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1. Introduction

We let x1, . . . ,xn be p-dimensional random sample with a population mean vector µ

and population covariance matrix Σ. We further partition xi, µ, andΣ into 2 components:

xi “

ˆ

x1i

x2i

˙

, µ “

ˆ

µ1

µ2

˙

, Σ “

ˆ

Σ11 Σ12

Σ21 Σ22

˙

,

where xgi and µg are pg ˆ 1 vectors, and Σgh is a pg ˆ ph matrix, g, h P t1, 2u. Note that

p “ p1 ` p2. The test for assessing the vector correlation can be fomulated as

H : Σ12 “ O vs. A : Σ12 ‰ O. (1)

To construct test (1), we introduce the ρV coefficient introduced in [2]. The ρV coefficient

of x1i and x2i is defined as

ρV12 “
}Σ12}2F

}Σ11}F }Σ22}F
,

where } ¨ }F denotes the Frobenius norm. The ρV -coefficient measures the correlation

between two probability vectors. Particularly , if p1 “ p2 “ 1, it corresponds to the

square of Pearson’s correlation coefficient. Because Σ12 “ O and ρV12 “ 0 are equivalent,

the estimator of ρV12 can be used to hypothesize testing (1). The RV coefficient introduced

by [4] can be interpreted as a naive estimator of ρV -coefficient. However, [3] states that

the RV coefficient takes high values when the sample size n is small, and when both

p1 and p2 are large. Further, they corrected the RV coefficient so that it is consistent

even in high-dimensional settings, and showed the asymptotic normality of the corrected

RV under a high-dimensional framework with a multivariate normal population and the

following covariance structure: (hereafter referred to as weak-spike structure).

}Σ2
gg}2F

}Σgg}4F
“ op1q pp Ñ 8q. (2)

This study provides ρV -based test for (1) without the normality assumption and weak-

spike structure (2), while allowing the dimension p to be much larger than the sample

size n.



2. Meain results

2.1. Data generation model and asymptotic framework

The data generation model is assumed to be a latent factor model expressed as

x “ µ ` Bf ` ϵ. (3)

Here, µ P Rp is the population mean vector, B is the p ˆ d non-random matrix B “

pb1, . . . ,bpqJ that satisfies rankpBq “ d, and elements b1, . . . ,bp are referred to as fac-

tor loadings. f P Rd and ϵ P Rp are random vectors for common and specific factors,

respectively. We assume that f and ϵ are independent. We let f “ pf1, . . . , fdq and

ϵ “ pϵ1, . . . , ϵpqJ. Furthermore, we assume that fi is iid with Epfiq “ 0, Epf2i q “ 1,

and Epf4i q “ κ ` 3 ă 8. and ϵj are iid with Epϵjq “ 0, 0 ă Epϵ2jq “ ψj ă 8,

Epϵ4jq “ ψ2
j pκ ` 3q ă 8 for i P t1, . . . , du, and j P t1, . . . , pu. Under these assumptions,

Epfq “ 0, Epϵq “ 0, covpfq “ Id and covpϵq “ Ψ “ diagpψ1, . . . , ψpq.

We further partition B, Ψ, and ϵ into 2 components:

B “

ˆ

B1

B2

˙

, Ψ “

ˆ

Ψ1 O
O Ψ2

˙

, ϵ “

ˆ

ϵ1
ϵ2

˙

,

where Bg is pg ˆ d nonrandom matrix that satisfies rankpBgq “ dg ą 0, Ψg is pg ˆ pg
diagonal matrix, and ϵg is pg-dimensional random vector. These assumptions, along with

Equation (3), imply that

µ “

ˆ

µ1

µ2

˙

, Σ “ BBJ ` Ψ “

ˆ

B1B
J
1 ` Ψ1 B1B

J
2

B2B
J
1 B2B

J
2 ` Ψ2

˙

.

For the asymptotic evaluation, we impose the following regularity conditions:

(A1) pg “ pgpnq pg P t1, 2uq is a function of n such that pg tends to infinity along with

n Ñ 8, n{pg Ñ θg P p0,8q, and positive integer d is fixed.

(A2) ψmax “ maxtψ1, ψ2, . . . , ψpu is bounded.

(A3) There are two positive semidefinite matrices B˚
11 and B˚

22 such that rankpB˚
11q “

d1 ą 0, rankpB˚
22q “ d2 ą 0, and }p1{pgqBJ

g Bg ´B˚
gg}F Ñ 0 ppg Ñ 8q for g P t1, 2u.

(A4) f „ Ndp0, Idq.

2.2. Consistent estimator of ρV and its sampling distribution

The sample counterpart of ρV12 is obtained as

RV12 “
}S12}2F

}S11}F }S22}F
,

where the sample covariance matrix of xg and the cross-sample covariance matrix of x1

and x2 are constructed as

@g P t1, 2u, Sgg “
1

n ´ 1

n
ÿ

i“1

pxgi ´ xgqpxgi ´ xgqJ,

S12 “
1

n ´ 1

n
ÿ

i“1

px1i ´ x1qpx2i ´ x2q
J, S21 “ SJ

12



with xg “ n´1
řn

i“1 xgi for g P t1, 2u. RV12 is a consistent estimator of ρV12 when n Ñ 8

and p are fixed; however, it is not a consistent estimator of ρV12 when n Ñ 8 and p Ñ 8.

Therefore, we define the estimator of ρV12 with a high-dimensionality adjustment as

MRV12 “
{}Σ12}2F

{}Σ11}F
{}Σ22}F

.

