. Kevrekidis, and Clarence W. Rowley. A data-driven approximation of

the koopman operator: extending dynamic mode decomposition. Journal of Nonlinear Science, 25(6):
1307–1346, 2015.

Chao Zhang, Piotr Kokoszka, and Alexander Petersen. Wasserstein autoregressive models for density
time series. Journal of Time Series Analysis, 43(1):30–52, 2022.

2







Regularized k-POD Clustering for Missing Data

Xin Guan∗1 and Yoshikazu Terada2

1Graduate School of Information Sciences, Tohoku University
2Graduate School of Engineering Science, Osaka University

1 Introduction
Clustering is an important technique that groups data points without labels into several clusters. Notably,
the k-means clustering is one of the most popular clustering methods, the main idea of which is to find k
cluster centers and then cluster data points by assigning them to their nearest centers. Since the classical
k-means clustering requires the data matrix to be complete, then in the case of missing data, directly
conducting k-means on an incomplete data matrix is infeasible.

To deal with missingness for clustering, the traditional approach is to pre-process the incomplete
data matrix by deletion or imputation to construct a new complete data matrix for conducting k-means
clustering. However, these approaches do not work for large proportions of missingness or need a long
computational time. Recently, the k-POD clustering was proposed by Chi et al. (2016) as a natural
extension for k-means clustering to missing data, which can be applicable for even large missingness
proportions within a short computational time. However, the k-POD clustering is not consistent with
k-means in general, even under the missing completely at random mechanism (Terada & Guan 2025).
That is, as n → ∞, the estimated cluster centers of the k-POD clustering and k-means clustering would
converge to different limits. Moreover, since the inconsistency is essentially due to the difference of loss
functions between k-POD and k-means, it is challenging to propose a general de-biasing method.

In this work, our aim is to reduce the estimation bias of existing k-POD clustering, and we focus
on a special case when there exist some features irrelevant to the cluster structure. To this end, we
propose regularized k-POD clustering by introducing a regularization function of cluster centers to the
loss of k-POD clustering, which shrinks cluster centers feature-wisely. This offers a significant advantage
of reducing the bias of estimated cluster centers, particularly in irrelevant features. Our numerical exper-
iments verify the effects of reducing estimation bias and improving clustering accuracy, and applications
to real-world single cell RNA-sequencing data also show the better performance of the proposed method.

2 Methodology

2.1 Notations and preliminaries
Write X = (xij)n×p ∈ Rn×p for the data matrix with n data points X1, . . . ,Xn in Rp. The k cluster
centers {µ1, . . . ,µk} are encoded by a matrix M = (µlj)k×p ∈ Rk×p, where the l-th row represents the
l-th cluster center. The membership between data points and cluster centers is denoted by a binary
matrix U = (uil)n×k ∈ {0, 1}n×k, where uil = 1 if and only if i-th data point Xi is assigned to l-th
cluster. Since one data point is assigned to a unique cluster, it must satisfy that U1k = 1n, where 1 is
the all-one vector.

For a complete data matrix X, the k-means clustering can be expressed as

min
U,M

∥X−UM∥2F , (1)

where ∥ · ∥F is the Frobenius norm of a matrix, calculated as (
∑

i,j a
2
ij)

1/2 for A = (aij). If there exist
missing entries in X, the loss function cannot be directly calculated.

For an incomplete data matrix, the k-POD clustering records all observed positions in X by a set
Ω ⊂ {1, . . . , n} × {1, . . . , p}, and introduces a mapping P onto the set Ω to replace the missing entries
with zero. That is, PΩ : Rn×p → Rn×p, and (PΩ(X))ij = xij if (i, j) ∈ Ω, 0 otherwise. Then, the k-POD
clustering is given by

min
U,M

∥PΩ(X−UM)∥2F . (2)
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2.2 Proposed method
Suppose that the data matrix X = (xij)n×p is column-wised centered, that is, 1

n

∑n
i=1 xij = 0 for all

j = 1, . . . , p. Write Xi ∈ Rp for the i-th data point (i = 1, . . . , n) and X(j) ∈ Rn for the j-th column of X
(j = 1, . . . , p). Denote by Ω the set of observed positions of X and suppose that the number of clusters
k is fixed.

We define the regularized k-POD clustering with respect to membership U ∈ {0, 1}n×k, U1k = 1n,
and cluster centers M ∈ Rk×p by

min
U,M

∥PΩ(X−UM)∥2F + λ · J(M). (3)

The first term is the loss of the k-POD clustering, and J(M) is a regularization function with respect to
M. To shrink the estimated cluster centers feature-wisely, we consider two types of J(M):

The l0 penalty : J0(M) =

p∑
j=1

1(∥M(j)∥ > 0)

The group lasso penalty : J1(M) =

p∑
j=1

wj∥M(j)∥,

where M(j) = (µ1j , . . . , µkj)
T denotes the j-th column of cluster centers M with µlj being the j-th

component of the l-th cluster center (l = 1, . . . , k). The function 1(·) is the indicator function and wj is
the weight for M(j). Both types of J(·) are column-wised, which means that all elements of M(j), that is
{µ1j , . . . , µkj} would be shrunk together. The l0 type J0(·) constrains the number of non-zero columns
of M, while the group lasso type J1(·) constrains the weighted sum of l2 norms of M in each feature.
Therefore, with a suitable regularization parameter λ, the estimated cluster centers would be sparse in
features.

We apply the majorization-minimization algorithm (MM algorithm) to solve Eq. (3). Specifically,
given current U(t) and M(t), t ∈ N, the (t+ 1)-th iteration consists of two steps. Step 1 imputes missing
entries of X by the corresponding entries of multiplication matrix of current U(t) and M(t), so that we
can get a new complete data matrix X̂(t+1). Step 2 updates U(t+1) and M(t+1) by applying regularized
k-means clustering on the imputed data matrix X̂(t+1). Repeat the iteration until the loss converges.

3 Experiments
In this work, we compare the proposed method with other methods via numerical experiments, the results
of which show a lower bias in estimating cluster centers as well as higher accuracy in clustering. Moreover,
applications to real-world data also show the better performance of the proposed method. More details
will be introduced in this talk.
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単調欠測データに対するMardiaの正規性検定統計量について

東京理科大学・理・院 栗田 絵梨

本報告では単調欠測データの下での多変量正規性検定問題について議論した．データが欠測していな
い完全データの下での多変量尖度の定義はMardia (1970)，Srivastava (1984), Koziol (1989)などが与
え，それぞれ多変量正規性検定のための統計量の提案を行なっている．その中で特に，Mardiaが定義
した多変量尖度の標本版を基に欠測データに対応できるように改良を行なった．本報告ではKurita and

Seo (2022)で扱った 2-step単調欠測データの下での多変量標本尖度から一般の k-step単調欠測データ
の下での多変量標本尖度への拡張することで定義を与えた．そして，k-step単調欠測データを 2-stepご
とに分割し，Kurita and Seo (2022)で導出した期待値と分散をそれぞれ組み合わせることで，k-step

単調欠測データの下での多変量標本尖度の期待値と分散の漸近展開近似したものを得ることができる．
最後に幾つかのパラメータの下で，モンテカルロ・シミュレーションで実験を行い，提案した検定統計
量の有効性を示した．
本研究では 2-step単調欠測データの下での多変量標本尖度の定義を拡張することで k-step単調欠測デー
タの下での多変量標本尖度の定義の導出および検定統計量を提案する． N1個の p = (p1 + · · ·+ pk)次
元観測ベクトル (x⊤

1,i, . . . ,x
⊤
k,i)

⊤, i = 1, · · · , N1がNp(µ,Σ)に従い，N2個の (p1 + · · ·+ pk−1)次元観
測ベクトル (x⊤

1,i, . . . ,x
⊤
k−1,i)

⊤, i = N1+1, · · · , N1:2がNp1:k−1
(µ(1...k−1),Σ(1...k−1)(1...k−1))に従い，そ

して Nk 個の p1 次元観測ベクトル x1,i, i = N1:k−1 + 1, · · · , N が Np1(µ1,Σ11)に従っているとする．
ただし p = p1 + · · ·+ pk = p1:k, N = N1 + · · ·+Nk = N1:k.と表記する．k-step単調欠測データは以
下のような形となっている．



x⊤
1,1 x⊤

2,1 · · · x⊤
k,1

...
...

