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FINITENESS AND PERIODICITY OF BETA EXPANSIONS -
NUMBER THEORETICAL AND DYNAMICAL OPEN

PROBLEMS

SHIGEKI AKIYAMA (NIIGATA UNIVERSITY, JAPAN)

Let y = f(x) be a positive real function. Consider a digital expansion of a real
number x in a form:

x = ε0 + f(ε1 + f(ε2 + f(ε3 + . . . .

given by an algorithm with ε0 = bxc, r0 = x − bxc and

εn+1 = bf−1(rn)c, rn+1 = f−1(rn) − bf−1(rn)c.
This is Rényi’s f-expansion ([24]). It is the usual b-adic expansion when f(x) =
x/b and the regular continued fraction when f(x) = 1/x. For f(x) = x/β with a
non-integer β > 1, it is called the β-expansion.
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(a) 3-adic expansion
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(b) Continued fraction
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(c) Beta expansion

Figure 1. The graph of f−1 mod 1

Rényi studied ergodic properties of f -expansion for monotone function f with
mild growth condition. The images of f−1 consists of ‘full’ copies of intervals [0, 1]
in left two graphs, which implies that the corresponding digits are independent,
while the last case has dependent digits. We start with our fundamental question:

Problem 1. Find a good f -expansion.

Historically, several different ‘goodness’ of f -expansion are studied.
• Does it have a nice invariant measure ? We expect a measure equivalent to

the Lebesgue measure with an explicit Radon-Nikodym derivative.
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• Does it have nice ergodic properties (Mixing, unique measure of maximum
entropy) ?

• Does it require little memory to judge admissibility of words (i.e., certain
Markovian property) ?

• Can we characterize periodic orbits and/or finite orbits ? (The expansion
is finite, if the digits end up in zeros 0∞.)

• Is there a useful small natural extension ?
• Is there an ‘additive’ dynamical system whose successive induced systems

is described by f -expansion ? (Kamae’s number system [15])
• Can we apply this expansion to Diophantine approximation ?

In fact, these questions are intimately related. Hereafter we discuss β-expansion.
This is too simple and we can not expect last two number theoretical ‘goodness’
but others could be achieved for some β’s.

Fix a real number β > 1 and consider a map Tβ(x) = βx − bβxc from [0, 1) to
itself. The trajectory of x is written as

x
a1−→ Tβ(x) a2−→ T 2

β (x) a3−→ T 3
β (x) a4−→ . . .

with
ai =

⌊
βT i−1

β (x)
⌋
∈ A := Z ∩ [0, β).

Then x ∈ [0, 1) is uniquely expanded as:

x =
a1

β
+

a2

β2
+

a3

β3
+ . . .

through greedy algorithm. We summarize its ergodic properties.
• Rényi (Rényi [24]) showed that it is ergodic with an absolute continuous in-

variant measure. From this proof, it is weak mixing. It has unique measure
of maximum entropy ([28], [12]).

• Its Radon-Nikodym derivative is made explicit (Parry [23]).
• It is ‘exact’ in the sense of Rohlin [25]. This implies mixing of all degree.
• Its natural extension is a Bernoulli shift. (Smorodinski [27] , Fischer [10],

Ito-Takahashi [14])
• However Tβ itself is not Bernoulli except when β is an integer (Kubo-

Murata-Totoki [17]).
The clue to analyze Markovian property of a piecewise linear transformation, is

the orbit of discontinuity. In the case of beta expansion, the study of the orbits is
reduced to so called ‘expansion of 1’. Beta expansion defines a map dβ : [0, 1) →
AN. This dβ is not surjective when β 6∈ Z. The expansion of 1 is defined by
dβ(1−) = limε↓0 dβ(1 − ε). Let c1 = bβc. Then dβ(1−) is the concatenation of c1

and the beta expansion of β−bβc when this expansion is infinite. If it is finite, i.e.,
dβ(β − bβc) = c2c3 . . . c`, then

dβ(1−) = (c1c2 . . . c`−1(c` − 1))∞.

For x = a1a2a3 · · · ∈ AN, we have

x ∈ dβ([0, 1)) ⇐⇒ σn(x) <lex dβ(1−) (n = 0, 1, 2, . . . )

where σ(a1a2 . . . ) = a2a3 . . . (shift operator) and <lex is the lexicographical order
(Parry [23], Ito-Takahashi [14]). Xβ is the closure of dβ([0, 1)) in AN. This set is
closed and σ(Xβ) = Xβ . This defines the beta shift (Xβ , σ). The element in Xβ

is characterized by σn(x) ≤lex dβ(1−) (∀n).
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Example 1. dβ(1−) = (10)∞ holds for β = (1 +
√

5)/2. dβ([0, 1)) is the set of
infinite words on {0, 1} that 11 and the tail (10)∞ are forbidden. Xβ is exactly the
set of infinite words on {0, 1} without 11.

