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1 Introduction

One of the characteristics of the high-dimensional data is that the data di-
mension is much larger than the sample size. We call such data “high-dimension,
low-sample-size (HDLSS)” or “large p, small n” data. Here, p is the data dimen-
sion and n is the sample size. Recently, Aoshima and Yata [3] created the two
disjoint models: the strongly spiked eigenvalue (SSE) model and the non-SSE
(NSSE) model. The SSE model is defined by

lim inf AIHL(E) > 0,
p=oo /tr(32)

where A\pax(2) is the largest eigenvalue of the covariance matrix, 3. On the other
hand, the NSSE model is defined by

)\max(z)
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In this talk, we focus on the SSE model and construct a new procedure for the
correlation test. Suppose we take samples, «;, j =1,...,n, of size n (> 4), which
are independent and identically distributed (i.i.d.) as a p-variate distribution.
Here, we consider situations where the data dimension p is very high compared
to the sample size n. Let x; = (alej,:/lzsz)T and assume x;; € R”, i = 1,2, with
p1 € [1,p— 1] and py = p — p1. We also assume that x; has an unknown mean
vector, p = (] , g )", and unknown covariance matrix,

S>)

that iS, E(CB”) = K, Var(:cij) = Ei, 1= 1,2, and COV(ZBU,JZQJ') = E(ZL‘lj.’L‘;rJ) —
pipg = X,. Let 0;; be the j-th diagonal element of 3; fori = 1,2; j =1,...,p;,
and assume o;; > 0 for all 7,5. We denote the correlation coefficient ma-

trix between x;; and xy; by Corr(xy;,xs;) = P, where P = diag(oyy,...,
o1, ) V28 diag(og1, . . ., 09p,) "2 Here, diag(oy,...,04,) denotes the diago-
nal matrix of elements, o;,...,0:,. Then, we consider testing the following
hypotheses:

Hy:P=0O vs. H :P#O0O (1)



for high-dimensional settings. The test of the correlation coefficient matrix is a
very important tool of pathway analysis or graphical modeling for high-dimensional
data.

Aoshima and Yata [1] gave a test statistic for the test of correlation coefficients
and Yata and Aoshima [7, 8] improved the test statistic by using the extended
cross-data-matriz (ECDM) methodology. They gave asymptotic normality of the
test statistic under the following model:

(A-i) min )\maX(EI), Auna(32) —0, p—o0.
Vir(Si) V()
Note that (A-i) is one of the NSSE models.

2 Correlation test under the NSSE model

We consider the eigenvalue decomposition of ¥ by ¥ = HAH ', where
A =diag()y, ..., A,) having eigenvalues, \y > --- > )\, > 0, and H is an or-
thogonal matrix of the corresponding eigenvectors. Let x; = H AY 2Zj + W,
j=1,...,n, where E(z;) = 0 and Var(z;) = I,. Here, I, denotes the identity
matrix of dimension p. Note that if x; is Gaussian, the elements of z; are i.i.d.
as the standard normal distribution, N(0,1). For x;, we consider the following
model:

x;,=Tw;+p, j=1,...,n, (2)
where T' is a p x ¢ matrix for some ¢ > 0 such that TT" = 3, and w; =
(wyj,...,wg)", j = 1,...,n, are iid. random vectors having E(w;) = 0

and Var(w;) = I,. Let T' = (I[,T;)7, where T; = (v;1,...,7,,) with ;s
€ R, 7+ =1,2. Then, we have that x;; = I';w; + ;. Note that X, = rr, =
9 Y1,Ya,- Also, note that (2) includes the case that T = HAY? and w; = z;.
Let Var(w?;) = M,, r = 1,...,q. We assume that limsup, ., M, < oo for all .

Similar to Aoshima and Yata [2] and Bai and Saranadasa [4], we assume
(A-ii) E(w}w?;) = BE(w})E(wy) = 1 and E(wjwgwyw,;) = 0 for all r #

s, t,u.

