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1 Introduction

Exploratory factor analysis, often referred to as factor analysis, is an important technique
of multivariate analysis (Anderson 2003). Factor analysis is a method for exploring the
underlying structure of a set of variables and is applied in various fields. In factor analysis,
we consider the following model for a p-dimensional observation x:

x = µ+ Λf + ε, (1)

where µ ∈ Rp is a mean vector, m is the number of factors (m < p), Λ ∈ Rp×m is a factor
loading matrix, f be a m-dimensional centered random vector with the identity covariance,
ε be a p-dimensional uncorrelated centered random vector, which is independent from f ,
with diagonal covariance matrix Var(ε) = Ψ2 = diag(σ2

1, . . . , σ
2
p). Each component of f

and ε are called the common and unique factors, respectively.
For a constant cΛ > 0, let ΘΛ := {Λ ∈ Rp×m | |λjk| ≤ cΛ (j = 1, . . . , p; k = 1, . . . ,m)}

be the parameter space for the factor loading matrix Λ. For positive constants cL, cU > 0,
define the parameter space for Ψ as ΘΨ := {diag(σ1, . . . , σp) | cL ≤ |σj| ≤ cU (j =
1, . . . , p)}. Let Φ = [Λ,Ψ] ∈ Rp×(m+p), and define ΘΦ = {Φ = [Λ,Ψ] | Λ ∈ ΘΛ and Ψ ∈
ΘΨ}. For the factor model (1) with Φ = [Λ,Ψ], the covariance matrix of x is represented
as ΦΦ> = ΛΛ> + Ψ2.

We assume that the factor model (1) is true with some unknown parameter Φ∗ =
[Λ∗,Ψ∗] ∈ ΘΦ. Let Σ∗ = Φ∗Φ

>
∗ = Λ∗Λ

>
∗ + Ψ2

∗ denote the true covariance matrix. It should
be noted that the statistical properties described later still hold as a minimum contrast
estimator even when the factor model (1) is not true. Let (x1, f1, ε1), . . . , (xn, fn, εn) be
i.i.d. copies of (x, f, ε), where (f1, ε1), . . . , (fn, εn) are not observable in practice. Through-
out the paper, it is assumed that n > m+p. In factor analysis, we aim to estimate (Λ∗,Ψ∗)
from the observations Xn = (x1, . . . , xn)>. Here, we note that the factor model (1) has an
indeterminacy. For example, for any m×m orthogonal matrix R, a rotated loading matrix
Λ∗R can also serve as a true loading matrix. Thus, let Θ∗Φ = {Φ ∈ ΘΦ | Σ∗ = ΦΦ>} be the
set of all possible true parameters.
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There are several estimation approaches to estimate the parameter Φ = [Λ,Ψ], e.g.,
maximum likelihood estimation, least-squares estimation, generalized least-squares esti-
mation (Jöreskog & Goldberger 1972), minimum rank factor analysis (ten Berge & Kiers
1991), and non-iterative estimation (Ihara & Kano 1986, Kano 1990). The theoretical
properties of these estimation approaches have been extensively studied. Moreover, most
of these estimators can be formulated as minimum discrepancy function estimators. Thus,
we can apply the general theory of minimum discrepancy function estimators to derive the
theoretical properties of the estimators (Shapiro 1983, 1985).

One might think that the maximum likelihood estimator is the best choice from the
viewpoint of efficiency. However, it is known that the maximum likelihood estimator is
sensitive to the model error on (1) while it is robust to the distributional assumptions. For
more details, see MacCallum & Tucker (1991) and Briggs & MacCallum (2003).Thus, other
estimators could be better choices than the maximum likelihood estimator in practice.

In the early 2000s, a novel estimator based on matrix factorization was developed for
factor analysis (Socan 2003, de Leeuw 2004). According to Adachi & Trendafilov (2018),
this method was originally developed by Professor Henk A. L. Kiers and first appeared
in Socan’s dissertation (Socan 2003). This method is called matrix decomposition factor
analysis (MDFA for short). The MDFA algorithm always provides proper solutions (i.e.,
no Heywood cases in MDFA); thus, it is computationally more stable than the maximum
likelihood estimator. From the aspect of computational statistics, matrix decomposition
factor analysis has been well-studied, and several extensions have been developed (see,
e.g., Trendafilov & Unkel 2011, Trendafilov et al. 2013, Adachi 2022, Cho & Hwang 2023,
Yamashita 2024). An important extension for high-dimensional data is the sparse estima-
tion of matrix decomposition factor analysis with the `0-constraint. Although the sparse
estimation with the `0-constraint has no bias, unlike other sparse regularizations, the opti-
mization process with the `0-constraint is generally challenging. There is no sparse version
of classical factor analysis with the `0-constraint. Surprisingly, the sparse MDFA estimator
with the `0-constraint can be easily obtained, as described in Section 2.

