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Abstract

Certain dynamical systems on the set of integer vectors Zd are introduced and their basic
properties are described. Applications to β-expansions and canonical number systems
reveal unexpected relations between different radix representation concepts.
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1. Introduction

Let r = (r1, . . . , rd) ∈ Rd (d ≥ 1). We are interested in the mapping τr : Zd → Zd

defined by4

τr(a) = (a2, . . . , ad,−br1a1 + · · ·+ rdadc)
for a = (a1, . . . , ad) ∈ Zd. The mapping τr is called a shift radix system (SRS for short)
if for all a ∈ Zd we can find some n ∈ N with τn

r (a) = (0, . . . , 0). In this note we give
a short summary of basic properties and applications of SRS and mention some open
problems. For more detailed background information and proofs the reader is referred to
the original papers [1, 2].

Throughout we shall use the following sets which are closely connected to the orbits
of τr:

D0
d :=

{
r ∈ Rd | τr is a SRS

}
and

Dd :=
{
r ∈ Rd | for all a ∈ Zd the sequence (τn

r (a))n∈N is ultimately periodic
}

.

Some subsets of these sets will be given later (see Sections 2 and 3), here we restrict to
a few preliminary examples.

Examples

(i) D1 = [−1, 1] , D0
1 = [0, 1) (see [1]).

(ii) D \ {(1, y) ∈ R2 | 0 < |y| < 1 or 1 < |y| < 2} ⊆ D2 ⊆ D where

D = {(x, y) ∈ R2 | |x| ≤ 1, |y| ≤ 1 + x, (x, y) 6= (1,−2), (1, 2)}

\{(x,−x− 1) ∈ R2 | 0 < x < 1} (see [2]).

(iii) Set

E1 =

{
(x, y) ∈ R2

∣∣∣∣ x < 1, y < 2x,
2x

3
+ 1 ≤ y

}
,

E2 =

{
(x, y) ∈ R2

∣∣∣∣ x < 1,
x

2
+ 1 < y < 2x, y <

2x

3
+ 1

}
,

E3 =

{
(x, y) ∈ R2

∣∣∣∣ x < 1,−2x + 1 ≤ y < −1

2
x

}
, and

L =

{
(x, y) ∈ R2

∣∣∣∣0 ≤ x ≤ 5

6
, y < x + 1, y ≥ −x

}
.

Then
D0

2 ∩ L = L \ (E1 ∪ E2 ∪ E3) (see [2]).

In Figure 1 the gray points sketch an approximation of D0
2; note that the coordinate

system is changed to be easier comparable to Figure 2 in Section 2.2.

4b. . .c denotes the floor function.
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Figure 1: An approximation of D0
2.

2. Applications of shift radix systems

The main applications of SRS which have been dealt with so far are related to radix
representations.

2.1 Shift radix systems and β-expansions

The so-called β-expansions have first been studied by A. Rényi [17] and W. Parry [14]
and have subsequently been intensively studied.

Let β > 1 be a non-integral real number. Then each γ ∈ [0,∞) can be represented
uniquely by

γ = amβm + am−1β
m−1 + · · · (1)

with ai ∈ {0, 1, . . . , bβc} such that

0 ≤ γ −
m∑

i=n

aiβ
i < βn (2)

holds for all n ≤ m. Since by condition (2) the digits ai are selected as large as possible,
the representation in (1) is called the greedy expansion of γ with respect to β.

Apart from the SRS notion the following theorem is basically due to M. Hollan-

der [6].

Theorem 1(M. Hollander) Let d > 1 and β > 1 be a real algebraic integer with
minimal polynomial Xd − b1X

d−1 − · · · − bd−1X − bd ∈ Z[X]. Define r2, . . . , rd ∈ R by

Xd − b1X
d−1 − · · · − bd−1X − bd = (X − β)(Xd−1 + r2X

d−2 + · · ·+ rd),

hence rj = bjβ
−1 + bj+1β

−2 + · · ·+ bdβ
j−d−1 (2 ≤ j ≤ d).
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Then (rd, . . . , r2) ∈ D0
d−1 if and only if Z[ 1

β
] ∩ [0,∞) coincides with the set of positive

real numbers having finite greedy expansion with respect to β.
Proof. See [1]. �

A. Bertrand [3] and K. Schmidt [18] proved that if β is a Pisot number then
the β-expansion of every element of Q(β) ∩ [0,∞) is ultimately periodic. The above
mentioned finiteness property can only hold for Pisot numbers β (see [4], Lemma 1).

We remark that the characterization of Pisot numbers with the above mentioned
finiteness property is not even known for degree d = 3.

2.2 Shift radix systems and canonical number systems

An example of a canonical number system was first studied by D. E. Knuth [10, 11].
His notion was extended by W. J. Gilbert, I. Kátai, B. Kovács and J. Szabó
([5, 7, 8, 9]) to quadratic number fields and by B. Kovács [12] to arbitrary number fields
as straightforward generalizations of the well-known radix representation of ordinary
integers.

This concept was further generalized by the fourth author [15] by defining CNS poly-
nomials: A monic integral polynomial P (X) is called a CNS polynomial if every coset of
Z[X]/P (X)Z[X] contains an element of the form

a0 + a1x + · · ·+ alx
l

with a0, ..., al ∈ {0, 1, . . . , |P (0)|−1} where x denotes the image of X under the canonical
epimorphism from Z[X] to Z[X]/P (X)Z[X].