...
...

x⊤
1,N1

x⊤
2,N1

... x⊤
k,N1

...
... ∗

x⊤
1,N1:k−2+1 x⊤

2,N1:k−2+1 ∗
...

...
...

...
...

x⊤
1,N1:k−1

x⊤
2,N1:k−1

...
...

x⊤
1,N1:k−1+1 ∗

...
...

...
...

...
...

x⊤
1,N ∗ ∗ ∗



,

ただし，“ ∗”は欠測部分を表す．このとき k-step単調欠測データ下でのMardia型多変量標本尖度は

b
(k)
2,p =

k∑
j=1

{
1

N1:k+1−j

N1:k+1−j∑
i=1

(U
(k)
j,i )

2

}
+

∑
1≤m<l≤k

{
2

N1:k+1−l

N1:k+1−l∑
i=1

U
(k)
m,iU

(k)
l,i

}



と与えることができる．ただし，

U
(k)
1,i = (x1,i − µ̂1)

⊤Σ̂
−1

11 (x1,i − µ̂1),

U
(k)
j,i = (xj·1:j−1,i − µ̂j·1:j−1)

⊤Σ̂
−1

jj·1:j−1(xj·1:j−1,i − µ̂j·1:j−1), j = 2, . . . , k.

とする．このとき µ̂1, Σ̂11, µ̂j·1:j−1, Σ̂jj·1:j−1はそれぞれ µ1, Σ11, µj·1:j−1, Σjj·1:j−1のMLEであ

る (Kanda and Fujikoshi (1998)参照)．2-step単調欠測データの下での多変量標本尖度 (b
(2)
2,p)と k-step

単調欠測データの下での多変量標本尖度 (b
(k)
2,p)を比較する．

b
(2)
2,p =

1

N

N∑
i=1

(U
(2)
1,i )

2

R
(2)
1

+
1

N1

N1∑
i=1

(U
(2)
2,i )

2

R
(2)
2

+
2

N1

N1∑
i=1

U
(2)
1,i U

(2)
2,i

R
(2)
12

b
(k)
2,p =

1

N

N∑
i=1

(U
(k)
1,i )

2

R
(k)
1 とおく

+ · · ·+ 1

N1

N1∑
i=1

(U
(k)
k,i )

2

R
(k)
k とおく

+
2

N1:k−1

N1:k−1∑
i=1

U
(k)
1,i U

(k)
2,i

R
(k)
12とおく

+ · · ·+ 2

N1

N1∑
i=1

U
(k)
k−1,iU

(k)
k,i

R
(k)
k−1 kとおく

であるため，k = 2のとき b
(k)
2,p = b

(2)
2,pとなる．b

(2)
2,pの期待値の次元 pと個数N を pj，N1:j に置き換え

ることで b
(k)
2,p の期待値を導出することができる．すなわち

E[b
(k)
2,p] = p(p+ 2)− 2

{ k∑
j=1

1

N1:j
pj(pj + 2) +

∑
1≤m<l≤k

2

N1:l
pmpl

}
+O(N− 3

2 )

Var[b
(k)
2,p] = 8

[ k∑
j=1

1

N1:j
pj(pj + 2) +

∑
1≤m<l≤k

pmpl

{(
1

N1:l
− 1

N1:m

)
pl +

2

N1:l

}]
+O(N

3
2 )

ここで

m
(k)
2 = p(p+ 2)− 2

{ k∑
j=1

1

N1:j
pj(pj + 2) +

∑
1≤m<l≤k

2

N1:l
pmpl

}
，

(ν
(k)
2 )2 = 8

[ k∑
j=1

1

N1:j
pj(pj + 2) +

∑
1≤m<l≤k

pmpl

{(
1

N1:l
− 1

N1:m

)
pl +

2

N1:l

}]

とおく．
そして，多変量正規性検定統計量として

Z
(k)∗
MM =

b
(k)
2,p −m

(k)
2

ν
(k)
2

.

を与える．このときNi/N = γi → δi ∈ (0, 1)である．ただし i = 1, ..., k − 1であり，これは漸近的に
N(0, 1)であることを利用して検定を行う．
提案した検定統計量の正規近似に対する数値的精度を与えるために k = 5の場合でモンテカルロ・シ
ミュレーションを行なった．結果として，提案した k-step単調欠測データの下での多変量標本尖度を
用いた検定統計量は漸近的に標準正規分布に収束していることを確認することができた．
今後の課題としては本報告で提案した検定統計量のシミュレーションによる検出力を導出して比較を
行うことや，今回導出しなかった b

(k)
2,p の項に現れる U

(k)
k,i と U

(k)
j,i の共分散の導出が挙げられる．



高次元スパース回帰のための AIC 型情報量規準の漸近的性質

二宮 嘉行 柳原 宏和

近年，サンプルサイズ n と目的変数の次元 p がともに大きく，その比が p/n→ c ∈ (0, 1) とな
るような設定における高次元統計理論の研究が盛んに行われている．説明変数の次元が大きいと
きの回帰分析も高次元と呼ばれるが，本発表ではこの p が大きいことを高次元と呼ぶことにする．
このような double-asymptotic framework は，Marčenko and Pastur (1967) が random matrix

theory (RMT) を用いて標本共分散行列の固有値分布の極限定理を導いたことに端を発し，その流
れは Silverstein (1995) や Bai and Silverstein (2010) によって体系化された．double-asymptotic

framework における統計理論は，Johnstone (2001) や Ledoit and Wolf (2004) などを通じて主
成分分析や共分散推定における漸近的特性の理解を深め，Srivastava and Fujikoshi (2006) などを
通じて高次元線形回帰分析の基盤ともなった．また，Meinshausen and Bühlmann (2006) や Zhu

et al. (2012) は，理論を発展させるだけでなく，ゲノム解析における多遺伝子発現の同時予測や
脳画像解析における多領域活動の統合的モデリングといった，重要な応用的課題に対して意義を
もつことを示した．
上記の中で最も基本的といえる最尤推定を用いた高次元線形回帰であっても，非自明かつ意義

のある興味深い理論研究が近年行われており，それは情報量規準の一致性に関する逆転現象であ
る．古典的な固定次元の漸近理論においては，赤池情報量規準（AIC）は一致性をもたず過剰なモ
デルを選択する傾向がある一方，ベイズ情報量規準（BIC）は一致性をもち真のモデルを漸近的に
確率 1 で選択することが示されている．しかし，double-asymptotic framework においては，こ
れらの性質が必ずしも維持されない．Yanagihara et al. (2015) は，誤差項が正規分布にしたがう
とき，AIC がむしろ一致性をもつ傾向があることを示した．また，Bai et al. (2022) は，誤差項
が必ずしも正規分布にしたがわないような RMT が用いられる設定において，状況に応じて Cp