In matrix decomposition factor analysis, the estimator is obtained by minimizing the
following principal component analysis-like loss function:

Ln(µ,Λ,Ψ, F, E) =
1

n

n∑
i=1

‖xi − (µ+ Λfi + Ψei)‖2,

where ei = (ei1, . . . , eip)
>, E = (e1, . . . , en)> ∈ Rn×p, and F = (f1, . . . , fn)> ∈ Rn×m.

As described in Section 2, certain constraints are imposed on the common factor matrix
F and the normalized unique factor matrix E. It is known that we cannot consider the
maximum likelihood estimation to the problem of simultaneous estimation of (Λ,Ψ) and
latent factor scores f1, . . . , fn (see Section 7.7 and Section 9 of Anderson & Rubin (1956)).
However, interestingly, we consider the simultaneous estimation in matrix decomposition
factor analysis, and the MDFA estimator can be interpreted as the maximum likelihood
estimator of the semiparametric model.

It is important to note that the loss function of principal component analysis can be
written as

LPCA(µ,Λ, F ) =
1

n

n∑
i=1

‖xi − (µ+ Λfi)‖2,
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with the same constraints on F . The equivalence between this formulation and other
standard formulations of principal component analysis can be found in Adachi (2016).

This formulation clearly shows that the term Ψei is the only difference between principal
component analysis and matrix decomposition factor analysis. Although the loss function
of matrix decomposition factor analysis is very similar to that of principal component
analysis, the MDFA estimator empirically behaves like other consistent estimators used in
factor analysis rather than principal component analysis. For high-dimensional data, it is
well-known that principal component analysis and factor analysis are approximately the
same (e.g., Bentler & Kano (1990) and Section 2.1 of Fan et al. (2013)). Thus, we can
expect the MDFA estimator to exhibit similar behavior in high-dimensional settings. On
the other hand, even in low-dimensional cases, matrix decomposition factor analysis yields
results close to those of other consistent estimators for factor analysis.

Unlike classical factor analysis, matrix decomposition factor analysis treats the common
factors F and normalized unique factors E as parameters that are estimated simultaneously
with Φ = [Λ,Ψ]. The number of parameters linearly depends on the sample size n, and the
standard asymptotic theory of classical M-estimators cannot be directly applied to analyze
its theoretical properties. As a result, the statistical properties of the MDFA estimator
have yet to be discussed, leading to the open problem: Can matrix decomposition factor
analysis truly be regarded as “factor analysis”?

In this paper, we establish the statistical properties of matrix decomposition factor
analysis to answer this question. We show that as the sample size n goes to infinity,
the MDFA estimator converges to the true parameter Φ∗ ∈ Θ∗Φ. First, we formulate the
MDFA estimator as the semiparametric profile likelihood estimator and derive the explicit
form of the profile likelihood. Next, we reveal the population-level loss function of matrix
decomposition factor analysis and its fundamental properties. Then, we show the statistical
properties of matrix decomposition factor analysis.

Throughout the paper, let us denote by λj(A) the jth largest eigenvalue of a symmetric
matrix A. Let ‖ · ‖2 and ‖ · ‖F represent the operator norm and the Frobenius norm for a
matrix, respectively. Let Ip denote the identity matrix of size p, and let Op×q denote the
p × q matrix of zeros. The p-dimensional vectors of ones will be denoted by 1p, and the
vectors of zeros will be denoted by 0p. For matrix A, let A+ denote the Moore-Penrose
inverse of A. We will denote by O(p × q) the set of all p × q column-orthogonal matrices
and will denote by O(p) the set of all p× p orthogonal matrices.