Example 2. If β > 1 is the root of x3 − x2 − x − 1, then dβ(1−) = (110)∞

holds. dβ([0, 1)) is the set of infinite words on {0, 1} that 111 and the tail (110)∞

are forbidden. Xβ is exactly the set of infinite words on {0, 1} without 111.

From this dβ(1−) we can introduce symbolic dynamical classification of β.
• β is a simple Parry number if dβ(1−) is purely periodic. It is equivalent

to the fact that Xβ is a subshift of finite type (SFT).
• β is a Parry number if dβ(1−) is eventually periodic. This is exactly the

case when Xβ is sofic, i.e., it is a factor of SFT.
• β is a Delone number if dβ(1−) has bounded run of 0’s. Xβ has ‘specified’

property.
Many questions on this classification remain open (Blanchard [7]). We pick up

a few of them:

Problem 2. (Salem Periodicity Problem 1) Is there a non-Parry Salem number
? How about x6 − 3x5 − x4 − 7x3 − x2 − 3x + 1 (Boyd [8]) ?

Problem 3. Is there an algebraic Delone number except Parry numbers ? What
about 3/2 or

√
2 ?

If β is a Pisot number, then dβ(x) is eventually periodic for x ∈ Q(β) ∩ [0, 1).
Conversely if dβ(x) is eventually periodic for x ∈ Q ∩ [0, 1) then β must be a Pisot
or Salem number (Schmidt [26]). Therefore ‘Pisot’ implies ‘Parry’.

Problem 4. (Salem Periodicity Problem 2) For Salem β, is dβ(x) eventually
periodic for all x ∈ Q(β) ∩ [0, 1) ?

The answer is expected negative and there are possible counter-examples (Boyd
[8, 9]) in degree ≥ 6.

Problem 5. For Salem β, is there a way to prove that dβ(x) is non-periodic for a
fixed x ?

For Salem number of degree 4, the above periodicity conjecture seems valid both
by numerical experiments and by heuristic consideration.

We say that the expansion of x is finite, if dβ(x) ends up in 0∞. Clearly in this
case x ∈ Z[1/β]. Frougny-Solomyak [11] studied the property

(F) dβ(x) is finite for all x ∈ Z[1/β] ∩ [0, 1).

This implies that β is a Pisot number. Converse is not true. For e.g, if β has
a positive conjugate other than itself, then it can not satisfy (F). The problem to
characterize β’s with (F) is open for degree ≥ 3, and it is transformed into the
following shift radix system problem. The vector (r0, r1, . . . , rd−1) ∈ Rd gives a
shift radix system, SRS, if the integer sequence defined by

0 ≤ r0an + r1an+1 + · · · + rd−1an+d−1 + an+d < 1

always falls into a trivial cycle 0d → 0d.

Example 3. (1/2, 1) gives a shift radix system. For e.g.,

(−5, 3) → (3, 0) → (0,−1) → (−1, 1) → (1, 0) → (0, 0) → (0, 0)
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by the recurrence:
0 ≤ an/2 + an+1 + an+2 < 1.

Indeed any orbits ends up in the trivial cycle (0, 0) → (0, 0).

A necessary condition for SRS (r0, r1, . . . , rd−1) is that xd + rd−1x
d−1 + · · ·+ r0

is semi-contractive, i.e., all roots of the polynomial has modulus not greater than
one. If it is contractive, i.e., all roots have modulus less than one, then the orbits
must be eventually periodic. This is a simple fact on a contractive transformation
acting on the lattice.

Take a Pisot number β and its minimal polynomial p(x) which is factorized into

p(x) = (x − β)(xd−1 + rd−1x
d−1 + · · · + r1x + r0)

in C. Then one can prove that β has property (F) if and only if (r0, r1, . . . , rd−1)
gives a SRS. Semi-contractive cases correspond to the above-stated Salem period-
icity problems.
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(a) 2d SRS Approximation

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

1.5

2

T.4.6

T.3.5

T.3.3

T.3.4

L.
5.1

L.
5.2

L.
5.5

L.5.7

L.5.3

T.4.8

T.4.27

5.12

5.11

5.10

5.9

L.

L.

L.

L.

E4

E3

E2

E1

(b) Known regions

In Figure (a), the isosceles triangle surrounded by broken edges is the semi-
contractive region while the shaded part gives an approximation of SRS parameters.
White (mostly polygonal) regions in Figure (b) are shown (in pretty different ways!)
to be in SRS and dark grey parts are not in SRS. Light grey parts are not settled.

Problem 6. Must SRS polynomials be contractive ?

This is true for d ≤ 2. We know that r0 6= 1 for SRS in general.
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Problem 7. Is SRS region connected ?

This seems likely by observing the approximations. However a little skeptic
evidence exists as well. P.Surer found a cut point ( 40

41 , 30
41 ) of SRS region in d = 2 !

Problem 8. Prove (or disprove) that {(x, y) | 0 < 2x < y < x+1} is a SRS region.

This seems rather tough and a brand new idea is expected for this possible SRS
region in d = 2. Figure (b) reads one can substitute 0 by 0.8. The essential difficulty
of this problem exists around (1, 2).

