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1 Introduction

Let β > 1 be a real number. Consider an expansion of positive real number
x:

x = aNβN + aN−1β
N−1 + aN−2β

N−2 + · · · ,
with ai ∈ Z∩ [0, β). A greedy expansion of x in base β is such expansion with

|x−
N∑

M

aiβ
i| < βM (1)

for any M . By using greedy algorithm, such an expansion always exists for
any x. This is a natural extension of decimal or binary expansion to a real
base. An expansion of x is admissible, if (1) holds for all M . Hereafter, we
use a notation

x = aNaN−1aN−2 · · · .
A Pisot number is an algebraic integer greater than 1 whose conjugates

other than itself have modulus smaller than 1. We have a particular interest
in the case when β > 1 is a Pisot number. Surprisingly, one can find many
similar phenomena with binary or decimal expansion. See [1]. We use a term
’Pisot numeration system’ to call this method to represent real numbers in
a power series in Pisot number base.

In this paper, we will prove fundamental properties of tilings generated by
Pisot numeration system. Let Fin(β) be a set of all finite greedy expansion
in base β. Consider two properties

(F′) Fin(β) ⊃ Z[β]≥0

∗This research was partially supported by the Minsitry of Education, Science, Sports
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and
(F) Fin(β) = Z[β−1]≥0.

In [1], the author proved a necessary and sufficient condition whether β has
property (F’) or not. In §2 theorem 1, it is proved that (F) is equivalent to
(F’). Thus, there exist a finite algorithm to determine (F). Next we define
a self affine tiling of Rn−1 by Pisot unit of degree n with the property (F).
When β is a cubic Pisot unit with (F) which is not totally real, we obtain
a self similar tiling. Otherwise, we get a self affine, not self similar, tiling of
Rn−1. See the figures in §3.

We can find interesting examples of these tiling in [10], [7], [11], [8].
They treat these tilings in terms of substitution or finite state automata.
In contrast, this paper treat these tilings in a context of ’Pisot numeration
system’. The author believes that, this method gives us a clear understanding
of universal phenomena of these tilings. For instance, it is proved in theorem
2 that the origin is an inner point of the central tile T by using geometry
of numbers. This fact is very much fundamental. We can show that the
boundary of each tile is nowhere dense in Rn−1 as a corollary.

It is also shown that each tile is arcwise connected in Theorem 3, under a
certain weak condition. The method of the proof is the ’encircling method’
developed in [3].

2 Self affine tiling generated by Pisot numer-

ation system

Let β be a Pisot number of degree n, and Fin(β) be a set of all elements in
Q(β) which have finite greedy expansion in base β. Consider a property

(F) Fin(β) = Z[β−1]≥0.

In [6], it is shown that a Pisot number β whose irreducible polynomial is of
a form:

xn − an−1xn−1 − an−2xn−2 − . . .− a0,

with ai ∈ Z>0 and ai ≥ ai−1 (i = 1, 2, . . . , n− 1) has property (F).
Let β = β(1), β(2), . . . β(r1) be the real conjugates and β(r1+1), β(r1+2), . . . β(r1+r2),

together with their complex conjugates, be the complex conjugates of β.
We also denote by x(j) (j = 1, 2, . . . , n) the corresponding conjugate of
x ∈ Q(β). Here we put x(r1+r2+j) = x(r1+j) for j = 1, 2, . . . , r2.
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Let p be a non negative integer and define Mj(p) (j = 2, 3, . . . n) as an
upper bound of

|
p∑

i=0

ap−i(β
(j))i|,

where
∑p

i=0 aiβ
−i runs through finite greedy expansions of length at most

p + 1. Let Mj be an upper bound of Mj(p) (p = 1, 2, . . .). One can take
Mj = [β]/(1 − |β(j)|). Here [x] is the greatest integer not exceeding x. Let
bj (j = 1, . . . n) be positive real numbers and C = C(b1, b2, . . . , bn) be a set
of elements in Z[β] such that

|x(j)| ≤ bj.

Obviously, C is a finite set. Then we can show a slight generalization of
Theorem 2 in [1].

Theorem 1. Let β be a Pisot number. Then β has the property (F)
if and only if every element of C = C(1,M2,M3, . . . , Mn) has finite greedy
expansion in base β.

Proof. The proof is quite similar with that of Theorem 2 in [1]. We only
have to note that for each element x in Z[β−1] there exist q0, that if q ≥ q0

with q ∈ Z≥0 then βqx is in Z[β].

