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Abstract

The recent seminal work of Chernozhukov, Chetverikov and Kato has shown that bootstrap approxi-

mation for the maximum of a sum of independent random vectors is justified even when the dimension is

much larger than the sample size. In this context, numerical experiments suggest that third-moment match

bootstrap approximations would outperform normal approximation even without studentization, but the

existing theoretical results cannot explain this phenomenon. In this paper, we first show that Edgeworth

expansion, if justified, can give an explanation for this phenomenon. In particular, we derive an asymp-

totic expansion formula of the bootstrap coverage probability and show that the third-moment match wild

bootstrap is second-order accurate in high-dimensions even without studentization when the covariance

matrix has identical diagonal entries and bounded eigenvalues. In addition, we show the validity of the

asymptotic expansion when appropriate random vectors have Stein kernels.

1 Introduction

Let X1, . . . , Xn be independent centered random vectors in Rd with finite variance. Set

Sn :=
1√
n

n∑
i=1

Xi.

The aim of this paper is to investigate the accuracy of bootstrap approximation for themaximum type statistics

Tn := max
1≤j≤d

Sn,j and ‖Sn‖∞ := max
1≤j≤d

|Sn,j |,

when both n and d tend to infinity. The seminal work of Chernozhukov, Chetverikov & Kato [6] has estab-

lished Gaussian type approximations for these statistics under very mild assumptions when the dimension d

is possibly much larger than the sample size n. To be precise, let Z be a centered Gaussian vector in Rd with
the same covariance matrix as Sn, say Σ. Gaussian analogs of Tn and ‖Sn‖∞ are respectively given by

Z∨ := max
1≤j≤d

Zj and ‖Z‖∞ := max
1≤j≤d

|Zj |.

Under mild moment assumptions, Chernozhukov, Chetverikov & Kato [6] have shown that

sup
t∈R

|P (Tn ≤ t)− P (Z∨ ≤ t)| = O

((
loga(dn)

n

)b)
(1.1)
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holds with a = 7 and b = 1/8. An analogous result also holds for ‖Sn‖∞. This result implies that given a

significance level α ∈ (0, 1), the probability P (Tn ≥ cG1−α) is approximately equal to α as long as log d =

o(n1/7), where cG1−α is the (1−α)-quantile of Z∨. Therefore, we can use cG1−α as a critical value to construct

asymptotically (1−α)-level simultaneous confidence intervals or α-level tests for a high-dimensional vector

of parameters; see [1, 9] for details. In practice, cG1−α is not computable because Σ is generally unknown,

so we need to replace it by an estimate. In [6], this is implemented by the Gaussian wild (or multiplier)

bootstrap: Let w1, . . . , wn be i.i.d. standard normal variables independent of the data X1, . . . , Xn. Define

the Gaussian wild bootstrap version of Sn as follows:

S∗
n :=

1√
n

n∑
i=1

wi(Xi − X̄), where X̄ =
1

n

n∑
i=1

Xi. (1.2)

We may naturally expect that cG1−α would be well-approximated by the (1 − α)-quantile of the conditional

law of T ∗
n := max1≤j≤d S

∗
n,j given the data, say ĉ1−α. This is formally justified by [6]: They essentially

prove

P (Tn ≥ ĉ1−α) = α+O

((
loga(dn)

n

)b)
(1.3)

with a = 7 and b = 1/8. The successive work [7] have improved the convergence rates of (1.1) and (1.3) to

b = 1/6. They also proved the left hand side of (1.1) can be replaced by supA∈R |P (Sn ∈ A)−P (Z ∈ A)|,
whereR := {

∏d
j=1[aj , bj ] : aj ≤ bj , j = 1, . . . , d} is the class of rectangles in Rd.

It is easy to see that the conditional law of S∗
n given the data is N(0, Σ̂n), where Σ̂n is the sample

covariance matrix: Σ̂n := n−1
∑n

i=1(Xi− X̄)(Xi− X̄)>. Hence, the Gaussian wild bootstrap is essentially

a feasible version of normal approximation for Tn. Then, it is natural to ask whether the approximation

accuracy can be improved by more sophisticated bootstrap methods such as the empirical and non-Gaussian

wild bootstraps. In the fixed-dimensional setting, it is well-known that standard bootstrap methods improve

the approximation accuracy in the coverage probabilities upon normal approximation only when the statistic

of interest is asymptotically pivotal (cf. [15, Chapter 3] and [20, Section 3]). However, despite that Tn and

‖Sn‖∞ are not asymptotically pivotal in general, numerical experiments suggest that third-moment match

bootstrap methods would outperform normal approximation (cf. [8, 11]). To appreciate this, we depict in

Fig. 1 the P-P plot for the rejection rate P (Tn ≥ ĉ1−α) against the nominal significance level α when

n = 200 and d = 400, where ĉ1−α is computed either the Gaussian wild bootstrap or a wild bootstrap with

third-moment match. We can clearly see that the latter performance is much better than the former.