Here, for g P t1, 2u,

{}Σgh}2F “
n ´ 1

npn ´ 2qpn ´ 3q
rpn ´ 1qpn ´ 2qtrpSghShgq ` trpSggqtrpShhq ´ nKghs,

where

Kgh “
1

n ´ 1

n
ÿ

i“1

}xgi ´ xg}2}xhi ´ xh}2,

is an unbiased estimator of }Σgh}2F derived by [5].

Theorem 1. Under (A1)–(A3), MRV12 “ ρV12 ` opp1q as n, p1, p2 Ñ 8.

To construct a hypothesis test (1), we consider the null distribution of MRV12.

Theorem 2. Suppose the null hypothesis H in (1) is true. Under (A1)–(A4),

nMRV12 `
trpΛ1qtrpΛ2q

a

trpΛ2
1qtrpΛ

2
2q

ù

d1
ÿ

i“1

d2
ÿ

j“1

λ1iλ2j
a

trpΛ2
1qtrpΛ

2
2q
χ2
ij pn, p1, p2 Ñ 8q, (4)

where χ2
11, . . . , χ

2
1d1
, χ2

21, . . . , χ
2
2d2

are mutually independent chi-squared distributed ran-

dom variables with one degree of freedom, Λ1 “ diagpλ11, . . . , λ1d1q is d1 ˆ d1 diago-

nal matrix whose diagonal components are the nonzero eigenvalues of B˚
11, and Λ2 “

diagpλ21, . . . , λ2d2q is d2 ˆ d2-diagonal matrix whose diagonal components are the nonzero

eigenvalues of B˚
22.

2.3. Test procedure

By estimating the unknown parameters in the random variable on the left-hand side

of (4), we construct a test statistic for (1). To estimate the number of factors dg, we focus

on the criteria function originally proposed by [1]:

ERgpiq “
λipSggq

λi`1pSggq
,

where λip¨q is the i-th largest eigenvalue and ERg is the eigenvalue ratio. The estimator

of dg is given by the number i that minimizes ERgpiq, that is,

pdg “ argmax
1ďiďig,max

ERgpiq,



where ig,max denotes the prespecified upper bound of i.

We further estimate the unknown parameters trpΛgq and trpΛ2
gq in (4) using

{trpΛgq “

pdg
ÿ

i“1

pλgi and {trpΛ2
gq “

pdg
ÿ

i“1

pλ2gi,

respectively. Here, pλgi “ λipSggq{pg for i P t1, 2, . . . , pdgu and g P t1, 2u.

Using these estimators, we propose a test statistic, defined as

T “ nMRV12 `
{trpΛ1q

{trpΛ2q
b

{trpΛ2
1q

{trpΛ2
2q

.

Theorem 3. Suppose the null hypothesis H in (1) is true. Under (A1)–(A4),

T ù

d1
ÿ

i“1

d2
ÿ

j“1

λ1iλ2j
a

trpΛ2
1qtrpΛ

2
2q
χ2
ij pn, p1, p2 Ñ 8q.

Based on the results of Theorem 3, we provide an approximate test for (1). The

following are four steps of the test procedure.

1. We draw n observations from the population and calculate pdg, pλgi for i P t1, . . . , pdgu,
{trpΛgq, and {trpΛ2

gq for g P t1, 2u. Using these estimators, we construct T .

2. We further draw a sample of pd1 ˆ pd2 independently and χ2
ij-distributed random

variables to obtain

rT “

pd1
ÿ

i“1

pd2
ÿ

j“1

pλ1ipλ2j
b

{trpΛ2
1q

{trpΛ2
2q

χ2
ij.

3. We then repeat step 2 until we obtain a Monte Carlo estimate of the distribution

for the random variable rT and its p1 ´ αq-quantile t̂α.

4. We further realized an approximate test with the nominal size α as follows:

Reject H def
ðñ T ą ptα. (5)

2.4. Aspects of power

To examine the power of test (5), we consider the following local alternatives:

AL: Let η be a constant greater than or equal to 1{2. There exists a d ˆ d matrix Ξ

such that all diagonal elements are 0 and at least one off-diagonal element is not 0

such that the following condition is met:
›

›

›

›

nη

p1p2
BJ

1B1B
J
2B2 ´ Ξ

›

›

›

›

F

Ñ 0 pn, p1, p2 Ñ 8q.



Furthermore, there exists a positive real number ∆ such that the following condition

is met:

n2η

p1p2
}Σ12}2F “

n2η

p1p2
trpBJ

1B1B
J
2B2q Ñ ∆ pn, p1, p2 Ñ 8q.

Theorem 4. Under the local alternatives AL and (A1)–(A4),

nMRV12 `
trpΛ1qtrpΛ2q

}Λ1}F }Λ2}F
ù

"

∆{p}Λ1}F }Λ2}F q ` zJC˚z ` c˚Jz η “ 1{2,
zJC˚z η ą 1{2,

where z has a d2-variate normal distribution with a mean vector 0 and covariance matrix

Id2 ` Kd2 and

C˚ “
1

}Λ1}F }Λ2}F
pB˚

11 b B˚
22q, c˚ “

1

}Λ1}F }Λ2}F
vecpΞ ` ΞJq.

Here, Kd2 denotes the commutation matrix.

Applying the theorem, we obtain the following corollary of the asymptotic power under

local alternative AL.

Corollary 1. Under (A1)–(A4), the asymptotic power function is

PrpT ą ptα|ALq “

"

Gttα ´ ∆{p}Λ1}F }Λ2}F qu ` op1q η “ 1{2,
α ` op1q η ą 1{2,

where Gp¨q denotes the cumulative distribution function of zJC˚z ` c˚Jz.

3. Numerical studies

We examine the size and power of test (5) in a finite sample and dimension by Monte

Carlo simulations.
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