Recently, the complete list of cubic Pisot units with (F) is established in
[2], by using this theorem. Define a map Φ : Q(β) → Rn−1 by

Φ(x) = (x(2), . . . , x(r1),<(x(r1+1)),=(x(r1+1)),<(x(r1+2)),=(x(r1+2)), . . . ,<(x(r1+r2)),=(x(r1+r2))).

Proposition 1. Let β be a Pisot number of degree n. Then Φ(Z[β]>0)
is dense in Rn−1.

Proof. First, we prove Φ(Z[β]) is dense in Rn−1. Thus it suffice to show
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that a set consists of elements:

x1




1
1
...
1
1
0
1
0
...
1
0




+x2




β(2)

β(3)

...
βr1

<(β(r1+1))
=(β(r1+1))
<(β(r1+2))
=(β(r1+2))

...
<(β(r1+r2))
=(β(r1+r2))




+x3




(β(2))2

(β(3))2

...
(βr1)2

<((β(r1+1))2)
=((β(r1+1))2)
<((β(r1+2))2)
=((β(r1+2))2)

...
<((β(r1+r2))2)
=((β(r1+r2))2)




+· · ·+xn




(β(2))n−1

(β(3))n−1

...
(βr1)n−1

<((β(r1+1))n−1)
=((β(r1+1))n−1)
<((β(r1+2))n−1)
=((β(r1+2))n−1)

...
<((β(r1+r2))n−1)
=((β(r1+r2))n−1)




,

with integer coefficients xi with i = 1, 2, . . . , n is dense in Rn−1. Define a
(n− 1)× (n− 1) matrix

A =




β(2) (β(2))2 (β(2))3 · · · (β(2))n−1

β(3) (β(3))2 (β(3))3 · · · (β(3))n−1

...
...

...
β(r1) (β(r1))2 (β(r1))3 · · · (β(r1))n−1

β(r1+1) (β(r1+1))2 (β(r1+1))3 · · · (β(r1+1))n−1

β(r1+1) (β(r1+1))2 (β(r1+1))3 · · · (β(r1+1))n−1

...
...

...
β(r1+r2) (β(r1+r2))2 (β(r1+r2))3 · · · (β(r1+r2))n−1

β(r1+r2) (β(r1+r2))2 (β(r1+r2))3 · · · (β(r1+r2))n−1




Let P be a (n− 1)× (n− 1) matrix of a form:

P = Ir1−1 ⊕

r2 times︷ ︸︸ ︷(
1

√−1
1 −√−1

)
⊕

(
1

√−1
1 −√−1

)
⊕ · · · ⊕

(
1

√−1
1 −√−1

)
.

Here A⊕B is a matrix of a form:

(
A O
O B

)
,
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and Ik is the identity matrix of size k. Then

P




β(2) (β(2))2 (β(2))3 · · · (β(2))n−1

β(3) (β(3))2 (β(3))3 · · · (β(3))n−1

...
...

...
β(r1) (β(r1))2 (β(r1))3 · · · (β(r1))n−1

<(β(r1+1)) <((β(r1+1))2) <((β(r1+1))3) · · · <((β(r1+1))n−1)
=(β(r1+1)) =((β(r1+1))2) =((β(r1+1))3) · · · =((β(r1+1))n−1)

...
...

...
<(β(r1+r2) <((β(r1+r2))2) <((β(r1+r2))3) · · · <((β(r1+r2))n−1)
=(β(r1+r2)) =((β(r1+r2))2) =((β(r1+r2))3) · · · =((β(r1+r2))n−1)




= A.

Thus it suffice to show that

A−1P




1
1
...
1
1
0
1
0
...
1
0




Z (mod Zn−1) = A−1




1
1
...
1
1
1
1
1
...
1
1




Z (mod Zn−1)

is dense in Rn−1/Zn−1. By Cramer’s rule,

A−1




1
1
...
1


 = (det A)−1




det A1

det A2
...

det An−1


 ,

5



where

Ai =




β(2) · · ·
i-th column

1̌ · · · (β(2))n−1

β(3) · · · 1 · · · (β(3))n−1

...
...

...
β(r1) · · · 1 · · · (β(r1))n−1

β(r1+1) · · · 1 · · · (β(r1+1))n−1

β(r1+1) · · · 1 · · · (β(r1+1))n−1

...
...