基準を含む AIC 型と BIC の選択挙動が逆転することを示している．このような結果は，情報量
規準の設計すべき原理が，次元の増大速度と密接に関連していることを示唆しており，高次元統
計におけるモデル選択理論の新たな展開を促している．
回帰におけるモデル選択といえば，どの説明変数を含めるかという変数選択が中心的課題であ

る．そして，多項式回帰のように変数に自然な順序が存在するのでなければ，変数の組み合わせ
すべてがモデルの候補となり，変数の数が 20近くにもなるとスパース推定に基づくアプローチが
事実上の標準となる．なぜなら，網羅的に探索することが計算的に不可能となるし，統計的にも
過剰適合のリスクが高まるからである．スパース推定において，チューニングパラメータの大き
さは選択される変数の個数を直接的に支配し，過剰選択あるいは過少選択に影響するため，その
決定は重要である．その決定方法としては，交差検証法に加えて情報量規準に基づくアプローチ
が盛んに検討されており，例えば AIC 型の基準としては Zou et al. (2007) による一般化 Cp 基
準や Ninomiya and Kawano (2016) による AIC オリジナルの定義に基づいて導いたものがあり，



BIC 型の基準としては Chen and Chen (2008) や Wang et al. (2009) による extended BIC や
modified BIC がある．また，Zhang et al. (2010) や Fan and Tang (2013) は，どちらも含む形
式である GIC に対して漸近的性質を検証している．
本発表では，高次元線形回帰でスパース推定を用いた場合に対し，情報量規準の漸近的性質を導

出する．特に，AIC 型の情報量規準が逆転現象により一致性をもつかどうか，を検証することを
主目的とする．高次元線形回帰では，説明変数一つにつき目的変数の次元のパラメータがかかって
いるため，変数選択のためのスパース推定としてはグループ正則化を採用する．その中でも，モデ
ル選択の一致性を議論するという目的を見据え，Zhang (2010) による minimax concave penalty

(MC+) に基づいた Huang et al. (2012) の concave group selection を採用する．この手法は，グ
ループ化されたパラメータベクトルに対して非凸ペナルティを課すことで，モデル選択の一致性
と推定のバイアス低減の両立を可能にする点に特徴がある．それを実現するにはチューニングパ
ラメータをうまく決定しなければならず，そのための情報量規準を構築するために目的変数が高
次元でないときやスパース推定でないときの情報量規準の理論を組み込んでいく，というのが本
発表の流れである．
スパース推定の selection consistency をもたらす情報量規準の議論に関する懸念は，結局のと

ころ罰則項の係数をどう決めればよいかわからないことである．例えば，非スパース推定の際に
selection consistency をもたらす BIC は Bayes factor から導かれる量であるため，罰則項の係数
を 1としていることにはある種の妥当性が備わっている．この BICに合わせ，スパース推定の際も
罰則項の係数を 1 とすることが通常であるが，その妥当性は必ずしもないということである．本発
表では，この懸念に対する対応も二つ考える．一つ目は，Stein (1981)’s unbiased risk estimation

理論に基づかせることである．ノイズが正規分布であれば情報量規準の期待値が Kullback-Leibler

ダイバージェンスに厳密になるようにするということであり，目的変数が高次元でないときの Zou

et al. (2007) や Zhang (2010) が提案したような情報量規準にするということである．二つ目は，
漸近損失有効性をもたせるようにすることである．目的変数が高次元でないならば情報量規準の
罰則項の係数は 2，つまり非スパース推定のときと同じ結果であることを Zhang et al. (2010) は
示している．



ディープラーニングと確率過程の統計推測
吉田朋広 (東京大学大学院数理科学研究科)

Muni TokeとYoshida [2]は、リミットオーダーブックにおける注文フローの相対的な強度
について、ratio model (Cox型モデル)を用いたパラメトリック法を用いた。Cox型モデル
のベースラインハザードは、市場データにおける非定常な日中トレンドをキャンセルする利
点がある。擬似尤度推定量の一致性と漸近正規性を示し、擬似尤度解析（Yoshida [4, 5]）に
基づいて正当化された点過程に対する情報量規準によって共変量選択をおこなった。モデル
をパリ証券取引所の実データに適用し、成行注文の高精度予測を実現し、従来のHawkesモ
デルを上回る性能を示した。続いて、Muni TokeとYoshida [3]は、ratio modelをmarked

ratio modelに拡張し、成行注文の階層構造を表現した。各成行注文はBid/Askで分類され、
さらに価格変動を引き起こすかどうかに応じてアグレッシブと非アグレッシブに分類され
る。marked ratio modelは、金融市場における成行注文の兆候とアグレッシブ性を予測す
る上で、Hawkesベースモデルよりも優れた性能を示した。
しかし、[2, 3]におけるモデル選択の結果では、提案する共変量の組み合わせによって生成
される多数のモデルの中で、情報量規準が比較的大きなモデルを好む傾向があり、モデルに
さらに多くの共変量を取り入れる可能性が示唆されている。これが、ディープラーニングを
用いて、非線形の相互作用のような、より多くの共変量を自動的に生成し、データの背後に
ある多様な非線形性に対するモデルの表現力を高める動機となっている。
α-ミキシング性のある共変量過程を入力とする強度を持つ点過程へのディープニューラル
ネットワークを考える。我々の汎用モデルには、Cox型モデル、マーク付き点過程、および
多変量点過程が含まれる。汎化誤差の収束率を与えるオラクル不等式が導出できる。シミュ
レーション実験は、マーク付き点過程が予測において単純な多変量モデルよりも優れている
ことを示している。marked ratio modelをリミットオーダーブックの実データに適用した
(Gyotoku et al. [1])。
オラクル不等式を導出するときに重要になるのは、α-ミキシング過程の汎関数に対する大偏
差不等式である。ここでは点過程を扱ったが、オラクル不等式成立のためにはその構造は本
質的ではなく、入力過程が α-ミキシングであれば、多様な確率過程にこの方法は適用可能
である。
余裕があれば、確率微分方程式のディープラーニングに触れたい。

[1] Gyotoku, Y., Muni Toke, I., Yoshida, N. : Deep learning of point processes for mod-

eling high-frequency data. arXiv preprint arXiv:2504.15944 (2025)

[2] Muni Toke, I., Yoshida, N.: Analyzing order flows in limit order books with ratios of

Cox-type intensities. Quantitative Finance pp. 1–18 (2019)

[3] Muni Toke, I., Yoshida, N.: Marked point processes and intensity ratios for limit order

book modeling. Japanese Journal of Statistics and Data Science 5(1), 1–39 (2022)
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[4] Yoshida, N.: Polynomial type large deviation inequalities and quasi-likelihood analysis

for stochastic differential equations. Annals of the Institute of Statistical Mathematics

63(3), 431–479 (2011)

[5] Yoshida, N.: Simplified quasi-likelihood analysis for a locally asymptotically quadratic

random field. Annals of the Institute of Statistical Mathematics 77(1), 1–24 (2025)
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ゼロ過剰ガンマフレイルティによる二変量治癒コピュラモデル：
治癒率と生存時間の従属関係

A bivariate cure copula model with zero-inflated gamma frailty:
dependence between the two margins in cure rate and survival times
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Abstract. We propose a bivariate cure frailty copula model for survival data. Using a zero-inflated gamma
frailty, the framework simultaneously accommodates a subpopulation of long-term survivors and a continuous
positive frailty. Dependence between marginal cure rates is parameterized by an odds ratio, while dependence
between uncured survival times is captured by a copula. We derive Kendall’s tau for the proposed model to
measure the degree of dependence. We also develop statistical inference methods based on maximum likelihood
estimation. Simulation studies and an application to a real dataset demonstrate accurate and stable parameter
estimation, highlighting the model’s utility for analyzing paired time-to-event outcomes with cure fractions.