Deng & Zhang [11] tried to explain this phenomenon by showing that convergence rates of third-moment

match bootstrap approximations have a better dimension dependence, i.e. they achieve a = 5 and b =

1/6 in (1.3). Later, however, it was shown in [16] that the same convergence rate is achieved by normal

approximation, i.e. (1.1) holds with a = 5 and b = 1/6. Chernozhukov et al. [8] have further improved the

convergence rate to a = 5 and b = 1/4 for both normal and bootstrap approximations. Meanwhile, if we

require Σ to be invertible, it is possible to achieve the Berry–Esseen rate n−1/2 up to a log factor even in the

high-dimensional setting. Results in this direction first appeared in Fang & Koike [12], where the following
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Figure 1: PP-plots for the rejection rate P (Tn ≥ ĉ1−α) against the nominal significance level α when n = 200 and

d = 400. The rejection rate is evaluated based on 20,000 Monte Carlo iterations. The critical value ĉ1−α is computed

by the Gaussian wild bootstrap for the left panel and the wild bootstrap with w1 generated from the standardized beta

distribution with parameters α, β given by (2.6) with ν = 0.1 for the right panel, respectively. The number of bootstrap

replications is 499. X1, . . . , Xn are generated from aGaussian copula model with gammamarginals as in the simulation

study. The parameter matrix is R = (0.2|j−k|)1≤j,k≤d.

result is obtained when X1, . . . , Xn are log-concave:

sup
A∈R

|P (Sn ∈ A)− P (Z ∈ A)| = O

√ log3 d

n
logn

 . (1.4)

This rate is known to be optimal up to the logn factor in terms of both n and d; see Proposition 1.1 in [12].

This type of results has been further investigated in [10, 17, 21]. In particular, Chernozhukov et al. [10] have

obtained the above nearly optimal rate when maxi,j |Xij | is bounded. Further, in some situations, the rate

n−1/2 is (nearly) attainable even when Σ is (asymptotically) degenerate; see [13, 14, 22]. Nevertheless, all

of these improvements are valid for normal approximation and thus do not explain the superior performances

of third-moment match bootstrap approximations.

In this paper, we aim to explain the superior performance of bootstrap approximation in high-dimensions

using Edgeworth expansion and related techniques. We first prove the validity of Edgeworth expansion for

Sn in the high-dimensional setting when Xi have Stein kernels (cf. Definition 2.1). This also allows us

to derive a valid Edgeworth expansion for the wild bootstrap statistic S∗
n when the weights wi have Stein

kernels. In particular, our results cover the simulation setting for Fig. 1 (cf. Example 2.1). Next, we develop

an asymptotic expansion formula of P (Tn ≥ ĉ1−α) in Theorem 3.3. As a conseuqnece, we find that the wild

bootstrap with third moment match is second-order accurate without studentization when d ≥ n and Σ has

identical diagonal entries and bounded eigenvalues, revealing the blessing of dimensionality in this context;

see Corollary 3.1.

The full version of the paper is available at arXiv: https://arxiv.org/abs/2404.05006.
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Notation Throughout the paper, we assume that Sn has an invertible covariance matrix Σ and denote

by σ∗ the square root of the minimum eigenvalue of Σ. We also set σ = maxj=1,...,d

√
Σjj and σ =

minj=1,...,d

√
Σjj . Further, w1, . . . , wn denote i.i.d. random variables independent of X1, . . . , Xn. They

are used to define the wild bootstrap statistic S∗
n in (1.2). We always assume E[w1] = 0 and E[w2

1] = 1.

Also, P ∗ and E∗ denote the conditional probability and expectation given the dataX1, . . . , Xn, respectively.

For p ∈ (0, 1), ĉp denotes the conditional p-quantile of T
∗
n given the data, i.e. ĉp := inf{t ∈ R : P ∗(T ∗

n ≤
t) ≥ p}.