...
β(r1+r2) · · · 1 · · · (β(r1+r2))n−1

β(r1+r2) · · · 1 · · · (β(r1+r2))n−1




.

Note that

det A = ±
n∏

i=2

β(i)
∏

i<j

(β(i) − β(j)) = cβ−1
∏

i<j

(β(i) − β(j)),

with a non zero integer c. We see ±cβ−1 det Ai/ det A is nothing but the ele-
mentary symmetric polynomial of degree n−1−i with respect to β(2), β(3), . . . , β(n).
Thus n-elements

1,
det A1

det A
,
det A2

det A
, · · · , det An−1

det A

lie in Q(β). Moreover these n-elements are linearly independent over Q. To
show this, note that each element x of Q(β) can be uniquely expressed in a
form x =

∑n−1
i=0 ηiβ

i with ηi ∈ Q. Define a map Ξ : Q(β) → Z∩[0, n−1] by the
maximal index i that ηi 6= 0. By induction, Ξ(1) = 0 and Ξ(det Ai/ det A) =
n− i . This proves the linear independence. Now, one can apply Kronecker’s
approximation theorem to show that Φ(Z[β]) is dense in Rn−1.

Let us take an arbitrarily point x ∈ Rn−1. For any ε > 0, there exists an
element x′ ∈ Z[β] that |x−Φ(x′)| < ε/2. As β is a Pisot number, there exist
a positive integer M that |Φ(βM)| < ε/2 and x + βM > 0. Put y = x′ + βM ,
then |x− y| < ε and y ∈ Z[β]>0. This proves the assertion.

Let A = aLaL−1 · · · aM be a greedy expansion in base β. Put degβ(A) =
deg(A) = L and ordβ(A) = ord(A) = M . Define SA = SaLaL−1···aM

be a set of
all elements in Fin(β) whose greedy expansion has the tail part A. In other
words, each element of SA has a form:

bKbK−1 · · · bL+1aLaL−1 · · · aM .
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Let TA = Φ(SA). For the empty word λ, we also define

Sλ = S. = {x ∈ Fin[β] | ordβ(x) ≥ 0}.

and deg(λ) = −1. We designate by S = S. to avoid confusion. A tile is a set
TA with deg(A) = −1. A subtile is a set TA with deg(A) ≥ −1. Similarly, let
T = T. = Φ(S) which is called the central tile. Against standard notations,
we do not assume that a tile should be a set coincides with the closure of its
interior. This fact is shown in a special case in corollary 1 of theorem 2.

Corollary. Let β be a Pisot number of degree n with property (F). Then

Rn−1 =
⋃

deg(A)=−1

TA.

Proof. By the assumption, it is clear that

Z[β]>0 ⊂ Z[β−1]≥0 =
⋃

.a−1a−2···a−M

S.a−1a−2···a−M
.

Applying the map Φ to both hand sides and taking the closure, we get the
result.

The next lemma is most essential in the proof Theorem 1 in [1].

Lemma 1.
Let β > 1 be an algebraic unit of degree n, and M be a positive number.

Put
X(p) = {x ∈ Fin(β) | |x| ≤ M, ordβ(x) = −p}.

Then
lim
p→∞ min

x∈X(p)
max

j=2,3,...,n

∣∣∣x(j)
∣∣∣ = ∞.

Proof. This was already proved in [3]. However, we restate it, for the
convenience of the reader. Assume that there exist a constant B and an
infinite sequence xi (i = 1, 2, . . .) so that both

|x(j)
i | ≤ B for j = 2, 3, . . . n and lim

i→∞
ordβ(xi) = −∞
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holds. Noting β is a unit and |xi| ≤ M , these xi’s are finite. On the other
hand, by the definition of the greedy expansion, {xi | i = 1, 2, . . .} is an
infinite set. This is absurd, which proves the lemma.

Let Inn(X) be a set of inner points of X.

Theorem 2. Let β be a Pisot unit with property (F). Then for each
element x ∈ S, we have Φ(x) ∈ Inn(T ). Especially, the origin is an inner
point of the central tile T .

