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In the era of “big data”, the analysis of high-dimensional tensor data has become
increasingly important in various fields, including genomics, economics, image
analysis, and machine learning. High-order tensor data often exhibit intrinsic
low-rank structures [14, 25]. To capture these low-rank structures, the “signal
plus noise” tensor model has been widely adopted [9, 11, 15]. Let n1, . . . , nd ∈
N+ denote d dimension numbers, where d ≥ 3, and let N = n1 + · · ·+ nd. The
d-fold rank-R spiked tensor model is defined as:

T =

R∑
r=1

βrx
(r,1) ⊗ · · · ⊗ x(r,d) +

1√
N

X, (1)

where β1 ≥ · · · ≥ βR > 0 are the signal-to-noise ratios (SNRs), {x(1,l), · · · ,x(R,l)}
are mutually orthogonal unit vectors Rnl for each 1 ≤ l ≤ d [13], and X =
(Xi1···id)n1×···×nd

∈ Rn1×···×nd is a noise tensor with independent and iden-
tically distributed (i.i.d.) entries, each having zero mean and unit variance.
Specifically, the rank-1 spiked tensor model [21] is given by:

T = βx(1) ⊗ · · · ⊗ x(d) +
1√
N

X, (2)

where β > 0 is the single SNR of the model.
The primary focus of most existing literature is on recovering the signal vec-

tors {x(1,l), . . . ,x(R,l)}, 1 ≤ l ≤ d from the observed tensor T , with a particular
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emphasis on the computational efficiency of recovery algorithms. In the case of
the rank-one model (2) with symmetric and i.i.d. Gaussian noise X, [10] showed
that computing the maximum likelihood (ML) estimator of βx(1)⊗ · · ·⊗x(d) is
in general NP-hard, and [1] provided a comprehensive discussion on the relation-
ship between the computational complexity of the ML estimator and the value of
the SNR β. To reduce the computational complexity, [21] proposed the use of the
power iteration method and approximate message passing (AMP) algorithms.
These two methods have been extensively investigated by [5, 7, 12, 15, 20]
for AMP and by [11] for power iteration. Moreover, [21] introduced the tensor
unfolding method, which involves unfolding the tensor data T into matrices, en-
abling the recovery of signals through Principal Component Analysis (PCA). [6]
conducted a comprehensive study of the tensor unfolding method for the general
asymmetric model (2) under fairly general noise distribution assumptions.

However, when the SNRs fall below the phase transition threshold, these
recovery methods often fail. In such cases, a less ambitious but potentially more
achievable goal is to test the alignment of a signal in T with a given directional
tensor a(1)⊗· · ·⊗a(d), where a(j), 1 ≤ j ≤ d are d given directional unit vectors
in Rnj , respectively. This leads to the following tensor signal alignment test
between two hypotheses:

H0 : a(l) ⊥ x(r,l) for 1 ≤ l ≤ d, 1 ≤ r ≤ R.
H1 : there exists at least one 1 ≤ l ≤ d, 1 ≤ r ≤ R such that a(l) 6⊥ x(r,l).

(3)

Despite the tensor signal alignment test appearing more tractable than signal
recovery, to the best of our knowledge, there is no established and rigorously
justified procedure for addressing this problem. The difficulty stems from the
high dimensionality of the tensors and the lack of a meaningful test statistic.

We leverage the tensor contraction operator Φd, originally proposed in [22],
which maps an arbitrary tensor T and unit vectors {a(j)} to a matrix R:

Φd : Rn1×···×nd × Sn1−1 × · · · × Snd−1 −→ RN×N ,

(T ,a(1), · · · ,a(d)) 7−→ R =


0n1×n1

T 12 · · · T 1d

(T 12)′ 0n2×n2
· · · T 2d

...
...

. . .
...