For a vector x ∈ Rd, we set |x| :=
√∑d

j=1 x
2
j and x∨ := max1≤j≤d xj . We denote by 1d =

(1, . . . , 1)> ∈ Rd the all-ones vector in Rd. For r ∈ N, (Rd)⊗r denotes the set of real-valued d-dimensional

r-arrays V = (Vj1,...,jr)1≤j1,...,jr≤d. In particular, (Rd)⊗1 = Rd and (Rd)⊗2 is the set of d × d matrices.

For U ∈ (Rd)⊗q and V ∈ (Rd)⊗r, we set U ⊗ V := (Ui1,...,iqVj1,...,jr)1≤i1,...,iq ,j1,...,jr≤d ∈ (Rd)⊗(q+r). We

write U⊗2 = U⊗U for short. When q = r, we also set 〈U, V 〉 :=
∑d

j1,...,jr=1 Uj1,...,jrVj1,...,jr . In particular,

when q = r = 1, 〈U, V 〉 is the Euclidean inner product ofU and V which we also writeU ·V . In addition, we
set ‖V ‖1 :=

∑d
j1,...,jr=1 |Vj1,...,jr | and ‖V ‖∞ := max1≤j1,...,jr≤d |Vj1,...,jr |. Further, for x ∈ Rd, we define

x⊗r := (xj1 · · ·xjr)1≤j1,...,jr≤d ∈ (Rd)⊗r. Finally, we set

Xr :=
1

n

n∑
i=1

X⊗r
i .

Given an r-times differentiable function h : Rd → R, we set ∇rh(x) := (∂j1,...,jrh(x))1≤j1,...,jr≤d ∈
(Rd)⊗r for x ∈ Rd, where ∂j1,...,jr = ∂r

∂xj1 ···∂xjr
. For m ∈ N ∪ {∞}, Cmb (Rd) denotes the set of bounded

Cm functions with bounded derivatives.

For an invertible matrix V , φV denotes the density of N(0, V ). We write φd = φId for short, where Id

is the d× d identity matrix. Further, we write φ = φ1 for short. Φ denotes the standard normal distribution

function. Also, for a distribution function F : R → [0, 1], its (generalized) inverse is defined as F−1(p) =

inf{t ∈ R : F (t) ≥ p}, p ∈ (0, 1). We refer to Appendix A.1 in [4] for useful properties of inverse

distribution functions.

For a random vector ξ and p ∈ (1,∞), we set ‖ξ‖p := (E[|ξ|p])1/p (recall that | · | is the Euclidean norm).

Further, for α > 0, we set ‖ξ‖ψα := inf{t > 0 : E[exp{(|ξ|/t)α}] ≤ 2}. For two random vectors ξ and η,

we write ξ
d
= η if ξ has the same law as η.

We assume d ≥ 3 whenever we consider an expression containing log d. A similar convention is applied

to n.

2 Valid Edgeworth expansion in high-dimensions

Let us formally define the notion of Stein kernel.

Definition 2.1 (Stein kernel). Let ξ be a random vector in Rd with E[‖ξ‖∞] < ∞. A measurable function

τ : Rd → Rd ⊗ Rd is called a Stein kernel for (the law of) ξ if E[‖τ(ξ)‖∞] <∞ and

E[(ξ − E[ξ]) · ∇h(ξ)] = E[〈τ(ξ),∇2h(ξ)〉] (2.1)

for any h ∈ C2
b (Rd).
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The concept of Stein kernel was originally introduced in Stein [27, Lecture VI] for the univariate case.

Although its partial multivariate extension dates back to [5], general treatments have started in more recent

studies of [18, 26], stemming from the discovery of connection to Malliavin calculus due to Nourdin &

Peccati [25] (the so-called Malliavin–Stein method). We refer to [23] for the recent development.

Remark 2.1 (Alternative definition). Our definition of Stein kernel is taken from [18]. In the literature, the

definition of Stein kernel often requires (2.1) to hold with ∇h on the both sides replaced by any bounded

C1 function h : Rd → Rd with bounded derivatives. Except for the case d = 1, this requirement is slightly

stronger than ours. Nevertheless, as far as the author knows, this stronger requirement has so far been met

by all known constructions of Stein kernels, including all the examples of this paper.

The validity of Edgeworth expansion for Sn is ensured if the summands have Stein kernels:

Theorem 2.1 (Edgeworth expansion for Sn). Suppose thatXi has a Stein kernel τ
X
i for every i = 1, . . . , n.