Keywords: Cure model · Mixture model · Gumbel copula · FGM copula · Kendall’s tau

In survival analysis, a subset of individuals often never experience the event of interest during follow-up; their
survival times are effectively infinite and they are treated as “cured.” Cure models accommodate such long-term
survivors by assigning a positive probability mass at infinity. Frailty models introduce unobserved random effects
to represent heterogeneity or within-cluster correlation, and copula models deal with the dependence structure
between event times. Existing bivariate approaches that combine these ideas (e.g., Rouzbahani et al., [2]) typically
rely on discrete frailties, do not explicitly parameterize dependence between cure indicators, and lack closed-form
expressions for dependence measures such as Kendall’s tau. Fully unified frameworks that treat cure, frailty, and
copula-based dependence simultaneously, with interpretable parameters for both cure status and event times, remain
limited.

To address these issues, we proposed a bivariate cure frailty copula model based on a zero-inflated gamma frailty.
For each margin j = 1, 2, the frailty is defined by

Zj = (1−Xj)W,

where Xj ∈ {0, 1} is a cure indicator and W is a continuous positive frailty shared by both margins. When Xj = 1,
the individual is cured on margin j and Zj = 0; when Xj = 0, the individual is susceptible and Zj = W > 0.
The shared frailty W follows a gamma distribution with E[W ] = 1 and Var(W ) = γ, so Zj is zero-inflated but
continuous on (0,∞). This avoids the somewhat artificial assumption of a discrete frailty while still allowing an
explicit cured fraction via the point mass at zero.

The marginal cure rates are pj = P (Xj = 1), and the joint distribution of (X1, X2) is parameterized via the
odds ratio

R =
P (X1 = 1, X2 = 1)P (X1 = 0, X2 = 0)

P (X1 = 1, X2 = 0)P (X1 = 0, X2 = 1)
.

Given p1, p2, and R, the four joint probabilities p11, p10, p01, p00 are obtained explicitly. The parameter R controls
dependence between cure indicators: R = 1 corresponds to independence, R > 1 to positive association, and
0 < R < 1 to negative association, providing a simple scalar description of dependence at the cure-status level.

Conditional on the frailty, we adopt the joint frailty copula model (Wang and Emura [3]). Using the Laplace
transform of the gamma distribution, we derive closed-form expressions for the unconditional bivariate survival
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function when Cθ is chosen as a Gumbel copula, a Farlie-Gumbel-Morgenstern (FGM) copula, or the independence
copula. For example, with the Gumbel copula, the bivariate survival function takes the form

S(t1, t2) = p11 + p01 (1 + γr1t
α1
1 )

−1/γ
+ p10 (1 + γr2t

α2
2 )

−1/γ
+ p00

[
1 + γ

{
(r1t

α1
1 )

θ+1
+ (r2t

α2
2 )

θ+1
} 1

θ+1

]−1/γ

.

In all cases, the joint survival admits a mixture representation with mixing ratio equal to the joint cure probabilities.
The marginal cure rates can also be modeled as functions of covariates via logistic regression,

pij =
exp

(
x⊤
ijβj

)
1 + exp

(
x⊤
ijβj

) ,
allowing direct interpretation of covariate effects on the probability of being cured.

A key contribution is the derivation of Kendall’s tau for bivariate survival data with a cure fraction. Using
Pimentel’s framework for zero-inflated data (Pimentel [1]), we obtain closed-form expressions: for the cure zero-
inflated gamma Gumbel model, the non-cured component corresponds to BB1 copula, and for the cure zero-inflated
gamma independence model to Clayton copula, both with known Kendall’s tau. This yields explicit formulas for
Kendall’s tau in terms of p1, p2,R, θ, and γ, enabling a familiar rank-based interpretation of dependence even with
cured individuals.

For statistical inference, we derived the full likelihood for right-censored bivariate survival data, together with
closed-form first and second derivatives with respect to all parameters. The likelihood accounts for four observation
types per individual (event on margin 1 only, event on margin 2 only, events on both margins, and censoring on
both margins). The parameter vector (θ, γ, p1, p2,R, α1, r1, α2, r2) is estimated by maximum likelihood using the
optim function in R.

Finite-sample performance was evaluated by Monte Carlo simulation of the cure zero-inflated gamma Gumbel
model under two dependence settings (R = 3 and R = 0.5) and sample sizes n = 200, 400 (200 replications each).
The copula parameter θ, marginal cure rates p1, p2, and Weibull parameters α1, r1, α2, r2 were well estimated even
at n = 200, while the frailty parameter γ and odds ratio R showed some bias that decreased at n = 400, with
coverage probabilities approaching the nominal 95% level.

Finally, the model was applied to the Diabetic Retinopathy Study dataset from the survival package in R,
comprising paired times to vision loss in 197 patients, with one eye randomized to laser treatment and the other
left untreated. For the dependence between marginal cure rates, we considered four specifications 0 < R < 1,R =
1, 1 < R,R = ∞. Models with and without covariates in the cure components (using age and a risk score) were
compared via AIC and BIC, and the specification R = 1 was consistently favored, indicating no association between
the marginal cure rates of the two eyes. The overall Kendall’s tau for the joint survival times was estimated as
τb ≈ 0.455, indicating moderate positive association attributable to shared frailty. When the fitted marginal survival
functions from the cure zero-inflated gamma Gumbel model (without covariates) were overlaid on the Kaplan-Meier
curves, the model-based curves closely matched the empirical ones and provided identifiable estimates of the cure
fractions, which cannot be recovered from Kaplan-Meier alone.

In summary, the proposed model provides a unified cure frailty copula framework for bivariate survival data
with long-term survivors, offering interpretable parameters for cure status, frailty, and event-time dependence, as
well as closed-form Kendall’s tau. Simulation results and the diabetic retinopathy application demonstrate accurate
and stable parameter estimation, supporting the model’s usefulness for analyzing paired time-to-event outcomes
with cure fractions.
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微小撹乱パラメータを持つ線形放物型確率偏微分方程式
モデルのパラメータ推定およびその応用

神戸大学大学院海事科学研究科 貝野友祐

1 空間 2次元線形放物型確率偏微分方程式モデル

D = [0, 1]2 上の確率偏微分方程式

dXt(y, z) =

{
θ2

(
∂2

∂y2
+

∂2

∂z2

)
+ θ1

∂

∂y
+ η1

∂

∂z
+ θ0

}
Xt(y, z)dt

+ϵdWQ
t (y, z), (t, y, z) ∈ [0, 1]×D,

X0(y, z) = ξ(y, z), (y, z) ∈ D,

Xt(y, z) = 0, (t, y, z) ∈ [0, 1]× ∂D

(1)

を考える. ただし, {WQ
t } は D 上のソボレフ空間における Q-ウィーナー過程, パラメー

タ空間 Θ ⊂ R3 × (0,∞) はコンパクト凸集合, θ := (θ0, θ1, η1, θ2) ∈ Θ は未知パラメータ,

θ∗ = (θ∗0, θ
∗
1, η

∗
1, θ

∗
2) は真値で θ∗ ∈ IntΘとする. 既知の α ∈ (0, 1) に対して Q-ウィーナー

過程を
WQ

t =
∑

l1,l2≥1

µ
−α/2
l1,l2

wl1,l2(t)el1,l2

で定める. ただし {wl1,l2}l1,l2≥1 は独立な 1次元標準ブラウン運動であり, µ0 ∈ (−2π2,∞)

に対して, el1,l2(y, z) = 2 sin(πl1y) sin(πl2z)e
−(κy+ηz)/2, µl1,l2 = π2

(
l21 + l22

)
+ µ0, l1, l2 ∈

N, (y, z) ∈ D, である. ϵ ∈ (0, 1) は既知の微小撹乱パラメータとする. 高頻度時空間デー
タとして XN,M = {Xti(yj , zk)}, 0 ≤ i ≤ N, 0 ≤ j ≤ M1, 0 ≤ k ≤ M2 を考える. ただし,

ti = i∆ = i/N , yj = j/M1, zk = k/M2, M :=M1M2 とする.

