Self affine tiling and Pisot numeration system *

Shigeki Akiyama

1 Introduction

Let 8 > 1 be a real number. Consider an expansion of positive real number
x:
z=anf" +an 1N Fan N4

with a; € ZN10,3). A greedy expansion of z in base 3 is such expansion with
N .
x> a] < M (1)
M

for any M. By using greedy algorithm, such an expansion always exists for
any x. This is a natural extension of decimal or binary expansion to a real
base. An expansion of x is admissible, if (1) holds for all M. Hereafter, we
use a notation

T =anNanN—1anN—2 " ".

A Pisot number is an algebraic integer greater than 1 whose conjugates
other than itself have modulus smaller than 1. We have a particular interest
in the case when 3 > 1 is a Pisot number. Surprisingly, one can find many
similar phenomena with binary or decimal expansion. See [1]. We use a term
"Pisot numeration system’ to call this method to represent real numbers in
a power series in Pisot number base.

In this paper, we will prove fundamental properties of tilings generated by
Pisot numeration system. Let Fin(/3) be a set of all finite greedy expansion
in base 3. Consider two properties

(F')  Fin(3) > Z[f]=0
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and
(F)  Fin(B) = Z[f™']s0.

In [1], the author proved a necessary and sufficient condition whether (3 has
property (F’) or not. In §2 theorem 1, it is proved that (F) is equivalent to
(F”). Thus, there exist a finite algorithm to determine (F). Next we define
a self affine tiling of R"~! by Pisot unit of degree n with the property (F).
When £ is a cubic Pisot unit with (F) which is not totally real, we obtain
a self similar tiling. Otherwise, we get a self affine, not self similar, tiling of
R" 1. See the figures in §3.

We can find interesting examples of these tiling in [10], [7], [11], [8].
They treat these tilings in terms of substitution or finite state automata.
In contrast, this paper treat these tilings in a context of "Pisot numeration
system’. The author believes that, this method gives us a clear understanding
of universal phenomena of these tilings. For instance, it is proved in theorem
2 that the origin is an inner point of the central tile 7 by using geometry
of numbers. This fact is very much fundamental. We can show that the
boundary of each tile is nowhere dense in R"*™! as a corollary.

It is also shown that each tile is arcwise connected in Theorem 3, under a
certain weak condition. The method of the proof is the ’encircling method’
developed in [3].

2 Self affine tiling generated by Pisot numer-
ation system

Let  be a Pisot number of degree n, and Fin(3) be a set of all elements in
Q() which have finite greedy expansion in base 3. Consider a property

(F) Fin(3) = Z[3 0.

In [6], it is shown that a Pisot number [ whose irreducible polynomial is of
a form:
" — Ay 1Tn1 — Ap_2Tp_3 — ... — Ao,

with a; € Z-g and a; > a;_1 (i = 1,2,...,n — 1) has property (F).

Let 5 = M, 3@ .. 301 be the real conjugates and gr+1, gn+2) - glritra)
together with their complex conjugates, be the complex conjugates of (.
We also denote by () (5 = 1,2,...,n) the corresponding conjugate of

z € Q(). Here we put zm+72+) = 20+ for j =1,2,... 7.
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Let p be a non negative integer and define M;(p) (j = 2,3,...n) as an
upper bound of

1> ap-i (B,
1=0

where Y2, a;37" runs through finite greedy expansions of length at most
p+ 1. Let M; be an upper bound of M;(p) (p = 1,2,...). One can take
M; = [8]/(1 — |3Y)]). Here [z] is the greatest integer not exceeding x. Let
bj (j =1,...n) be positive real numbers and C' = C(by, b, ...,b,) be a set
of elements in Z[3] such that

|I(j)| <b;.

Obviously, C' is a finite set. Then we can show a slight generalization of
Theorem 2 in [1].

Theorem 1. Let § be a Pisot number. Then [ has the property (F)
if and only if every element of C' = C(1, My, M3, ..., M,) has finite greedy
expansion in base (3.

