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1 Introduction

One of the characteristics of the high-dimensional data is that the data di-
mension is much larger than the sample size. We call such data “high-dimension,
low-sample-size (HDLSS)” or “large p, small n” data. Here, p is the data dimen-
sion and n is the sample size. Recently, Aoshima and Yata [3] created the two
disjoint models: the strongly spiked eigenvalue (SSE) model and the non-SSE
(NSSE) model. The SSE model is defined by

lim inf
p→∞

λmax(Σ)√
tr(Σ2)

> 0,

where λmax(Σ) is the largest eigenvalue of the covariance matrix, Σ. On the other
hand, the NSSE model is defined by

λmax(Σ)√
tr(Σ2)

→ 0, p → ∞.

In this talk, we focus on the SSE model and construct a new procedure for the
correlation test. Suppose we take samples, xj, j = 1, . . . , n, of size n (≥ 4), which
are independent and identically distributed (i.i.d.) as a p-variate distribution.
Here, we consider situations where the data dimension p is very high compared
to the sample size n. Let xj = (x⊤

1j,x
⊤
2j)

⊤ and assume xij ∈ Rpi , i = 1, 2, with
p1 ∈ [1, p − 1] and p2 = p − p1. We also assume that xj has an unknown mean
vector, µ = (µ⊤

1 ,µ
⊤
2 )

⊤, and unknown covariance matrix,

Σ =

(
Σ1 Σ∗
Σ⊤

∗ Σ2

)
(≥ O),

that is, E(xij) = µi, Var(xij) = Σi, i = 1, 2, and Cov(x1j,x2j) = E(x1jx
⊤
2j) −

µ1µ
⊤
2 = Σ∗. Let σij be the j-th diagonal element of Σi for i = 1, 2; j = 1, . . . , pi,

and assume σij > 0 for all i, j. We denote the correlation coefficient ma-
trix between x1j and x2j by Corr(x1j,x2j) = P , where P = diag(σ11, . . . ,
σ1p1)

−1/2Σ∗diag(σ21, . . . , σ2p2)
−1/2. Here, diag(σi1, . . . , σipi) denotes the diago-

nal matrix of elements, σi1, . . . , σipi . Then, we consider testing the following
hypotheses :

H0 : P = O vs. H1 : P ̸= O (1)
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for high-dimensional settings. The test of the correlation coefficient matrix is a
very important tool of pathway analysis or graphical modeling for high-dimensional
data.

Aoshima and Yata [1] gave a test statistic for the test of correlation coefficients
and Yata and Aoshima [7, 8] improved the test statistic by using the extended
cross-data-matrix (ECDM) methodology. They gave asymptotic normality of the
test statistic under the following model:

(A-i) min

{
λmax(Σ1)√

tr(Σ2
1)
,
λmax(Σ2)√

tr(Σ2
2)

}
→ 0, p → ∞.

Note that (A-i) is one of the NSSE models.

2 Correlation test under the NSSE model

We consider the eigenvalue decomposition of Σ by Σ = HΛH⊤, where
Λ =diag(λ1, . . . , λp) having eigenvalues, λ1 ≥ · · · ≥ λp ≥ 0, and H is an or-
thogonal matrix of the corresponding eigenvectors. Let xj = HΛ1/2zj + µ,
j = 1, . . . , n, where E(zj) = 0 and Var(zj) = Ip. Here, Ip denotes the identity
matrix of dimension p. Note that if xj is Gaussian, the elements of zj are i.i.d.
as the standard normal distribution, N (0, 1). For xj, we consider the following
model:

xj = Γwj + µ, j = 1, . . . , n, (2)

where Γ is a p × q matrix for some q > 0 such that ΓΓ⊤ = Σ, and wj =
(w1j, . . . , wqj)

⊤, j = 1, . . . , n, are i.i.d. random vectors having E(wj) = 0
and Var(wj) = Iq. Let Γ = (Γ⊤

1 ,Γ
⊤
2 )

⊤, where Γi = (γi1, . . . ,γiq) with γijs

∈ Rpi , i = 1, 2. Then, we have that xij = Γiwj + µi. Note that Σ∗ = Γ1Γ
⊤
2 =∑q

r=1 γ1rγ
⊤
2r. Also, note that (2) includes the case that Γ = HΛ1/2 and wj = zj.

Let Var(w2
rj) = Mr, r = 1, . . . , q. We assume that lim supp→∞Mr < ∞ for all r.

Similar to Aoshima and Yata [2] and Bai and Saranadasa [4], we assume

(A-ii) E(w2
rjw

2
sj) = E(w2

rj)E(w
2
sj) = 1 and E(wrjwsjwtjwuj) = 0 for all r ̸=

s, t, u.

We also consider the following assumption instead of (A-ii) as necessary:

(A-iii) E(wα1
r1j

wα2
r2j

· · ·wαv
rvj

) = E(wα1
r1j

)E(wα2
r2j

) · · ·E(wαv
rvj

) for all r1 ̸= r2 ̸= · · · ≠
rv ∈ [1, q] and αi ∈ [1, 4], i = 1, . . . , v, where v ≤ 8 and

∑v
i=1 αi ≤ 8.

