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1. Introduction
We let x4, ...,x, be p-dimensional random sample with a population mean vector p
and population covariance matrix 3. We further partition x;, u, and 3 into 2 components:
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where x,; and p, are p, x 1 vectors, and X, is a py x p, matrix, g, h € {1,2}. Note that
p = p1 + pa. The test for assessing the vector correlation can be fomulated as
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To construct test (1), we introduce the pV coefficient introduced in [2]. The pV coefficient
of x1; and xy; is defined as

|22 7
Vi = e T
|311] P | X22]
where || - | denotes the Frobenius norm. The pV-coefficient measures the correlation

between two probability vectors. Particularly , if p; = ps = 1, it corresponds to the
square of Pearson’s correlation coefficient. Because 315 = O and pVis = 0 are equivalent,
the estimator of pVi5 can be used to hypothesize testing (1). The RV coefficient introduced
by [4] can be interpreted as a naive estimator of pV-coefficient. However, [3] states that
the RV coefficient takes high values when the sample size n is small, and when both
p1 and ps are large. Further, they corrected the RV coefficient so that it is consistent
even in high-dimensional settings, and showed the asymptotic normality of the corrected
RV under a high-dimensional framework with a multivariate normal population and the
following covariance structure: (hereafter referred to as weak-spike structure).
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This study provides pV-based test for (1) without the normality assumption and weak-
spike structure (2), while allowing the dimension p to be much larger than the sample
size n.



2. Meain results
2.1. Data generation model and asymptotic framework
The data generation model is assumed to be a latent factor model expressed as

x=p+Bf +e (3)

Here, p € R? is the population mean vector, B is the p x d non-random matrix B =
(b1,...,b,)" that satisfies rank(B) = d, and elements by,...,b, are referred to as fac-
tor loadings. f € R% and € € R? are random vectors for common and specific factors,
respectively. We assume that f and e are independent. We let f = (fj,... f;) and
€ = (€1,...,6,) . Furthermore, we assume that f; is iid with E(f;) = 0, E(f}) = 1
and BE(f}) = x +3 < co. and ¢ are iid with E(¢;) = 0, 0 < E(&) = ¢; < o,
E(ejf) = 1/1]2.(%@ +3) <o forie{l,...,d}, and j € {1,...,p}. Under these assumptions,
E(f) = 0, E(e) = 0, cov(f) = I; and cov(e) = ¥ = diag(¢1, ..., ¢,).
We further partition B, ¥, and € into 2 components:
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where B, is p, x d nonrandom matrix that satisfies rank(B,) = d, > 0, ¥, is p, x p,
diagonal matrix, and €, is ps-dimensional random vector. These assumptions, along with
Equation (3), imply that
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For the asymptotic evaluation, we impose the following regularity conditions:

(A1) p; = py(n) (g € {1,2}) is a function of n such that p, tends to infinity along with
n — o0, n/p, — 8, € (0,00), and positive integer d is fixed.

(A2) Ymax = max{thy, 1o, ..., 1,} is bounded.

(A3) There are two positive semidefinite matrices B}, and B3, such that rank(B7},) =
dy > 0, rank(B3,) = dy > 0, and [(1/ps)B, B, — B! | — 0 (py — o0) for g € {1,2}.

(Ad) f ~ N;(0,L,).

2.2. Consistent estimator of pV and its sampling distribution
The sample counterpart of pVi, is obtained as
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where the sample covariance matrix of x, and the cross-sample covariance matrix of x;

RVip =

and xs are constructed as
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with X, = n~ ' 27" | x,, for g € {1,2}. RVi, is a consistent estimator of pViy when n — o
and p are fixed; however, it is not a consistent estimator of pVj5 when n — o0 and p — 0.
Therefore, we define the estimator of pVj, with a high-dimensionality adjustment as
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Here, for g € {1, 2},

n—1

HEQhH%7 = n(n _ 2)(71 — 3) [(

n —1)(n — 2)tr(SynShg) + tr(Sgg)tr(Sun) — nk ],
where
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is an unbiased estimator of |35 derived by [5].