Proof. First we show that the origin Φ(0) is an inner point of T . Let x =
x1 + x2 with ordβ(x1) > 0, degβ(x2) ≤ 0. As β is a Pisot number, there exist

an absolute constant C that |x(j)
1 | < C for all j = 2, 3, · · · , n. Clearly x2 is

bounded by some absolute constant M . By using ordβ(x) = ordβ(x2) = −N

and Lemma 1, for any positive B, there exist N such that |x(j)
2 | > B + C for

a certain j ∈ Z ∩ [2, n], which shows |x(j)| > B. Thus we have proved that,
for any positive B, there exist N such that if ordβ(x) ≤ −N then there exist
a conjugate |x(j)| > B with j = 2, 3, . . . n. Let x = β−N+1y, then

ordβ(y) < 0 =⇒ ∃j ∈ Z
⋂

[2, n] |y(j)| > |β(j)|N−1B.

Thus there are no elements Φ(y) with y ∈ Fin(β) of negative order in the
disk

U = {ξ ∈ Rn−1 | |ξ| ≤ ( min
2≤j≤n

|β(j)|)N−1B}.
Here |ξ| is the Euclidian norm of ξ in Rn−1. By using Proposition 1, U ⊂ T .
Thus 0 is an inner point of T . Let x be an element of Fin(β) whose expansion
is

x = xkxk−1 · · ·x0.

Let m be the minimal length that [β]0m−11 = [β]00 · · · 01 is admissible.
Subdivide T in a form:

T =
⋃

Txk+mxk+m−1···x0.,

where the index runs over all greedy expansion of length k + m + 1. We see
that 0 is also an inner point of T0k+m+1 . By adding x, Φ(xkxk−1 · · ·x0) is an
inner point of T0mxkxk−1···x0 . Thus the theorem is proved.

Corollary 1. Let β be a Pisot unit with property (F). For each x ∈ SA,
we have Φ(x) ∈ Inn(TA). Moreover, Inn(TA) = TA.
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Proof. Multiplying a suitable power of β, we may assume that degβ(A) =
−1. In theorem 2, we already proved the first statement in the case when
A is an empty word. One may apply the same subdividing argument to
prove that Φ(x) ∈ Inn(TA) if x ∈ SA. As TA is closed, TA ⊃ Inn(TA). Let
x ∈ TA. Then for any ε > 0, there exists y ∈ SA that |x − Φ(y)| < ε. As
Φ(y) ∈ Inn(TA), we have TA ⊂ Inn(TA). This shows the assertion.

Corollary 2. Let β be a Pisot unit with property (F) and ∂(TA) be a
set of boundary elements of TA. Then ∂(TA) is closed and nowhere dense in
Rn−1.

Proof. Let x ∈ ∂(TA). For any ε > 0, there exist infinite elements
yi ∈ Fin(β) (i = 1, 2, · · ·) that yi 6∈ SA and |x − Φ(yi)| < ε. One may
assume that all yi are in a single SB with a greedy expansion B 6= A, as
there exist only finite number of tiles which have common points with TA.
Thus

∂(TA) =
finite⋃

B

(TA ∩ TB),

which shows ∂(TA) is closed. For any x ∈ ∂(TA) and ε > 0, there exist y ∈ SA

with |x− Φ(y)| ≤ ε. As Φ(y) ∈ Inn(TA), there exist no elements of ∂(TA) in
a sufficiently small neighborhood of Φ(y). This shows that ∂(TA) is nowhere
dense in Rn−1.

Let β be a Pisot unit with (F) and 1 = a−1β
−1 + a−2β

−2 + . . .+ a−Mβ−M

be an expansion of 1 defined by an algorithm

c−i = βc−i+1 − [βc−i+1] a−i = [βc−i+1]

with c0 = 1. It is well known that the word bkbk−1 · · · b1 with alphabet
bi ∈ [0, β)∩Z is admissible if and only if bkbk−1 · · · b1 is lexicographically less
than a−1a−2 · · · a−M at any starting point. The equation

xM = a−1x
M−1 + a−2x

M−2 + · · ·+ a−M

is the ’characteristic equation’ defined in [9]. It is likely that a−M = 1 holds
for all Pisot unit with (F). Now we prove

Theorem 3. Let β be a Pisot unit with (F) with a−M = 1. Then each
tile is arcwise connected.
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Proof. First, note that there exist only finite tiles up to parallel trans-
lation. Let TA1 , TA2 , · · · , TAh

be a representative system of different tiles.
Define an open disk

D(x, r) = {z ∈ Rn−1 : |z − x| < r}.
Let R > 0 be a radius that TAq ⊂ D(Φ(Aq), R) for q = 1, 2, · · · , h. Consider

a fixed tile T = TA = T.a1a2···ak
= Φ(SA). Now we have

SA =
⋃

C

SC ,

where the sum is taken over all greedy expansion of the form C = b1b2 · · · bj.a1a2 · · · ak.
This relation give rise to a subdivision of the tile T into subtiles TC . Hence
T = Φ(SA) ⊂ ⋃