2 係数パラメータの推定

θ1, η1, θ2の最小コントラスト推定について考える. 空間間引きデータX(1)
N,m = {Xti(ỹj , z̃k)},

0 ≤ i ≤ N, 0 ≤ j ≤ m1, 0 ≤ k ≤ m2 を考える. ただし, m := m1m2, m = O(N),

N = O(m), ∆ = 1/N , b ∈ (0, 1/2) に対して,

b ≤ ỹ0 < ỹ1 < · · · < ỹm1 ≤ 1− b, b ≤ z̃0 < z̃1 < · · · < z̃m2 ≤ 1− b

とする. また,

ȳj =
ỹj−1 + ỹj

2
, z̄k =

z̃k−1 + z̃k
2

, j = 1, · · · ,m1, k = 1, · · · ,m2

とする.

Ti,j,kX = Xti(ỹj , z̃k)−Xti(ỹj−1, z̃k)−
(
Xti(ỹj , z̃k−1)−Xti(ỹj−1, z̃k−1)

)
−
(
Xti−1(ỹj , z̃k)−Xti−1(ỹj−1, z̃k)−

(
Xti−1(ỹj , z̃k−1)−Xti−1(ỹj−1, z̃k−1)

))
.



とし, 次のコントラスト関数を考える

U ϵ
m,N (κ, η, θ2) =

1

m

m2∑
k=1

m1∑
j=1

{
1

ϵ2N∆α

N∑
i=1

(Ti,j,kX)2 − e−κyj−ηzkϕr,α(θ2)

}2

.

ただし, J0を次数 0の第 1種ベッセル関数とし, r = (1−2b)
√
N√

m
, α > 0に対して,

ϕr,α(θ2) =
2

θ1−α
2 π

∫ ∞

0

1− e−x2

x1+2α

(
J0

(√2rx√
θ2

)
− 2J0

( rx√
θ2

)
+ 1

)
dx (2)

とする. ΞをR2×(0,∞)の部分集合とし, θ1, η1, θ2 の最小コントラスト推定量を (κ̂, η̂, θ̂2) =

argmin
(κ,η,θ2)∈Ξ

U ϵ
m,N (κ, η, θ2), θ̂1 = κ̂θ̂2, η̂1 = η̂θ̂2 とする. 正則条件の下, N,m → ∞, ϵ → 0 のと

き (θ̂1, η̂1, θ̂2)は一致性をもつ.

θ0 および µ0 の適応的推定について考える. 時間間引きデータ X(2)
n,M = {Xt̃i

(yj , zk)},
0 ≤ i ≤ n, 0 ≤ j ≤M1, 0 ≤ k ≤M2 を考える. ただし, n ≤ N に対して

t̃i = i∆n =

⌊
N

n

⌋
i

N
, i = 0, 1, . . . , n

とする. 座標過程 xl1,l2(t) を時間間引きデータ X(2)
n,M を用いて

x̂l1,l2(t) =

M1∑
j=1

M2∑
k=1

Xt(yj−1, zk−1)δ
[y]
j gl1(κ̂)δ

[z]
k gl2(η̂)

で近似する. ここで,

gl(x : a) =

√
2eax/2

(a/2)2 + (πl)2

(
a

2
sin(πlx)− πl cos(πlx)

)
, a, x ∈ R, l ∈ N,

δ
[y]
j gl(a) = gl(yj : a)− gl(yj−1 : a), δ

[z]
k gl(a) = gl(zk : a)− gl(zk−1 : a)

である. コントラスト関数を

Vϵ
n(λ, µ : x̂l1,l2) =

n∑
i=1

(x̂l1,l2(t̃i)− e−λ∆n x̂l1,l2(t̃i−1))
2

ϵ2(1−e−2λ∆n )
2λµα

+ n log
1− e−2λ∆n

2λµα∆n

と定義し, (λ̂l1,l2 , µ̂l1,l2) = arginf
λ,µ

Vϵ
n(λ, µ : x̂l1,l2) とする. θ0 および µ0 の適応的推定量は

θ̂0 = −λ̂l1,l2 + θ̂2

(
κ̂2+η̂2

4 + π2(l21 + l22)

)
, µ̂0 = µ̂l1,l2 − π2(l21 + l22)で定まる. 正則条件の下,

n→ ∞, ϵ→ 0 のとき (θ̂0, µ̂0)は一致性および漸近正規性を持つ.

3 数値シミュレーション

N = 103, M1 =M2 = 200として SPDE (1) の数値解を生成し, 高頻度データに基づいた
大規模数値シミュレーションを行う. 具体的には，最小コントラスト推定量 (θ̂1, η̂1, θ̂2)およ
び適応的推定量 (θ̂0, µ̂0)を計算し，その漸近挙動を検証する.

参考文献
[1] Y. Tonaki, Y. Kaino, and M. Uchida. (2026). Small dispersion asymptotics for an SPDE in

two space dimensions using triple increments. Journal of Statistical Planning and Inference,
241, 106333.



形状制約下での関数パラメータの事後分析
入江薫（東京大学経済学部）

要旨
モデルに含まれる未知の関数（関数パラメータ）の推測問題を考える。問題によっては、当該の関数は単調
性や凸性などの形状制約 (shape constraints)を満たすことを要請される。形状制約下での関数パラメータの
推測に関する研究の中でも、ベイズ統計学の立場を取り、関数パラメータの事後分布を計算することを目的と
する研究は近年盛んに行われている。関数パラメータに関する不確実性を表現するためには、関数空間上の事
前分布を設定しなければならないが、形状制約は「事前の知識」として事前分布の構成において表現される。
そのような事前分布の構成方法として、関数値の差分をモデル化する方法と、基底関数展開による方法が知ら
れる。本講演では、それぞれの方法について形状制約を検討した研究を三つ紹介する。
第一の研究では、関数値の差分に切断分布を適用することで、単調増加・単調減少する平均関数を表現する
手法について検討する（Okano et al., 2024）。切断正規分布の尺度混合である切断 Horseshoe priorを用いる
ことで、階段関数のような形状の関数を表現することができる。ナイル川の水量データに対して提案手法を適
用したところ、ダム建設の年に急激な水量減が検出された。これは「縮小すべきでない時には縮小しない」と
いう、点推定量の Tail-robustnessという性質を反映したものであり、本研究でも数学的証明を与えている。
第二の研究では、同手法を分散関数の推定に応用する（Miyatake et al., 2025）。分散が単調に増加すると
いう状況は、微分方程式モデルの数値解の誤差に現れる。誤差分散の対数差分をモデル化することになるが、
これは金融時系列モデルのボラティリティ変動モデルに対応する。よって、第一の研究の成果と、ボラティリ
ティモデルに関する計算方法を組み合わせることで、単調な分散関数の推定が可能になる。数値例として、提
案手法を FitzHugh–Nagumoモデルの数値解の誤差分析に用いたところ、非ベイズ的な点推定の場合と比べて
異常値に頑健な推定結果が得られた。これは Horseshoe priorが裾厚な分布によるものと思われる。
第三の研究では、基底関数展開に基づく方法について検討する（Hiraki et al., 2024）。具体的には、関心の
ある関数は有界閉区間上で定義され、単調増加であり、凸であり、かつ境界条件を満たす（端点で指定された点
を通る）ことが要請される。そこで、それらの形状制約をすべて満たす関数（ベータ分布の分布関数など）を基
底関数として採用し、関心のある関数を基底関数の凸結合で表すことで、形状制約を保証する。モデルは回帰
分析に帰着するが、回帰係数が単体上に制約されることから、マルコフ連鎖モンテカルロ法には Pólya-gamma