2 Matrix decomposition factor analysis (MDFA)

We will briefly describe the matrix decomposition factor analysis. Without loss of gener-
ality, the data matrix Xn is centered by the sample mean, and we ignore the estimation of
the mean vector µ. For simplicity of notation, we use the same symbol Xn for the centered
data matrix. Let Fn = (f1, . . . , fn)> and En = (ε1, . . . , εn)>. The factor model (1) can
be expressed in the matrix form as Xn = FnΛ> + En. From this representation, we can
naturally consider the following matrix factorization problem:

Xn ≈ FΛ> + EΨ,
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where F ∈ Rn×m and E ∈ Rn×p are constrained by

1>nF = 0>m, 1>nE = 0>p ,
1

n
F>F = Im,

1

n
E>E = Ip, and F>E = Om×p. (2)

In the constraint (2), the first two conditions are empirical counterparts of the assumptions
E[f ] = 0m and E[ε] = 0p. Moreover, the remaining conditions correspond to the covariance
constraints for f and ε. This matrix factorization approach is called the matrix decompo-
sition factor analysis (MDFA). Here, we note that the factor 1/n can be replaced by the
factor 1/(n− 1) in the constraint (2). This modification is essential in practice, as will be
described later.

Let ΘZ := {Z = [F,E] ∈ Rn×(m+p) | Z satisfies the constraint (2)}. In matrix de-

composition factor analysis, the estimator (Λ̂n, Ψ̂n, F̂n, Ên) is obtained by minimizing the
following loss function over Φ = [Λ,Ψ] ∈ ΘΦ and Z = [F,E] ∈ ΘZ :

Ln(Φ, Z) =
1

n

∥∥Xn − ZΦ>
∥∥2

F
=

1

n

n∑
i=1

‖xi − (Λfi + Ψei)‖2. (3)

Thus, we can formulate the matrix decomposition factor analysis as the maximum
likelihood estimation of the following semiparametric model:

xi = Λfi + Ψei + ξi (i = 1, . . . , n), (4)

where both common and unique factor score vectors f1, . . . , fn, e1, . . . , en are fixed vectors
satisfying the constraint (2), and ξ1, . . . , ξn are independently distributed according to a
p-dimensional centered normal distribution with a known variance τ 2

0 Ip.
Now, we recall that the principal component analysis can be formulated as the minimiza-

tion problem of the following loss function with constraints 1>nF = 0>m and F>F/n = Im:

1

n

∥∥Xn − FΛ>
∥∥2

F
.

The only difference between matrix decomposition factor analysis and principal component
analysis is the term EΨ in the loss function (3). When we impose the constraint that Λ>Λ
is a diagonal matrix whose diagonal elements are arranged in decreasing order to identify
the parameter Λ uniquely, the principal component estimator can be represented as

Λ̂PCA = Lm∆m/
√
n and F̂PCA =

√
nKm,

where ∆m is a diagonal matrix with the first m singular values of Xn, and Km ∈ O(n×m)
and Lm ∈ O(p × m) are the matrices of first m left singular vectors and right singular
vectors of Xn, respectively.

Adachi & Trendafilov (2018) shows several essential properties of matrix decomposition
factor analysis. Here, we will introduce some of these properties. The loss function Ln can
be written as follows:

Ln(Φ, Z) =
1

n
‖Xn‖2

F + ‖Φ‖2
F −

2

n
tr{(XnΦ)>Z} (5)

=
1

n
‖Xn − ZZ>Xn/n‖2

F + ‖X>n Z/n− Φ‖2
F . (6)
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Algorithm 1 An algorithm of matrix decomposition factor analysis.

1: Initialize t = 0 and Φ(0) =
[
Λ(0),Ψ(0)

]
∈ ΘΦ.

2: Update t = t + 1. By the singular value decomposition of XnΦ(t−1)/
√
n, update the

parameter Z as follows:

Ẑ(t) =
[
F̂(t), Ê(t)

]
=
√
nK̂(Φ(t−1))L̂(Φ(t−1))

> +
√
nK̂⊥(Φ(t−1))L̂⊥(Φ(t−1))

>.

3: Update the parameter Φ as follows:

Φ̂(t) =
[
Λ̂(t), Ψ̂(t)

]
=
[
X>n F̂(t)/n, diag

(
X>n Ê(t)/n

)]
.

4: Repeat Steps 2 and 3 until convergence.

Now, we consider minimizing the loss function Ln. Let K̂(Φ)∆̂(Φ)L̂(Φ)> be the singular

value decomposition of XnΦ/
√
n, where ∆̂(Φ) is the diagonal matrix with the singular

values, and K̂(Φ) ∈ O(n×p) and L̂(Φ) ∈ O((m+p)×p) are the matrix of the left singular

vectors and the matrix of the right singular vectors, respectively. Let Ŝn = X>nXn/n be the

sample covariance matrix, and then the spectral decomposition of Φ>ŜnΦ can be written
as

Φ>ŜnΦ =
(
X>n Φ/

√
n
)> (

X>n Φ/
√
n
)

= L̂(Φ)∆̂(Φ)2L̂(Φ)>.