Suppose also that there exists a constant b > 0 such that

‖Xij‖ψ1 ≤ b, ‖τXi,jk(Xi)‖ψ1/2
≤ b2 (2.2)

for all i = 1, . . . , n and j, k = 1, . . . , d. Further, assume log3 d ≤ n. Then there exists a universal constant

C > 0 such that

sup
A∈R

∣∣∣∣P (Sn ∈ A)−
∫
A
pn(z)dz

∣∣∣∣ ≤ C
b5

σ5∗

log3 d

n
logn. (2.3)

Remark 2.2. Here and below, we do not intend to optimize the dependence of bounds on b and σ∗.

Example 2.1 (Gaussian copula model). Let R be a d × d positive semidefinite symmetric matrix with unit

diagonals. Also, for every j = 1, . . . , d, let µj be a non-degenerate probability distribution on R (i.e. µj

is not the unit mass at a point), and denote by Fj its distribution function. The Gaussian copula model

U = (U1, . . . , Ud)
> with parameter matrix R and marginal distributions µ1, . . . , µd is defined as Uj =

F−1
j (Φ(Zj)) for j = 1, . . . , d, where Z ∼ N(0, R).

Proposition 2.1 (Stein kernel of Gaussian copula model). Suppose that there exists a constant κ > 0 such

that for every j = 1, . . . , d and any Borel set B ⊂ R,

lim inf
h↓0

µj(B
h)− µj(B)

h
≥ κmin{µj(B), 1− µj(B)}, (2.4)

where Bh := {t ∈ R : |t− s| < h for some s ∈ B}. Then X := U − E[U ] has a Stein kernel τ and

max
1≤j≤d

‖Xj‖ψ1 ≤ Cκ−1, max
1≤j,k≤d

‖τjk(X)‖ψ1 ≤ Cκ−2

for some universal constant C > 0.

The maximal constant κ satisfying (2.4) is called the Cheeger (isoperimetric) constant of µj . We refer

to [3, Theorem 1.3] for a useful equivalent formulation in the univariate case. When µj is log-concave, then

(2.4) is satisfied with κ = 1/
√
3Var[Xj ] by Proposition 4.1 in [2]. Since the gamma distribution with shape

parameter ≥ 1 is log-concave, Proposition 2.1 shows that the simulated model in the introduction satisfies

the assumptions of Theorem 2.1.
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Other constructions of multivariate Stein kernels are found in [23, Section 4], although it does not seem

straightforward to verify the second condition of (2.2) for them.

We turn to Edgeworth expansion for S∗
n. Its validity is ensured if the weight variables have Stein kernels:

Theorem 2.2 (Edgeworth expansion for S∗
n). Suppose that max1≤i≤nmax1≤j≤d ‖Xij‖ψ1 ≤ b for some

constant b > 0. Suppose also that w1 satisfies either of the following conditions:

(i) w1 has a Stein kernel τ
∗ and there exists a constant bw ≥ 1 such that |w1| ≤ bw and |τ∗(w1)| ≤ b2w.

(ii) w1 ∼ N(0, 1). We set bw = 1 in this case.

Further, assume log3 d ≤ n. Set γ := E[w3
1]. Then there exists a universal constant C > 0 such that

sup
A∈R

∣∣∣∣P ∗(S∗
n ∈ A)−

∫
A
p̂n,γ(z)dz

∣∣∣∣ ≤ C
b5wb

5

σ5∗

log3(dn)

n
logn (2.5)

with probability at least 1− 1/n.

We can construct a random variable w1 satisfying Condition (i) and E[w3
1] = 1 as follows: Let η be a

random variable following the beta distribution with parameters α, β > 0. Then w := (η − E[η])/
√
Var[η]

satisfies (i) by [19, Example 4.9]. Also, we have

E[w3
1] =

2(β − α)
√
α+ β + 1

(α+ β + 2)
√
αβ

=
2(1− 2µ)

√
1 + ν

(2 + ν)
√
µ(1− µ)

,

where µ = α/(α + β) and ν = α + β. From this expression, given a positive constant ν > 0, we have

E[w3
1] = 1 if we set

α = ν
c− (2 + ν)

√
c

2c
, β = ν

c+ (2 + ν)
√
c

2c
with c = ν2 + 20ν + 20. (2.6)

A drawback of Theorem 2.2 is that two-point distributions do not admit Stein kernels. In particular, it

does not cover Mammen’s wild bootstrap examined in the simulation study of [11]. However, the above

standardized beta distribution becomes closer to Mammen’s two-point distribution as ν is closer to 0, and

their numerical difference virtually vanishes. Our simulation study shows that the beta wild bootstrap with

ν = 0.1 performs very similarly to Mammen’s one.