Theorem 2 Let p0, . . . , pd−1 ∈ Z with p0 > 1. Then
(

1
p0

, pd−1

p0
, . . . , p1

p0

)
∈ D0

d if and

only if Xd + pd−1X
d−1 + · · ·+ p0 is a CNS polynomial.

Proof. See [1]. �

As an illustration the grey points in Figure 2 represent all cubic CNS polynomials
with constant term equal to 474.

The complete description of CNS polynomials of degree d > 2 is still open.

3. Basic properties of shift radix systems

For r = (r1, . . . , rd) ∈ Rd the mapping τr differs from a linear mapping by a certain addi-
tive term. Although being small this term is the reason for the difficulties in controlling
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Figure 2: CNS polynomials X3 + p2X
2 + p1X + 474.

the iterates of τr: More precisely, we have for a ∈ Zd

τn
r (a) = R(r)na +

n∑
i=1

R(r)n−ivi

for all n ∈ N with the matrix

R(r) :=


0 1 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 1
−r1 −r2 · · · · · · −rd


and vectors vi ∈ Rd with ‖ vi ‖∞< 1 (see [1]).

Theorem 3

(i) The characteristic polynomial of R(r) is given by

Xd + rdX
d−1 + · · ·+ r2X + r1.

(ii) If r ∈ Dd then the spectral radius of R(r) is less than or equal to 1.

(iii) If the spectral radius of R(r) is less than 1 then r ∈ Dd.

(iv) Let r ∈ Rd with spectral radius of R(r) less than 1. Then there exists an effectively
computable constant cr ∈ R with the property: r ∈ D0

d if for each a ∈ Zd with
‖ a ‖∞≤ cr the orbit of a under the iterates of τr falls into the zero cycle.

Proof. For (i), (ii), (iii) see [1] (note that the analogue of (ii) for canonical number
systems is well known, see e. g. [5]). The proof of (iv) is analogous to that of Theorem 1
in [16]. �
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By statement (iii) Dd contains the bounded set

Ed =
{
(r1, . . . , rd) ∈ Rd | all roots of Xd + rdX

d−1 + · · ·+ r1 lie inside the open unit circle
}

which can be described by polynomial inequalities (for more information see the Schur-
Cohn criterion (e. g. [13], Theorem 2.4.4)), and the closure of this set contains Dd by
statement (ii).

Statement (iv) shows in particular that one can algorithmically decide whether or not
a given r belongs to D0

d (for a different algorithm and computational issues see [1]).

The next theorem exhibits a large subset of D0
d.

Theorem 4 If 0 ≤ r1 ≤ r2 ≤ · · · ≤ rd < 1 then r ∈ D0
d.

Proof. See [2]. �

Theorem 5 For each d ∈ N the sets Dd and D0
d are Lebesgue measurable. Further

λ(Dd) = λ(Ed) where λ denotes the d-dimensional Lebesgue measure.
Proof. See [1]. �

The geometrical structure of D0
d is quite complicated. For each r ∈ Dd \ D0

d one can
pick a point in Zd which gives rise to a periodic orbit under the iterates of τr. On the
other hand, given a point a ∈ Zd one may consider the collection of all r ∈ Rd such that
the sequences (τn

r (a))n∈N are periodic: More precisely, let

(a1+j, . . . , ad+j) (0 ≤ j ≤ L− 1)

with aL+1 = a1, . . . , aL+d = ad be vectors of Zd. We ask for which r = (r1, . . . , rd) ∈ Rd

we have τL
r (a) = a. By the definition of τr this is the case if and only if the inequalities

0 ≤ r1a1+j + · · ·+ rdad+j + ad+j+1 < 1 (0 ≤ j ≤ L− 1)

hold simultaneously. Hence, these points r form a (possibly degenerate) polyhedron
in Rd. As we saw in Example (i) we get D0

1 by simply taking away a single point and a
line segment from D1. However, it turns out that for d > 1 infinitely many polyhedra
have to be removed from Dd in order to arrive at D0

d.

Theorem 6 Let d ≥ 2. Then D0
d emerges from Dd by cutting out countably many

polyhedra.
Proof. See [1]. �

3. Some open problems

By what has been said above, the investigation of SRS leaves several questions open (see
[1] and [2]). Here we only mention three problems.
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Figure 3: The behavior of N0(3, M)/M2 for 2 ≤ M ≤ 464.

1. We conjecture that D2 coincides with the set D defined in Example (ii). The truth
of this conjecture would imply that D2 is convex. We thank W. Steiner [19] for the

information that the point (1, 1+
√

5
2

) belongs to D2.

2. We conjecture that if r ∈ D0
d then the spectral radius of R(r) is less than 1. This

is clear for d = 1 (see Example (i) in Section 1), and for d = 2 it is proved in [2].

3. The following conjecture seems to be even more challenging: Let M be a positive
integer and

N0(d,M) = |{(p1, . . . , pd−1) ∈ Zd−1 |M+p1X+· · ·+pd−1X
d−1+Xd is a CNS polynomial}|.

Then

lim
M→∞

N0(d + 1, M)

Md

exists and is equal to the Lebesgue measure ofD0
d. On Figure 3. we displayed N0(3, M)/M2

for 2 ≤ M ≤ 464. It seems that the quotient stabilizes after the first few values, which
support the truth of the conjecture. An analogous conjecture has been formulated for
the set Dd as well.
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