From (5), it follows that, for given Φ, the following Ẑ(Φ) attains the minimum of Ln(Φ, Z):

Ẑ(Φ) =
√
nK̂(Φ)L̂(Φ)> +

√
nK̂⊥(Φ)L̂⊥(Φ)>, (7)

where K̂⊥(Φ) ∈ O(n×m) and L̂⊥(Φ) ∈ O((m+ p)×m) are column-orthonormal matrices

such that 1>n K̂⊥(Φ) = 0>m and

K̂(Φ)>K̂⊥(Φ) = L̂(Φ)>L̂⊥(Φ) = Op×m.

It is important to note that K̂⊥(Φ) and L̂⊥(Φ) are not uniquely determined.
For given Z = [F,E] ∈ ΘZ , the minimization of Ln with Φ is obvious. From (6), we

conclude that, for given Z ∈ ΘZ , the optimal Φ̂(Z) is given by

Φ̂(Z) =
[
Λ̂(Z), Ψ̂(Z)

]
=
[
X>n F/n, diag(X>n E/n)

]
, (8)

where diag(X>n E/n) is the diagonal matrix with diagonal elements of X>n E/n. That is,

Λ̂(Z) = X>n F/n and Ψ̂(Z) = diag(X>n E/n).
Therefore, the minimization problem for Ln can be solved by a simple alternating min-

imization algorithm. An algorithm of matrix decomposition factor analysis is summarized
in Algorithm 1.

Remark 2.1. For estimating both Φ and Z, the original data matrix Xn is necessary.
However, when only the estimator for Φ is needed (i.e., the estimator of Z is unnecessary),
Adachi (2012) shows that the algorithm can be performed using only the sample covariance

matrix Ŝn. Thus, for estimating only Φ, the computational cost of matrix decomposition
factor analysis only depends on the dimension p. For more details of this algorithm, see
Adachi & Trendafilov (2018).
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3 Asymptotic properties of MDFA

3.1 Main idea

First, we will describe the main idea for proving asymptotic properties of matrix de-
composition factor analysis. Remark 2.1 indicates the possibility that the loss function
Ln concentrated on Φ can be rewritten using the sample covariance matrix Ŝn instead
of the data matrix Xn. The following lemma shows that the concentrated loss function
Ln(Φ) = minZ∈ΘZ

Ln(Φ, Z) has the explicit form with the sample covariance matrix. By
considering Z = [F,E] as the nuisance parameter in the semiparametric model (4), this
loss Ln(Φ) is related to the concentrating-out (or profile likelihood) approach (Newey 1994,
Murphy & Van der Vaart 2000). That is, this loss Ln(Φ) is the negative profile likelihood
for the semiparametric model (4).

Lemma 3.1. For any Φ ∈ ΘΦ,

Ln(Φ) = min
Z∈ΘZ

Ln(Φ, Z)

= tr
[
{Ip − Â(Φ)}>Ŝn{Ip − Â(Φ)}

]
+

∥∥∥∥(Φ>)+
(

Φ>ŜnΦ
)1/2

− Φ

∥∥∥∥2

F

,

where Â(Φ) = ΦΦ>ŜnΦ(Φ>ŜnΦ)+ = ΦL̂(Φ)L̂(Φ)>Φ+.

Remark 3.1. When we replace the factor 1/n with 1/(n − 1) in the loss fucntion (3)

and the constraint (2), the sample covariance matrix Ŝn is replaced by the unbiased co-

variance matrix Ûn = X>X/(n− 1) in the explicit form of Ln(Φ). This modification does
not affect the asymptotic properties of the MDFA estimator but improves the finite-sample
performance.