(T 1d)′ (T 2d)′ · · · 0nd×nd

 . (4)

Here, for a pair of indices 1 ≤ j1 < j2 ≤ d, T j1j2 is an nj1 × nj2 matrix,
called second order contraction matrix of T along the directions {a(j1),a(j2)},
as introduced in [16]. It is defined by:

T j1j2 =

[
nj∑

ij=1,j 6=j1,j2

Ti1···id

d∏
l=1,l 6=j1,j2

a
(l)
il

]
nj1
×nj2

. (5)
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From a mathematical perspective, the contraction operator Φd has several ad-
vantages. Firstly, Φd is linear in T . When applied to the R-rank tensor in (1),
we have

R = Φd(T ,a(1), · · · ,a(d))

=

d∑
r=1

βrΦd(x(r,1) ⊗ · · · ⊗ x(r,d),a(1), · · · ,a(d)) +
1√
N

Φd(X,a(1), · · · ,a(d)),

= S + M . (6)

where S is the contracted signal matrix containing the R tensor signals, and M
is the residual matrix representing pure noise. Under the null hypothesis H0,
S = 0 implying R = M . In contrast, under the alternative H1, S 6= 0, result
in R 6= M .

Furthermore, both the contracted signal matrix S and noise matrix M are
symmetric, with S having a finite rank. This allows us to analyze the contracted
data matrix R using linear spectral statistics (LSS), a powerful tool from random
matrix theory. Central limit theorems for LSS of random matrices have received
much attention in high-dimensional statistics, see [2, 3, 17, 19, 26] for a few
classical references. In our case, by employing an appropriate LSS of R with an
established asymptotic distribution, we can effectively distinguish between the
two hypotheses.

We first establish that the eigenvalue distribution of R has a limit ν when
the d dimensions {nj} grow to infinity in comparable rates. Next, we introduce
the following test statistic:

T̂
(d)
N = ‖R‖22 −N

∫ ∞
−∞

x2ν(dx). (7)

Here, ‖R‖22 =
∑N

i,j=1R
2
i,j is a linear spectral statistic of R. As one of the main

results of this paper, we establish that under the null hypothesis H0,

T̂
(d)
N − ξ(d)N

σ
(d)
N

d−→ N (0, 1), (8)

where ξ
(d)
N and σ

(d)
N are known parameters that can be calculated numerically.

Under the alternative hypothesis H1,

T̂
(d)
N − ξ(d)N

σ
(d)
N

−D(d)/σ
(d)
N

d−→ N (0, 1), (9)

where D(d)/σ
(d)
N is a positive mean drift. Consequently, the asymptotic normal

distribution in (8) enables us to construct a test for a given significance level
α, while the distribution in (9) guarantees a positive power for the test, which

depends on the magnitude of D(d)/σ
(d)
N .
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When d = 2, the tensor model (1) reduces to a finite-rank perturbed or
spiked random matrix. In this context, the signal alignment test in (3) can be
seen as a tensor extension of existing tests for the presence of spikes along given
directions, as studied by [4, 8, 18, 23, 24].

However, when d ≥ 3, a fundamental difference emerges: the elements T j1j2

in the contracted data matrix R become correlated. This correlation signifi-
cantly increases the complexity of studying the matrix, making the analysis
more challenging compared to the d = 2 case. The presence of these correlations
necessitates the development of novel techniques to effectively analyze the eigen-
value distribution and establish the asymptotic properties of the test statistic

T̂
(d)
N in high dimensions.

The main contributions of this article are as follows.

(i) We conduct an in-depth analysis of the contracted data matrix R, whose
entries display significant correlations and deviate from traditional random
matrix models in which the elements of the noise matrix are typically
assumed to be independent of one another, including

(a) The characterization of its limiting spectral distribution (LSD) through
a vector Dyson equation, along with entrywise behaviors of the resolvent.

(b) The establishment of CLT for a broad class of its LSS.
(ii) We establish a rigorous procedure for the tensor signal alignment test (3)

by establishing the normality asymptotic of the test statistic and deriving
its power function under a general alternative hypothesis.

(iii) We also address the problem of testing for the matching of two high-
dimensional low-rank tensor signals. To tackle this problem, we employ
an approach similar to the one established for the tensor signal alignment
test.

The contributions presented in this article are novel. One notable innova-
tion is that our tensor signal model in (1) allows for non-Gaussian and non-
symmetric signals. This sets our work apart from most existing literature on
high-dimensional tensor data models, which typically assumes symmetry or
Gaussianity for either the tensor signal, the tensor noise, or both.
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