Problem 9. Let |γ| < 2. Prove that each integer sequence {an}n satisfying 0 ≤
an + γan+1 + an+2 < 1 is eventually periodic.

This easy-looking problem seems quite hard except for trivial cases γ = 0,±1.
This ‘Salem type periodicity’ problem is related to the orbit of piecewise isometry
and affirmative answers are known for certain quadratic γ’s (Kouptsov-Lowenstein-
Vivaldi [16], Akiyama-Brunotte-Pethő-Steiner [4]).

Let us switch our topic and briefly discuss dual tilings due to Thurston. It is
intimately related to the explicit construction of an algebraic natural extension of β-
expansion (see [3] for detail.) To this matter, it is important to extend β-expansion
to the other direction. We introduce a set of β-integers:

Zβ =

{
n∑

i=0

aiβ
i

∣∣∣∣∣ n ∈ N, anan−1 . . . a0 ∈ dβ([0, 1))

}
This set is a Delone set (relatively dense and uniformly discrete) in R ∩ [0,∞) if
and only if β is a Delone number. Let β be a Pisot number of degree d with r1 real
conjugates and 2r2 complex conjugates. We assume that β is a unit. Consider an
embedding

Φ : Q(β) → Rr1−1 × Cr2 ' Rd−1

defined by x 7→ (x(2), . . . , x(r1), x(r1+1), . . . , x(r1+r2)) where x(i) are the non trivial
Galois conjugates of x. Since β is Pisot, the set Φ(Zβ) becomes compact, which is
called the central tile. This central tile has a natural self-similar structure arose
from multiplication/division by β. In fact, we can construct a covering of Rd−1 as
in Figure 2 but we are not sure that it always gives a tiling, a covering of degree 1.

Since β is Pisot, dβ(1−) is eventually periodic and consequently the correspond-
ing symbolic dynamics is sofic. Under the weak finite condition:

(W) For any z ∈ Z[β] ∩ [0, 1), there are x, y with finite expansion such that
z = x − y,

this construction surely gives a tiling of Rd−1 by finitely many tiles up to translation,
which is a geometric realization of a sofic shift Xβ ([2]). The condition (F) is clearly
stronger than (W). Under (F), the origin is an inner point of the central tile. This
condition (W) seems to hold for all Pisot numbers.

This (W) is understood as a special form of Pisot conjecture in substitutive
dynamical system. An arithmetic natural extension of ([0, 1), Tβ) in Rd is
constructed by dual tiles as in Figure 3.
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Figure 2. [110]∞: Tribonacci Case

As this Φ is basically composed by Galois conjugates, number theoretical informa-
tion is preserved. Thanks to this advantage, one can characterize the set of periodic
expansions as Q(β)-points in the fractal shape (Ito-Rao [13]). The same idea works
for non-unit β’s by using p-adic embedding ( see Berthé-Siegel [6]).

Let τ be an irreducible Pisot substitution on {0, 1, . . . , d−1}. Pisot conjecture
states that the dynamical system generated by shift closure of a fix point of τ has
pure discrete spectrum. Many equivalent coincidence conditions are known.
Here is one of them (a joint work with J.Y. Lee):

Problem 10. In the fixed point of τ , is there a non empty word w and a relatively
dense occurrences of patterns (of infinite size) of the form:

wx1wx2wx3 . . .

where xi are arbitrary words satisfying |wx1wx2 . . . wxm| = |τm−1(wy)| for some
fixed y ?

One can show this criterion from (W) for β-substitution.

To attack (W) or coincidence, it is worthy to consider a little weaker problem of
algebraic nature, which is called ‘Height reducing problem’.
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Figure 3. Natural extension

Problem 11. Let β be a Pisot number and put B = {0,±1,±2, . . . ,±bβc}. Prove
Z[1/β] ∩ [0, 1) = B[1/β] ∩ [0, 1).

Since we do not care that coefficients in the right side can be represented as
a difference of admissible words, this is a weaker statement than (W). One can
compare it with the same type of question in expanding case:

Problem 12. Let α be an algebraic integer whose all conjugates are greater
than one in modulus and N(α) be the absolute norm of α over Q. Set B =
{0,±1,±2, . . . ,±(N(α) − 1)}. Is there an easy proof of Z[α] = B[α] ?

To prove tiling property in a different setting, Lagarias-Wang [21, 20, 22] gave
an indirect proof of this fact using Wavelet analysis. Class number problems are
related ([18, 19]).

To finish this note, I wish to mention my favorite conjecture posed in [1] in
Japanese. Let β be a Parry number, i.e.,

dβ(1−) = a1a2 . . . am[am+1am+2 . . . am+`]∞ with am 6= am+`.

Problem 13. (Dynamical Norm Conjecture) Prove that N(β) = |am−am+`|.

This is supported by extensive numerical computation. When β is a simple-Parry
Pisot unit, this conjecture implies that the associated tiles are connected. Here the
simpleness is necessary since tiles could be disconnected in degree 4 (Akiyama-Gjini
[5]) for non-simple Parry cases.
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