3.2 Population-level loss function and its properties

For given Φ ∈ Rp×(p+m), the spectral decomposition of Φ>Σ∗Φ ∈ R(m+p)×(m+p) is denoted
by

Φ>Σ∗Φ = L(Φ)∆(Φ)2L(Φ)>,

where ∆(Φ)2 is the diagonal matrix with ordered positive eigenvalues, and L(Φ) ∈ O((m+
p) × p) is the matrix of eigenvectors. From Lemma 3.1, we can naturally consider the
following population-level loss function:

L(Φ) = tr
[
{Ip − A(Φ)}>Σ∗{Ip − A(Φ)}

]
+
∥∥∥(Φ>)+

(
Φ>Σ∗Φ

)1/2 − Φ
∥∥∥2

F
,

where A(Φ) = Φ(Φ>Σ∗Φ)(Φ>Σ∗Φ)+Φ+ = ΦL(Φ)L(Φ)>Φ+.
Since the loss L(Φ) has a complex form, it is not immediately clear whether this loss

L(Φ) is reasonable for factor analysis. The following proposition shows that the loss func-
tion L(Φ) is appropriate for factor analysis. That is, the population-level matrix decom-
position factor analysis is identifiable up to the indeterminacy of the factor model.

Proposition 3.2 (Identifiability of the population-level MDFA). For any Φ = [Λ,Ψ] ∈ ΘΦ,
the following two conditions are equivalent:

(i) Σ∗ = ΦΦ> = ΛΛ> + Ψ2, and (ii) L(Φ) = 0.
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Interestingly, as shown in the proof, only the second term of the loss L is essential for
this identifiability. Thus, the second term of the empirical loss Ln could be an appropriate
loss function for factor analysis, but the optimization step will be more complicated.

Since Ln(Φ) is not represented as the empirical mean over samples, even the smooth-
ness of the loss L is non-trivial, unlike the classical theory of M-estimators. For exam-
ple, the second term of the loss L(Φ) involves the square root of the degenerate matrix
Φ>ΣΦ. Generally, the differentiability of the square root function cannot be guaranteed
for degenerate cases. Fortunately, from Theorem 2 of Freidlin (1968), we can ensure
the smoothness of (Φ>ΣΦ)1/2. The following proposition ensures the smoothness of the
population-level loss L(Φ). This smoothness can be directly obtained from the smooth-
ness of (Φ>ΣΦ)1/2 and the smoothness of A(Φ). For Λ ∈ Rp×m and Ψ ∈ ΘΨ, let vec(Λ)
and diag(Ψ) be the vectorization of Λ and the diagonal vector of Ψ, respectively. Write
Θφ =

{
(vec(Λ)>, diag(Ψ)>)> ∈ Rp(m+1) | [Λ,Ψ] ∈ ΘΦ

}
.

Proposition 3.3 (Smoothness of the population-level loss). The population-level loss func-
tion L : Θφ → R is smooth on the interior of the compact parameter space Θφ.

3.3 Consistency

Now, we will show the strong consistency of matrix decomposition factor analysis. The
following proposition ensures the uniform strong law of large numbers.

Proposition 3.4 (Uniform law of large numbers). For any Φ ∈ ΘΦ,

|Ln(Φ)− L(Φ)| ≤ Const.×
(
p‖Ŝn − Σ∗‖1/2

F ∨ p
4‖Ŝn − Σ∗‖F

)
,

where a∨ b = max(a, b), and Const. is a global constant depending only on cL, cΛ, and cU .
Therefore, the following uniform strong law of large numbers holds:

lim
n→∞

sup
Φ∈ΘΦ

|Ln(Φ)− L(Φ)| = 0 a.s. (9)

By the above uniform law of large numbers for Ln and the continuity of the population-
level loss L, we can obtain the strong consistency of matrix decomposition factor analysis.

Theorem 3.5 (Consistency of the MDFA estimator). Assume the observation Xn =

(x1, . . . , xn)> is an i.i.d. sample from the factor model (1). Let Φ̂n =
[
Λ̂n, Ψ̂n

]
be the

estimator of the matrix decomposition factor analysis for Φ = [Λ,Ψ]. That is, Φ̂n ∈
arg minΦ∈ΘΦ

Ln(Φ). Then,

lim
n→∞

L
(
Φ̂n

)
= 0 a.s., and lim

n→∞
min

Φ∗∈Θ∗
Φ

∥∥Φ̂n − Φ∗
∥∥
F

= 0 a.s.

From this theorem, the MDFA estimator converges to the true parameter, similar to
other consistent estimators in factor analysis; thus, the MDFA estimator is appropriate for
factor analysis. This theorem explains why matrix decomposition factor analysis provides
results similar to those of other consistent estimators in factor analysis.

Under Anderson and Rubin’s sufficient condition, a stronger consistency result can be
achieved when combined with Theorem 1 of Kano (1983).