拡大等の工夫が必要となる。上記の形状制約を必要とする好例として、所得の不平等を測るローレンツ曲線が
挙げられる。提案手法を用いることで、ローレンツ曲線の時系列モデルを構成・推定できる。また、ローレン
ツ曲線の積分はジニ係数という経済指標となるが、その事後分析も簡易に実行可能である。
本講演は岡野遼（一橋大学）、羽村靖之（京都大学）、菅澤翔之助（慶應義塾大学）、宮武勇登（大阪大学）、松
田孟留（東京大学・理化学研究所）、平木大智（東京大学）との共同研究に基づく。

報告
当日は要旨に基づき、参考文献にある三本の論文の内容を報告した。



質疑応答では Hiraki et al. (2024)で用いた、基底関数展開に基づく関数パラメータのモデリングに関して
議論があった。当該の方法においては、関心のある関数 f(x)を、基底関数 hk(x)を用いて、

f(x) =

K∑
k=1

θkhk(x),

とモデル化する。関数 f が単調増加、下に凸、かつ f(0) = 0, f(1) = 1という境界条件を満たすように形状制
約を課したい場合には、基底関数 hk に同種の形状制約を課し、係数 (θ1, . . . , θK)を単体上に制約（非負の値
をとり和が 1になるように）すればよい。そのような基底関数の例として、ベータ関数の分布関数（正規化さ
れた不完全ベータ関数）やパレート分布の分布関数が挙げられる。

• このうち、係数の制約の必要性について指摘があった。すなわち、単調性と凸性のみを達成したい場合
には係数は非負であればよく、単体上に制約されている必要はない。係数の和が 1 であるという制約
は、境界条件を満たす上で必要となる。

• 先行研究では単調性のみが議論されることが多い（単調回帰）。関数の正確な推定という点では、凸性は
不要ではないかという考え方もある。しかし、本研究の関心であるローレンツ曲線はその積分値（ジニ
係数）に重要な意味があり、凸性が保証されない場合には積分値が過小評価される傾向にある。講演で
は制約無しのモデルとの比較がなされたが、単調だが凸でない場合との厳密な比較は今後の研究課題で
ある。

• 仮に単調性のみを仮定する場合に、差分アプローチ（Okano et al., 2024ほか）との違いに関して質問
があった。厳密な性能比較はなされていないが、特性の違いはあきらかである。積分値など、非観測点
上での関数値も必要とする分析が可能なのは基底関数展開アプローチである。一方、差分アプローチは
MCMCによる事後分析が非常に簡易であり、MCMCの効率性も高いことが分かっている。目的によっ
て使い分けるのがよいと思われる。

Okano, R., Hamura, Y., Irie, K., and Sugasawa, S. (2024), “Locally adaptive Bayesian isotonic regression with half
shrinkage priors,” Scandinavian Journal of Statistics, 5(1), 109-141. arXiv:2208.05121

Miyatake, Y., Irie, K. & Matsuda, T. (2025). “Quantifying uncertainty in the numerical integration of evolution equa-
tions based on Bayesian isotonic regression,” Japan Journal of Industrial and Applied Mathematics, 42, 983–1001.
arXiv:2411.08338

Hiraki, D., Hamura, Y., Irie, K., & Sugasawa, S. (2024). “State-space modeling of shape-constrained functional time
series,” arXiv:2404.07586.



シンポジウム「データサイエンスの基盤を支える次世代統計理
論・方法論の挑戦と革新」報告書

平木 大智（東京大学経済学研究科）

作成日：2025年 12月 14日

1 基本情報
• シンポジウム名：データサイエンスの基盤を支える次世代統計理論・方法論の挑戦と革新
• 主催：科学研究費補助金 基盤研究（A）課題番号 25H01107「大規模複雑データの理論と方法論の深化
と展開」研究代表者：青嶋誠（筑波大学）

• 開催日時：2025年 12月 1日 - 12月 3日
• 会場：九州大学 西新プラザ

2 シンポジウム内容・所感
2.1 12 月 1日 通常セッション
1日目は 6名の発表者が講演をなされた。私が Bayesian time-series を専攻していることもあり、もっとも
印象的であったのは中北先生（理化学研究所 AIP）の「Algorithm fo Fast Gibbs Sampling in Hierarchical

Bayesian Panel Modeling」であった。ベイズ時系列の世界ではもはや一般的となった ASIS という手法の効
率性を理論的な側面から議論する内容であり、簡単なモデルに対してのみ結果を与えているが、非常に示唆に
富んだご研究であった。
加えて岩重さん（広島大学）のクラスタリングにおけるクラスターの事前分布について、そして草野先生

（熊本大学）の高頻度気金融データの疑似 BICについてのご講演は、私の研究対象であるファイナンス分野と
も共通点のあり、非常に興味深い内容であった。

2.2 12月 2日 通常セッション（報告者講演日）
2日目のセッションは 3つに分かれており、それぞれのセッションで 3名の先生・学生がご講演された。ど
の内容もとても興味深いものであったが、特に赤間先生（東北大学）のご講演は DCC という動的な分散共分
散行列の構造を課すことでファーマ・フレンチのファクターモデルについて示唆を与える結果をご提示になっ
ていた。これは近年のマクロ経済分野にも関連する内容であり、深く考えさせられるものであった。
また、吉田先生（東京大学）や Ziyue さん（東北大学）のご講演内容も、私の興味に合致する内容であり非
常に楽しむことができた。吉田先生は株価の取引の構造を反映したモデリングをなされており、Ziyue さんは

1



最適輸送写像（Wasserstain distance）を用いた分布回帰・分布予測を行っていた。これらは私の今後の研究
にも一部反映が可能であり、非常に有意義であった。

2.3 12月 3日 通常セッション（報告者講演日）
3日目のセッションでは私を含め 6名の発表者による講演がなされた。
2 つ目のセッションにて報告者は講演を行った。演題は「Dynamic factor stochastic volatility in mean

model」であり、内容は多変量マクロ経済時系列データの特徴を捉えるのに優れた動的因子モデルを拡張する
ことで、経済が不安定な時期における変数の挙動を解析するというものである。本講演において、草野先生
（熊本大学）をはじめとする、主に時系列解析を専門とする先生方から、非常に有益なご質問・関連情報のご
提示をいただいた。加えて川野先生（九州大学）と江村先生（広島大学）には講演後に発表内容についてお話
をさせていただいた。非常に収穫のある講演をさせていただき、今後の研究活動も一層邁進する所存である。
他のご講演においては、私の専攻するベイズ統計学に関連するものとして、入江先生（東京大学）、さらに
高頻度データ（とみなせる）に関するものとして貝野先生（神戸大学）のご講演は非常に興味深いものであっ
た。特に入江先生による「形状制約下での関数パラメータの事後分析」は prior information を適切にモデル
に含まれる関数の形状に反映する興味深い内容であり、直接的な応用の可能性を感じさせる実りのあるご講演
であった。その他では修士学生による素晴らしいご講演もあり、私自身の研究のモチベーションを保つのにも
良い機会となった。