3 Second-order accurate approximation

Our next aim is to develop an asymptotic expansion of the bootstrap coverage probability. Such an

expansion is conventionally derived with the help of Cornish–Fisher expansion (cf. Section 3.5.2 in [15]), so

we first develop such expansions for Tn and T
∗
n in our setting.

Before starting discussions, we introduce some notation used throughout this section. For t ∈ R, we set
A(t) := (−∞, t]d. We denote by fΣ the density of Z∨, where Z ∼ N(0,Σ). Note that fΣ is a C∞ function

since Σ is invertible. Finally, we set ςd :=
√
Var[Z∨] log d.

3.1 Cornish–Fisher expansion

This section develops Cornish–Fisher type expansions for Tn and T
∗
n .
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Theorem 3.1 (Cornish–Fisher expansion for Tn). Under the assumptions of Theorem 2.1, let λ > 0 be a

constant such that b/σ∗ ≤ λ. Then, for any ε ∈ (0, 1/2), there exist positive constants c and C depending

only on λ and ε such that if
ς3d
σ3∗

log3 d

n
logn ≤ c, (3.1)

then

sup
ε<p<1−ε

∣∣∣∣∣cp −
(
cGp −

Qn(c
G
p )

fΣ(cGp )

)∣∣∣∣∣ ≤ C√
log d

ς3d
σ2∗

log3 d

n
logn, (3.2)

where cp is the p-quantile of Tn and

Qn(t) :=

∫
A(t)

{pn(z)− φΣ(z)}dz = − 1

6
√
n
〈E[X3],

∫
A(t)

∇3φΣ(z)dz〉, t ∈ R.

Theorem 3.2 (Cornish–Fisher expansion for T ∗
n ). Under the assumptions of Theorem 2.2, let λ > 0 be a

constant such that b/σ∗ ≤ λ. Then, for any ε ∈ (0, 1/2), there exist positive constants c and C depending

only on λ, ε and bw such that if

ς3d
σ3∗

log3(dn)

n
logn ≤ c, (3.3)

then

sup
ε<p<1−ε

∣∣∣∣∣ĉp −
(
cGp −

Q̂n,γ(c
G
p )

fΣ(cGp )

)∣∣∣∣∣ ≤ C√
log d

ς3d
σ2∗

log3(dn)

n
logn (3.4)

with probability at least 1− 1/n, where

Q̂n,γ(t) :=

∫
A(t)

{p̂n,γ(z)− φΣ(z)}dz.

3.2 Asymptotic expansion of coverage probability

For a d× dmatrix V , vec(V ) denotes the d2-dimensional vector obtained by stacking the columns of V .

For two random vectors ξ and η, the random vector (ξ>, η>)> will be denoted by (ξ, η) for simplicity.

Theorem 3.3 (Asymptotic expansion of bootstrap coverage probability). Suppose that the assumptions of

Theorem 3.2 are satisfied. For every i = 1, . . . , n, set Yi := vec(X⊗2
i − E[X⊗2

i ]) and suppose that the

(d+ d2)-dimensional random vector (Xi, Yi) has a Stein kernel τ̄i of the form

τ̄i =

(
τXi τXYi

τY Xi τYi

)
(3.5)

with τXi an (Rd)⊗2-valued function and such that

max
1≤j,k≤d

‖τXi,jk(Xi, Yi)‖ψ1/2
≤ b2, max

1≤j,k≤d2
‖τYi,jk(Xi, Yi)‖ψ1/4

≤ b4,

max
1≤j≤d,1≤k≤d2

(
‖τXYi,jk (Xi, Yi)‖ψ1/3

+ ‖τY Xi,kj (Xi, Yi)‖ψ1/3

)
≤ b3.

(3.6)

Then, for any ε ∈ (0, 1/2), there exist positive constants c and C depending only on λ, ε and bw such that if

(3.3) holds, then

sup
ε<α<1−ε

∣∣P (Tn ≥ ĉ1−α)−
(
α− (1− γ)Qn(c

G
1−α)− E[Rn(α)]

)∣∣ ≤ C
ς3d
σ3∗

log3(dn)

n
logn,
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where

Rn(α) :=
1√
n

〈
X3 ⊗ 1d,Ψ

⊗2
α

〉
2fΣ(cG1−α)

, Ψα :=

∫
A(cG1−α)

∇2φΣ(z)dz.