Moreover, even if the factor model (1) is incorrect, the MDFA estimator remains con-
sistent as a minimum contrast estimator. That is, the MDFA estimator converges to a
solution that minimizes the population-level loss L.
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3.4 Asymptotic normality

Based on the unified approach of Shapiro (1983), we can show the asymptotic normality of
the MDFA estimator. To eliminate the rotational indeterminacy, we consider the following
identifiability condition introduced by Anderson & Rubin (1956):

Λ =



λ11 0 0 · · · 0
λ21 λ22 0 · · · 0
λ31 λ32 λ33 · · · 0
...

...
...

. . .
...

λm1 λm2 λm3 · · · λmm
...

...
...

. . .
...

λp1 λp2 λp3 · · · λpm


. (10)

When we impose this condition on the true loading matrix with λjj > 0 (j = 1, . . . ,m), we
can avoid both rotational and sign indeterminacy. This condition can be easily handled in
matrix decomposition factor analysis. In fact, from the representation (6), we simply set

the upper triangle part of Λ̂(t) to zero in Step 3 of Algorithm 1. This adjustment allows
us to obtain the MDFA estimator that minimizes the loss function Ln under the condition
(10).

Moreover, for the identifiability of the factor decomposition, we also assume Anderson
and Rubin’s sufficient condition for the true loading matrix Λ∗. That is, we assume that if
any row of Λ∗ is deleted, there remain two disjoint submatrices of rank m.

Let vech(·) be the vech operator. For Φ = [Λ,Ψ] with the condition (10), let θ =
(λ11, . . . , λp1, λ22, . . . , λp2, . . . , λmm, . . . , λpm, σ

2
1, . . . , σ

2
p)
> be the parameter vector. Let Θ =

{θΛ ∈ Rpm−m(m−1)/2 | |θΛ,j| < cΛ} × [c2
L, c

2
U ]p be the compact parameter space for the

parameter θ. To derive the asymptotic normality of the MDFA estimator, we redefine the
loss functions Ln and L as a unified function of the parameter θ and the covariance matrix
Σ. For any Φ ∈ ΘΦ and any p × p positive definite matrix Σ > 0, we rewrite the spectral
decomposition of Φ>ΣΦ ∈ R(m+p)×(m+p) as

Φ>ΣΦ = L(Φ,Σ)∆(Φ,Σ)2L(Φ,Σ)>,

where ∆(Φ,Σ)2 is the diagonal matrix with ordered positive eigenvalues, and L(Φ,Σ) ∈
O((m+ p)× p) is the matrix of eigenvectors. For any θ ∈ Θ, define

L(θ,Σ) = L(Φ,Σ) = tr
[
{Ip − A(Φ,Σ)}>Σ{Ip − A(Φ,Σ)}

]
+
∥∥∥(Φ>)+

(
Φ>ΣΦ

)1/2 − Φ
∥∥∥2

F
,

where Φ is the matrix representation of θ, and A(Φ,Σ) = ΦL(Φ,Σ)L(Φ,Σ)>Φ+. Using this

notation, we have Ln(Φ) = L(Φ, Ŝn) and L(Φ) = L(Φ,Σ∗).

Theorem 3.6 (Asymptotic normality of the MDFA estimator). Assume that the obser-
vation Xn = (x1, . . . , xn)> is an i.i.d. sample from the factor model (1) with the true
parameter Φ∗ = [Λ∗,Ψ∗]. It is assumed that the fourth moment of x1 is bounded. For
the identifiability, suppose that the true loading matrix Λ∗ satisfies Anderson and Rubin’s
sufficient condition and the condition (10) with λ∗jj > 0 (j = 1, . . . ,m). Let θ∗ be the true
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parameter vector corresponding to Φ∗. Moreover, suppose that the true parameter lies in
the interior of Θ, and the Hessian matrix

Hθθ(θ∗,Σ∗) =
∂2L(θ∗,Σ∗)

∂θ∂θ>

is nonsingular at the point (θ∗,Σ∗).

Let θ̂n be the MDFA estimator with the condition (10) for the true parameter θ∗. Here,

the elements λ̂jj (j = 1, . . . ,m) of the estimator θ̂n are set to be nonnegative. Then,

we obtain the asymptotic normality of the MDFA estimator θ̂n:
√
n
(
θ̂n − θ∗

)
→ N(0, V )

in distribution as n → ∞, where the matrix Γ is the asymptotic variance of the sample
covariance, V = JΓJ>, and

J = −H−1
θθ (θ∗,Σ∗)

∂2L(θ∗,Σ∗)

∂θ∂vech(Σ)>
.
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