We also consider the following assumption instead of (A-ii) as necessary:

(A-iii) E(wywp? - -wy) = B(wp ) E(wy?) - - E(wyy) for all ry # 1y # -+ #

Tyj 1] 2]
r, € [1,q) and a; € [1,4], 1 =1,...,v, where v < 8 and >, , a; < 8.
See Chen and Qin [5] and Zhong and Chen [9] about (A-iii).
Remark 1. The assumption (A-iii) is naturally satisfied when x; is Gaussian
because the elements of z; are independent and M, = 2 for all r.

Let A = tr(Z,2])(= ||Z.||%), where ||-|| is the Frobenius norm. We in-
troduce an unbiased estimator of A by the ECDM methodology. We define
nay = [n/2] and ny = n—ngq), where [2] denotes the smallest integer > x. Let

MO k/2) UL k/2) + ey + 1, ..} otherwise;
v _JAE2] 41 [R2] e} if [k/2] < nga,
) {1, k2] =n@} U{|lk/2] +1,...,n} otherwise



for k = 3,...,2n — 1, where |x| denotes the largest integer < z. Also, let #A
denote the number of elements in a set A. Note that #V ) = ng), [ = 1,2,
Vo N Vaeyw =0 and V,ayw) U Viaeyw) = {1,...,n} for k=3,...,2n— 1.
It should be noted that

i € V) and j € Viyoyugy fori<j(<n). (3)
Let

Ty(1)(k) = n(ﬁ Z x;; and Tyo)m = n(; Z xz;, =12
JGVnu)(k) jevn@)(k)

for k=3,...,2n — 1. We consider the following quantity:

Ajj = (9312 — Ty i+5) | (@15 — Br@)irg) (B2 — Tayeg) | (T2 — Ba)irg))
for all i < j (< n). Then, from (3), it holds that

(i) @i — Ty1)it) and @y — Ty2)+j) are independent for [ = 1, 2;

(i) E(Ay) = A{(na) = Ding) = 1)}/ (n0)ne)
for all i < j (< n). Let u, = n(l)n(g){(n(l) —1)(n@) — 1)}t Yata and Aoshima
[8] proposed an unbiased estimator of A by

In n—l ZA”

1<J
Note that E(T},) = A.
Let m = min{p,n} and § = /2tr(X])tr(X3)/n. Yata and Aoshima [8] gave

the following results.
Theorem 2.1 (Yata and Aoshima [8]). Assume (A-i) and (A-ii). Under Hy in
(1), it holds that as m — oo,

Var( ) = 0%{1+40(1)}.

Theorem 2.2 (Yata and Aoshima [8]). Assume (A-i) and (A-iii). Under Hy in
(1), it holds that as m — oo,

~

%:H\/(O,l),

where ‘=7 denotes the convergence in distribution.

Yata and Aoshima [8] gave an estimator of tr(X73), i = 1,2, by

2

W n _ 1 Z { Liyp — wz(l)('r—i—s)) (wis - fz'(2)(1”—|—s)>} .
r<s
Note that E(W;,) = tr(£7). Let a € (0,1/2) be a prespecified constant. Also, let
Z be a constant such that P{N(0,1) > z,} = a. Yata and Aoshima [8] proposed
testing (1) by

A~

rejecting Hy <= —

(4)

where § = n~ 1 (2W1,Wa,)'/2. Then, the test by (4) has
Size = a + o(1)
as m — oo under the NSSE model (A-i) and (A-iii).

3



3 Correlation test under the SSE model

In this section, we assume p; is fixed. We also assume the following condition:

. )\max<22)
(C-i) —tr(Zg) —

The model (C-i) is one of the SSE models and is called “uni-SSE model” in Ishii,
Yata and Aoshima [6]. Under (C-i), we have the following result.

1, py — oo.

Theorem 3.1. Assume (C-i) and some regularity conditions. Then, it holds that
as m — 0o

n(T, — A)
)\max(22>

where A4 is the s-th eigenvalue of X1, X3, stands for a chi-square random variable
with 1 degree of freedom and x3,, s = 1,...,p1 are mutually independent.

p1
+tr(Z1) = > Maxia
s=1
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