Remark 3.1 (Univariate case). When d = 1 and Σ = 1, the above asymptotic expansion formula reduces toα− E[X3]
6
√
n
{2(cG1−α)2 + 1}φ(cG1−α) if γ = 0,

α− E[X3]
2
√
n
(cG1−α)

2φ(cG1−α) if γ = 1.

These recover the asymptotic expansion formulae for normal and empirical bootstrap coverage probabilities,

respectively; see e.g. [20, Eqs.(2)–(3)] (note that cG1−α = Φ−1(1− α) = −Φ−1(α) when d = 1).

The new assumption in Theorem 3.3 is the existence of a (nice) Stein kernel for (Xi, Yi). This assumption

can be viewed as a counterpart of joint Cramér’s condition forXi and Yi that is typically imposed to derive a

univariate counterpart of Theorem 3.3; see e.g. Eq.(2.54) in [15]. It is natural in this sense, but the verification

is not easy in practice. Here, we give one sufficient condition following Mikulincer [24]’s idea of using the

Malliavin–Stein method.

Lemma 3.1. Let G be a standard Gaussian vector in Rd′ . Let ψ : Rd′ → Rd be a locally Lipschitz function
such that E[|ψ(G)|2] < ∞ and max1≤j≤d E[|∇ψj(G)|2] < ∞. Then X := ψ(G) − E[ψ(G)] has a Stein

kernel τ such that

‖τjk(X)‖p ≤ ‖∇ψj(G)‖2p‖∇ψk(G)‖2p (3.7)

for all p ≥ 1 and j, k = 1, . . . , d. In addition,

‖Xj‖p ≤
√
p− 1‖∇ψj(G)‖p (3.8)

for any even integer p ≥ 2 and j = 1, . . . , d.

Moreover, if we further assume E[|ψ(G)|4] < ∞ and max1≤j≤d E[|ψ(G)|2|∇ψj(G)|2] < ∞, then for

Y = vec(X⊗2 − E[X⊗2]), (X,Y ) has a Stein kernel of the form (3.5) and satisfies

max
1≤j,k≤d

‖τXi,jk(X,Y )‖p ≤ max
1≤j≤d

‖∇ψj(G)‖22p,

max
1≤j≤d,1≤l≤d2

(
‖τXYi,jl (X,Y )‖p ∨ ‖τY Xi,lj (X,Y )‖p

)
≤ 2 max

1≤j,k,l≤d
‖∇ψj(G)‖2p‖Xl∇ψk(G)‖2p,

max
1≤l,m≤d2

‖τYi,lm(X,Y )‖p ≤ 4 max
1≤j,k≤d

‖Xj∇ψk(G)‖22p

for all p ≥ 1.

Example 3.1 (Gaussian copula model). Consider the same setting as Example 2.1. Proposition 2.1 can be

extended as follows.

Proposition 3.1. Set Y = vec(X⊗2 − E[X⊗2]). Under the assumptions of Proposition 2.1, (X,Y ) has a

Stein kernel of the form (3.5) and satisfies (3.6) with b = Cκ−1 for some universal constant C > 0.
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Now we discuss implications of Theorem 3.3 to the second-order accuracy of standard bootstrap ap-

proximations. An easy consequence is that any wild bootstrap approximation is second-order accurate when

E[X3] = 0 as long as w1 satisfies the assumptions in Theorem 2.2. However, simulation results suggest that

the choice of w1 would affect the performance even when E[X3] = 0, so there is still room to investigate.

The following corollary gives a more interesting implication:

Corollary 3.1. Under the assumptions of Theorem 3.3, suppose additionally that E[w3
1] = 1, ε ≥ 2e−d/2,

σ = σ =: σ and the maximum eigenvalue of Σ is bounded by Kσ2 with some constant K > 0. Then there

exist a constant C > 0 depending only on λ, ε,K and bw such that

sup
ε<α<1−ε

|P (Tn ≥ ĉ1−α)− α| ≤ C

 ς3d
σ3∗

log3(dn)

n
logn+

ςd
σ

√
log3 d

dn

 . (3.9)

Observe that the second term on the right hand side of (3.9) is divided by
√
d. Hence, Corollary 3.1

implies that the third-moment match wild bootstrap is second-order accurate if d ≥ n and Σ has identical

diagonal entries and bounded eigenvalues with respect to d. This seems to be a new result on the blessing of

dimensionality, although too high-dimensionality is harmful due to the first term of the bound.
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