3 おわりに
開催責任者である川野先生（九州大学）、主催の青嶋先生（筑波大学）、また私の研究にアドバイスをいただ
いた先生方をはじめとする参加者の方々にあらためて感謝いたします。
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ジョイントフレイルティコピュラモデルを用いた欠測を含む肺腺癌デー

タの解析 

 梶谷文乃（発表者）1 江村剛志 1  

1 広島大学 情報科学部：〒739-8511 東広島市鏡山一丁目 3 番 2 号 

E-mail:  b222334@hiroshima-u.ac.jp 

抄録 生存時間データには、再発や死亡といった複数のイベントが存在する。しかし、古典的な Cox 比例ハザー

ドモデルでは、これらのイベントを独立と仮定して解析してしまうという課題がある。また、複数の研究から統合

されたデータに存在する未観測の異質性を十分に考慮できないという問題も指摘されている。 

本研究では、Gene Expression Omnibus（GEO）に登録された肺腺癌患者 853 例のデータを用い、細胞外マトリッ

クス（ECM: Extracellular Matrix）関連遺伝子である CD36、COL11A1、HMMR の発現量および、年齢・性別などの

背景因子が予後に与える影響を評価した。まず、古典的な Cox 回帰モデルを用いて、再発と生存に対する影響を個

別に評価した。さらに、ジョイントフレイルティコピュラモデルを適用し、再発と死亡に対する影響を同時に評価

した。本モデルにより、未観測の異質性（フレイルティ）およびイベント間の依存関係を同時に考慮することが可

能となった。 

加えて、実データにおいて再発や死亡の有無が観測されているにもかかわらず、再発までの期間（TTP）が欠測し

ている症例が存在するという課題に着目し、全生存期間（OS）の情報を用いて TTP を補完する方法をシミュレーシ

ョンにより検討した。 

 

キーワード エンドポイント、全生存時間、ジョイントモデル、コピュラ、無増悪期間、遺伝子発現量、比例ハザ

ードモデル，欠測値 

  

 

生存時間データには再発や死亡といった複数のイベントが存在し、古典的な Cox 回帰モデルのような解析では、こ

れらのイベントを独立と仮定してしまう問題がある。また，通常 Cox の回帰は，複数の研究から得られたデータの

未観測異質性を考慮できない．しかしながら，がんゲノム研究の代表的なデータベースである，Gene Expression 

Omnibus (GEO)や Cancer Genome Atlas (TCGA)には，患者に発生した複数のイベントが記録されているもがあ

る．また，これらのデータを利用した解析において，イベント間の相関や未観測異質性が考慮されることは殆ど無

い． 

本研究では、GEO データベースに登録された GSE30219（Rousseaux et al., 2013）、GSE31210(Yamauchi et al.,2012)、

GSE68465(Shedden et al., 2008)、GSE50081(Der, S et al., 2014)、および GSE37745(Botling J et al., 2013)

のデータセットを用い、細胞外マトリックス（ECM: Extracellular Matrix）関連遺伝子 CD36、COL11A1、HMMR

の発現量および、年齢・性別などの背景因子が生存予後に与える影響を評価することを考える。ECM 関連遺伝子は

腫瘍の進展や転移、免疫細胞浸潤に深く関与することが知られており、特定の ECM 関連遺伝子群が肺腺癌の予後

予測に有用である可能性が指摘されている（Chai et al., 2024）。そのため、本研究でも ECM 関連遺伝子を解析対象

とすることで、肺腺癌における予後評価に役立つと考えられる。しかしながら、古典的な生存時間解析の手法で肺

腺癌患者のデータを解析する場合、未観測の異質性（フレイルティ(江村・古川 2024)）や、観測されるイベント間

の相関構造を考慮することが難しい。本研究では、まず古典的な Cox 回帰により因子が再発と生存に与える影響を

別々に評価した。つぎに、ジョイントフレイルティコピュラモデル(Emura et al. 2017, 2019)を用いて因子が再発と

生存に与える影響を同時に評価した。このモデルにより、未観測の異質性（フレイルティ）とイベント間の従属関

係（コピュラ）を同時に考慮することができた。ジョイントフレイルティコピュラモデルの結果を用いると、遺伝
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子や背景因子の影響だけでなく、イベント間の関連も考察することができた。さらに、実際の生存時間データでは

再発や死亡の有無が観測されているにもかかわらず、進行・再発までの期間（TTP）が欠測しているデータが存在

する。このような欠測値を含むデータに対して、全生存期間（OS）の情報を用いて進行・再発までの期間を補完す

る方法をシミュレーションにより検討した。 

 

 

参考文献 

[1] Botling, J., Edlund, K., Lohr, M., Hellwig, B., et al. (2013). Biomarker discovery in non-small 

cell lung cancer: integrating gene expression profiling, meta-analysis, and tissue microarray validation. 

Clinical Cancer Research, 19(1), 194–204. 

[2] Chai, Y., Ma, Y., et al. (2024). Identification and validation of a 4-extracellular matrix gene 

signature associated with prognosis and immune infiltration in lung adenocarcinoma. Heliyon, 10(2). 

[3] Director's Challenge Consortium for the Molecular Classification of Lung Adenocarcinoma, Shedden, 

K., Taylor, J. M., Enkemann, S. A., et al. (2008). Gene expression-based survival prediction in lung 

adenocarcinoma: a multi-site, blinded validation study. Nature Medicine, 14(8), 822–7 

[4] Der, S. D., Sykes, J., Pintilie, M., Zhu, C. Q., et al. (2014). Validation of a histology-independent 

prognostic gene signature for early-stage, non-small-cell lung cancer including stage IA patients. 

Journal of Thoracic Oncology, 9(1), 59–64 

[5] 江村剛志, & 古川恭治. (2024). フレイルティモデル─ 生存分析におけるハザードのランダム効果─. 計量

生物学, 45(2), 215-245. 

[6] 江村剛志 (2025). コピュラ理論の基礎. コロナ社. 

[7] Rousseaux, S., Debernardi, A., Jacquiau, B., Vitte, A.-L., Vesin, A., Nagy-Mignotte, H., Moro-

Sibilot, D., Brichon, P.-Y., Lantuejoul, S., Hainaut, P., Laffaire, J., de Reyniès, A., Beer, D. G., 

Timsit, J.-F., Brambilla, C., Brambilla, E., & Khochbin, S. (2013). Ectopic activation of germline and 

placental genes identifies aggressive metastasis-prone lung cancers. Science Translational Medicine,  

[8] Yamauchi, M., Yamaguchi, R., Nakata, A., Kohno, T., Nagasaki, M., Shimamura, T., Imoto, S., Saito, 

A., Ueno, K., Hatanaka, Y., Yoshida, R., Higuchi, T., Nomura, M., Beer, D. G., Yokota, J., Miyano, S., 

& Gotoh, N. (2012). Epidermal growth factor receptor tyrosine kinase defines critical prognostic genes 

of stage I lung adenocarcinoma. 

 

 

 



Modified AIC for Canonical-Link GLMs with Known Scale Parameter

大阪公立大学 数学研究所 栁原宏和

本発表では, Nelder &Wedderburn (1972)により提案された一般化線形モデル (Generalized Linear Model;

GLM)における変数選択のための赤池情報量規準 (Akaike Information Criterion; AIC)の修正について取
り扱う. GLMは, McCullagh & Nelder (1989)や Fahrmeir & Tutz (2001)などの標準的な統計学の教科書
に示されているように, 重回帰モデル, ロジスティック回帰モデル, ポアソン回帰モデルなどを包含する汎用
的な統計モデルであり, 確率分布やリンク関数を適切に設定することで, さまざまなデータ構造に対応する
ことができる.