C D(Φ(C), δjR) with δ = maxi=2,3,···,n |β(i)|. Put K(A, j) =⋃
C D(Φ(C), δjR) then T ⊂ ∩∞j=0K(A, j). Noting δ < 1, we also have
∩∞j=0K(A, j) ⊂ T , which shows T =

⋂∞
j=0 K(A, j). Take arbitrary two points

x1, x2 ∈ T . Our purpose is to construct a curve in T which join x1, x2. Note
that, by the definition of R, if there exist a common point ξ of two tiles TB1

and TB2 , then ξ ∈ D(Φ(B1), R)∩D(Φ(B2), R). Using characteristic equation
of β, we can construct infinitely many elements of T0. ∩ T1.. Moreover we
have

Tf1e1e2···eM
∩ Tf2e1e2···eM

6= ∅
for |f1 − f2| = 1. Using these facts, one can show by induction on j, that
K(A, j) is arcwise connected. In fact, we can take y(j, k) k = 1, 2, · · ·Mj

which satisfies y(j, 1) = x1, y(j, Mj) = x2 and

L(j) =
Mj−1⋃

k=1

L[y(j, k), y(j, k + 1)] ⊂ K(A, j)

with max
Mj

k=1 |y(j, k)−y(j, k+1)| = O(δj) and y(j, k) for k = 2, 3, · · · ,Mj−1
is the center of the disk appeared in the definition of K(A, j). Here L[x, y]
is the line segment which join x, y ∈ Rn−1. Moreover we can choose distinct
y(j, k) k = 1, 2, · · ·Mj such that

{y(j, k) | k = 1, 2, · · ·Mj} ⊂ {y(j + 1, k) | k = 1, 2, · · ·Mj+1}.
Define Lj(k) by y(j, k) = y(j + 1, Lj(k)). We may also assume that

y(j + 1, ξ) ∈ D(y(j, k), δjR) ∪D(y(j, k + 1), δjR)
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for ξ ∈ [Lj(k), Lj(k + 1)] ∩ Z.
Now let us define g(j, k) ∈ [0, 1] for j = 1, 2, · · · and k = 1, 2, · · · ,Mj

inductively. First let g(1, k) = k/M1 for j = 1, 2, · · · ,M1. If j ≥ 2, then
define

g(j, k) =
g(j − 1, s)(Lj−1(s + 1)− k) + g(j − 1, s + 1)(k − Lj−1(s))

Lj−1(s + 1)− Lj−1(s)
,

for Lj−1(s) ≤ k ≤ Lj−1(s + 1). Define the value f at a dense subset of [0, 1]
by f(g(j, k)) = y(j, k). We can extend f continuously to [0, 1] by

f(t) = lim
j→∞

y(j, kj(t)),

where kj(t) is defined by t ∈ [g(j, kj(t)), g(j, kj(t) + 1)]. As y(j, k) ∈ Inn(T )
for j = 2, 3, · · · , Mj−1, f is a continuous map from [0, 1] to T with f(0) = x1

and f(1) = x2. This proves the assertion.
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3 Examples of the tilings

Example 1. Let θ = 1.3247 . . . be a positive root of x3 − x − 1 = 0. It is
known that θ is a minimal Pisot number. See [5]. The corresponding word
a0a1a2 · · · consists of two alphabets {0, 1} with admissiblity condition:

an = 1 → an+1 = an+2 = an+3 = an+4 = 0.

The tiling of C ' R2 attached to this Pisot numeration system in base θ
can be found in [11]. See also [3], for a precise study on the boundary of this
tiling.

-6 -4 -2 2 4 6

-4

-2

2

4
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Example 2. Let β = 1.839 . . . be a positive root of x3 − x2 − x − 1.
The corresponding word consists of two alphabets {0, 1} with admissiblity
condition:

an = an+1 = 1 → an+2 = 0.

The tiling of C ' R2 attached to β is called the Rauzy Fractal. There exist
many results on this tiling studied by means of substitution and finite state
automata. For example, see [10], [7], [8].

-4 -2 2 4

-2

2

4
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