See Chen and Qin [5] and Zhong and Chen [9] about (A-iii).

Remark 1. The assumption (A-iii) is naturally satisfied when xj is Gaussian
because the elements of zj are independent and Mr = 2 for all r.

Let ∆ = tr(Σ∗Σ
⊤
∗ )(= ∥Σ∗∥2F ), where ∥·∥F is the Frobenius norm. We in-

troduce an unbiased estimator of ∆ by the ECDM methodology. We define
n(1) = ⌈n/2⌉ and n(2) = n−n(1), where ⌈x⌉ denotes the smallest integer ≥ x. Let

V n(1)(k) =

{
{⌊k/2⌋ − n(1) + 1, . . . , ⌊k/2⌋} if ⌊k/2⌋ ≥ n(1),

{1, . . . , ⌊k/2⌋} ∪ {⌊k/2⌋+ n(2) + 1, . . . , n} otherwise;

V n(2)(k) =

{
{⌊k/2⌋+ 1, . . . , ⌊k/2⌋+ n(2)} if ⌊k/2⌋ ≤ n(1),

{1, . . . , ⌊k/2⌋ − n(1)} ∪ {⌊k/2⌋+ 1, . . . , n} otherwise

2



for k = 3, . . . , 2n − 1, where ⌊x⌋ denotes the largest integer ≤ x. Also, let #A
denote the number of elements in a set A. Note that #V n(l)(k) = n(l), l = 1, 2,
V n(1)(k) ∩ V n(2)(k) = ∅ and V n(1)(k) ∪ V n(2)(k) = {1, . . . , n} for k = 3, . . . , 2n− 1.
It should be noted that

i ∈ V n(1)(i+j) and j ∈ V n(2)(i+j) for i < j (≤ n). (3)

Let

xl(1)(k) = n−1
(1)

∑
j∈V n(1)(k)

xlj and xl(2)(k) = n−1
(2)

∑
j∈V n(2)(k)

xlj, l = 1, 2

for k = 3, . . . , 2n− 1. We consider the following quantity:

∆̂ij = (x1i − x1(1)(i+j))
⊤(x1j − x1(2)(i+j))(x2i − x2(1)(i+j))

⊤(x2j − x2(2)(i+j))

for all i < j (≤ n). Then, from (3), it holds that

(i) xli − xl(1)(i+j) and xlj − xl(2)(i+j) are independent for l = 1, 2;

(ii) E(∆̂ij) = ∆{(n(1) − 1)(n(2) − 1)}/(n(1)n(2))

for all i < j (≤ n). Let un = n(1)n(2){(n(1) − 1)(n(2) − 1)}−1. Yata and Aoshima
[8] proposed an unbiased estimator of ∆ by

T̂n =
2un

n(n− 1)

n∑
i<j

∆̂ij.

Note that E(T̂n) = ∆.

Let m = min{p, n} and δ =
√

2tr(Σ2
1)tr(Σ

2
2)/n. Yata and Aoshima [8] gave

the following results.

Theorem 2.1 (Yata and Aoshima [8]). Assume (A-i) and (A-ii). Under H0 in
(1), it holds that as m → ∞,

Var(T̂n) = δ2{1 + o(1)}.
Theorem 2.2 (Yata and Aoshima [8]). Assume (A-i) and (A-iii). Under H0 in
(1), it holds that as m → ∞,

T̂n

δ
⇒ N (0, 1),

where “⇒” denotes the convergence in distribution.

Yata and Aoshima [8] gave an estimator of tr(Σ2
i ), i = 1, 2, by

Win =
2un

n(n− 1)

n∑
r<s

{
(xir − xi(1)(r+s))

⊤(xis − xi(2)(r+s))
}2
.

Note that E(Win) = tr(Σ2
i ). Let α ∈ (0, 1/2) be a prespecified constant. Also, let

zα be a constant such that P{N (0, 1) > zα} = α. Yata and Aoshima [8] proposed
testing (1) by

rejecting H0 ⇐⇒ T̂n

δ̂
> zα, (4)

where δ̂ = n−1(2W1nW2n)
1/2. Then, the test by (4) has

Size = α + o(1)

as m → ∞ under the NSSE model (A-i) and (A-iii).
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3 Correlation test under the SSE model

In this section, we assume p1 is fixed. We also assume the following condition:

(C-i)
λmax(Σ2)√

tr(Σ2
2)

→ 1, p2 → ∞.

The model (C-i) is one of the SSE models and is called “uni-SSE model” in Ishii,
Yata and Aoshima [6]. Under (C-i), we have the following result.

Theorem 3.1. Assume (C-i) and some regularity conditions. Then, it holds that
as m → ∞

n(T̂n −∆)

λmax(Σ2)
+ tr(Σ1) ⇒

p1∑
s=1

λ1sχ
2
1s,

where λ1s is the s-th eigenvalue of Σ1, χ
2
1s stands for a chi-square random variable

with 1 degree of freedom and χ2
1s, s = 1, ..., p1 are mutually independent.
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