Theorem 1. Under (A1)-(A3), MRVis = pVis + 0,(1) as n,p1, ps — 0.

To construct a hypothesis test (1), we consider the null distribution of M RV)s.

Theorem 2. Suppose the null hypothesis H in (1) is true. Under (A1)-(A4),
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where X3, ... ,X%dl,xgl, e ,ngQ are mutually independent chi-squared distributed ran-
dom wvariables with one degree of freedom, Ay = diag(Ai1,...,A14,) @s di x dy diago-

nal matriz whose diagonal components are the nonzero eigenvalues of By, and Ay =
diag(Aa1, - .., Aag,) 1S do X da-diagonal matriz whose diagonal components are the nonzero
eigenvalues of BJ,.

2.3. Test procedure

By estimating the unknown parameters in the random variable on the left-hand side
of (4), we construct a test statistic for (1). To estimate the number of factors d,, we focus
on the criteria function originally proposed by [1]:
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where \;(-) is the i-th largest eigenvalue and ER, is the eigenvalue ratio. The estimator

ERg(i) =

of d, is given by the number 7 that minimizes FR,(i), that is,

d, = argmax ER, (1),

1<’i<ig,max



where 74 max denotes the prespecified upper bound of <.

We further estimate the unknown parameters tr(A,) and tr(AZ2) in (4) using

tA Z)‘l and tr A2 Z)\gz,

respectively. Here, Xgi = Xi(Syg)/py forie{1,2,... ,Jg} and g € {1,2}.
Using these estimators, we propose a test statistic, defined as

tr(Ap)r(As)
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Theorem 3. Suppose the null hypothesis H in (1) is true. Under (A1)-(A4),

i=1j=1 tr(A7)tr(A3) "

Based on the results of Theorem 3, we provide an approximate test for (1). The

following are four steps of the test procedure.

1.

We draw n observations from the population and calculate c?g, Xgi forie{1,..., Jg},

L —

tr(A,), and tr(A2) for g € {1,2}. Using these estimators, we construct 7.
9 g

. We further draw a sample of c?l X 6?2 independently and X?j—distributed random

variables to obtain
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. We then repeat step 2 until we obtain a Monte Carlo estimate of the distribution

for the random variable T and its (1 — a)-quantile Z,.

. We further realized an approximate test with the nominal size « as follows:

Reject ‘H BN N ta. (5)

2.4. Aspects of power

To examine the power of test (5), we consider the following local alternatives:

.AL:

Let 1 be a constant greater than or equal to 1/2. There exists a d x d matrix 2
such that all diagonal elements are 0 and at least one off-diagonal element is not 0
such that the following condition is met:
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Furthermore, there exists a positive real number A such that the following condition
is met:
n2n 2n
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tr(B{B1B; By) > A (n,p1,ps — ).

Theorem 4. Under the local alternatives Ap, and (A1)-(A4),

nMRVi, + tr(A)tr(Ay) { A/(|A1lr|Az|r) +27C*2 + Tz n =1/2,

1AL [ Az F z'C'z n>1/2,
where z has a d*-variate normal distribution with a mean vector 0 and covariance matrix
Id2 + KdQ and
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Here, K2 denotes the commutation matrix.

vec(E +E2").

Applying the theorem, we obtain the following corollary of the asymptotic power under
local alternative Aj.

Corollary 1. Under (A1)-(A4), the asymptotic power function is

o Gita — A/([A1][p[Az]F)} +0(1) 7 =1/2,
Pr(T" > talAr) = { a+o(1) Z > 1/2,

where G(-) denotes the cumulative distribution function of z' C*z + c*'z.

3. Numerical studies
We examine the size and power of test (5) in a finite sample and dimension by Monte
Carlo simulations.
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