Akaike (1973;1974)により提案されたAICは, Kullback–Leibler (KL)情報量 (Kullback & Leibler, 1951)

に基づくリスク関数の漸近不偏推定量であり, 統計モデルの最大対数尤度の−2倍に, “2×パラメータ数”と
いうモデルの複雑さに対する罰則項を加えることで定義される. その簡便な定義式ゆえに応用分野で広く普
及し, 提案から 50年以上経た現在においても, 多様な分野で複数の統計モデルの比較や選択に利用されてい
る. しかし, AICはリスク関数に対して漸近的には不偏であるものの, 標本数が十分に大きくない場合には
バイアスが生じやすく, 結果として過剰に複雑なモデルを選択する傾向があることが知られている. この欠
点を克服するため, 多くの研究者によってバイアス補正に関する研究が進められてきた.

正規分布を仮定した重回帰モデルにおいては, Sugiura (1978)により, 真のモデルを含む過大モデルの下で
リスク関数の完全不偏推定量となる Corrected AIC (CAIC)が提案された. その後, Hurvich & Tsai (1989)

により CAICと同型の補正版AIC, すなわちAICcが提案され, こちらが広く普及した結果, 現在では “修正
AIC”といえば AICc を指すのが一般的である. ただし, 完全な不偏性が成立するのは重回帰モデルかつ正
規分布を仮定した場合に限られ, 他の分布やモデルでは完全不偏推定量を構成することは非常に難しい. ロ
ジスティック回帰やポアソン回帰では, 過大モデルの下でバイアスをO(n−1)の項まで補正した CAICが提
案されている (Yanagihara, Sekiguchi & Fujikoshi, 2003; Kamo, Yanagihara & Satoh, 2013). さらに, こ
れらの結果は Imori, Yanagihara & Wakaki (2014)により, スケールパラメータが既知の場合の GLMへと
拡張されている.

一方, 真のモデルを含まない過小モデルの下でのバイアス補正は, 過大モデルの場合に比べて格段に難し
い. その理由は, 過大モデルでは回帰係数の最尤推定量 (MLE)が漸近不偏 (重回帰モデルでは完全不偏)で
あるのに対し, 過小モデルでは定数バイアスを持つためである. この定数バイアスの影響により, 補正の際
に考慮すべき確率分布が非心度を持つ分布となる. 正規性を仮定した重回帰モデルでは, 過大モデルではカ
イ二乗分布を用いた補正が可能であるが, 過小モデルでは非心カイ二乗分布を用いる必要がある. 特に, バ
イアスは非心カイ二乗分布の逆数の期待値に依存しており, このため過大モデルのように完全な不偏推定量
を構成することができない. Fujikoshi & Satoh (1997)は, 漸近展開を用いて過小モデルに対してもバイア
ス補正を行った AICを提案した. 彼らは過大モデルの補正のみを行う “Corrected”版との差異を明確にす
るため, この指標を “Modified AIC (MAIC)”と命名した. MAICは CAICとは違い過大モデルで不偏とは
ならないが, AICや CAICが持つ過小モデルでの定数バイアスを補正しており, また過大モデルにおいて
も O(n−1)の項までバイアス補正がなされている. Fujikoshi & Satoh [??]のMAICは多変量回帰モデルに
おいて提案されたものであり, その特別な場合として重回帰モデルでのMAICを導くことができる. 一方,

GLMにおいては, 過小モデルでもバイアス補正を行うMAICは未だ提案されていない.

重回帰モデルにおいては, リスク関数を最小にするモデルが真のモデルまたは過小モデルであることが理
論的に証明されている (Yanagihara, Kamo, Imori & Yamamura, 2017参照). GLMにおいて同様の性質が
成り立つかは未解明であるが, 少なくとも漸近的には, リスク関数を最小にするモデルが真のモデルまたは
過小モデルであることが示唆される. したがって, GLMにおいてもMAICを導出することは, 応用上重要



である.

Fujikoshi & Satoh (1997)によるMAICでは, 過小モデルにおいてバイアスの漸近展開の主要項の漸近不
偏推定量を用いることでバイアスが補正されている. これをさらに漸近展開の第 2項まで導出できれば, そ
れらを用いて過小モデルにおいても O(n−1)の項まで補正された AICを提案することが可能である. しか
し, 過小モデルの下では漸近展開の第 2項まで導出することが困難である. さらに導出できたとしても, そ
の展開式には多数の複雑な項で表現され, それらを打ち消すように各項の漸近不偏推定量に −1をかけて加
算するという退屈で煩わしい作業を行わなければならない. そこで本論文では, まず過小モデルにおけるバ
イアスの第 2項までの導出を試みる. バイアスの展開式をできるだけ簡単な形で得るために, スケールパラ
メータが既知でリンク関数が正準リンク関数である GLMを考える. つまり, 以下のような対数尤度関数を
持つ統計モデルを考えることになる.

ℓ(β) =

n∑
i=1

{
yix

⊤
i β − b(x⊤

i β)

a(ϕ)
+ c(yi, ϕ)

}
.

ただし, y1, . . . , yn は互いに独立な目的変数, x1, . . . ,xn は k 次元説明変数ベクトルである. さらに, β =

(β1, . . . , βk)
⊤ は未知の k 次元回帰係数ベクトル, ϕ は既知のスケールパラメータ, a(·), b(·), c(·, ·) は微分

可能な既知の関数である. この場合, 対数尤度関数の導関数と目的変数の高次モーメントが一致するため,

Yanagihara, Kamo, Imori & Satoh (2012)の付録 Bの結果と同様に, 以下の 3つの行列のみでバイアス項
を表現することが可能となる.

G2(θ) =
1

na(ϕ)2

n∑
i=1

κ2(θi)xix
⊤
i , G3(θ) =

1

na(ϕ)3

n∑
i=1

κ3(θi)
(
xix

⊤
i ⊗ xi

)
,

G4(θ) =
1

na(ϕ)4

n∑
i=1

κ4(θi)
(
xix

⊤
i ⊗ xix

⊤
i

)
.

ただし, θ = (θ1, . . . , θn)
⊤. ここで, κ2(θ), κ3(θ), κ4(θ)は, yの分散, 3次, 4次キュムラントであり, 以下の

ような微分により求めることができる.

κr(θ) = a(ϕ)r−1 ∂
r

∂θr
b(θ), (r = 2, 3, 4).

次に, 実際のバイアス補正においては, 従来のように補正項を逐次加算する方法は採らない. Bartlett 補正
(Bartlett, 1937)やその拡張 (Corderio & Ferrari, 1991; Fujikoshi, 2000), さらに歪度や尖度を打ち消す改良
変換 (Konishi, 1981; Hall, 1992; Yanagihara & Yuan, 2005)に倣い, 統計量に変換を施すことで, 展開後に
補正項が自然に現れるような方法によりバイアス補正を行う. この結果, 提案する新たなMAICは, 簡潔な
表現式を持ち, 過大モデルのみならず過小モデルにおいても O(n−1)の項まで補正された情報量規準となっ
ている.

発表当日には, 候補モデルと KL情報量に基づくリスク関数を定義し, モデルが過大モデルであるという
仮定を課さずに, O(n−1)の項までバイアスを導出を行った. さらに, 得られたバイアスの展開式を基に, 補
正項を明示的に追加することなくMAICを提案した. 提案したMAICは, モデルが過小・過大いずれの場合
でもO(n−1)の項までバイアスを補正した情報量規準となっている. また, 数値実験により, 提案したMAIC

の性能を従来の AICおよび CAICと比較を行った.
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