Proof. The proof is quite similar with that of Theorem 2 in [1]. We only
have to note that for each element x in Z[37!] there exist qq, that if ¢ > qo
with ¢ € Z>¢ then % is in Z|[].

Recently, the complete list of cubic Pisot units with (F) is established in
2], by using this theorem. Define a map @ : Q(3) — R"! by

O(z) = (@, ..., 2 R, S(a1HD) R, S R(aFTD)), (a1,
Proposition 1. Let 5 be a Pisot number of degree n. Then ®(Z[F]-0)
is dense in R"1.

Proof. First, we prove ®(Z[f]) is dense in R"~!. Thus it suffice to show



that a set consists of elements:

1 5(2) (5(2))2
1 5B (5(3))2
! g (5
1 m(g(rlﬂ)) g)cg(w(nﬂ))z)
z1 | 0 [+z, %(5(m+1)) +13 g((ﬁ(r1+1)>2)
1 3%(5(r1+2)) %((6&14—2))2)
0 J(pri+2) S((Br+2)2)
1 %(ﬁ(r‘ﬁ—m)) %((B(T;JFTQ))Q)
0 g(ﬁ(rﬁ-rz)) %((ﬁ(’"l"‘r?))Q)
with integer coefficients x; with ¢ = 1,2,...,
(n—1) x (n — 1) matrix
(2 (5(2))2 (5(2))3
@(3) (5(3))2 (5(3))3
g (g (g
A= 5(r1+1) (ﬁ(m—i—l )2 r1+1))3
Blri+1) (ﬂ(rhtl )2 (8 r1+1)>3
5(7’1+T2) (ﬁ(rﬁm)) (ﬁ(njrrg))?)
G (Frm) ()

Let P bea(n—1)x

(n — 1) matrix of a form:

ro times

R((5r+2))n1)
(B2t

n is dense in R™ . Define a

1 /-1

b= ”1—1@(1 —V=1

Here A @ B is a matrix of a form:

V-1

Jo (i

(0 5)

“A)ee (i ),




and [}, is the identity matrix of size k. Then

5(2)
5(3)

5(7"1)
P | R(pHY)
3(3r)

R3O0
%(ﬁ(rﬁ—m))

(84))? (843
GOR oy
(6(7:1))2 (6(7:1))3

R((BU)2) - R((BH)?)
(BTH9)2) - S((B7HD)%)

&

%((ﬁ(riﬁ?))?)

()

R
F((Ar)2) - S((p0))

Thus it suffice to show that

1
1

O = e

Z

(mod Z" 1) = A™!

is dense in R"~!/Z"~!. By Cramer’s rule,

A—l

1 det A1
det AQ

= (det A)™*

1 det An,1

(gl
(50
(30

%((5(7“14‘7"2) n—l)
(o))

(mod Z" 1)




where
i-th column

oS e 1 e (5(2))%1

56 . 1 . (5(3))71—1

ﬂ(m) 1 (ﬁ(rl))n—l
Az = ﬁ(rﬁ»l) 1 (ﬁ(rlJrl))nfl
Brit1) 1 (Bt
plritra) . N 1 . (plritra)yn=1
/8(T1+T2) .. 1 .. (ﬁ(erTQ))"—l

Note that

dev 4 = £ [T 9O TT(59 — 09) = e~ [I(59 — 69,
=2

1<J 1<j

with a non zero integer c. We see ¢3! det A;/ det A is nothing but the ele-
mentary symmetric polynomial of degree n—1—i with respect to 5, 33 .. g™,
Thus n-elements

det Al det A2 det An—l
"det AT detA’ 7 detA

lie in Q(/3). Moreover these n-elements are linearly independent over Q. To
show this, note that each element x of Q(3) can be uniquely expressed in a
form z = 315 n;8' with n; € Q. Define a map = : Q(3) — ZN[0, n—1] by the
maximal index i that 7; # 0. By induction, Z(1) = 0 and =(det A;/ det A) =
n—1 . This proves the linear independence. Now, one can apply Kronecker’s
approximation theorem to show that ®(Z[3]) is dense in R"!.

Let us take an arbitrarily point 2 € R*"!. For any ¢ > 0, there exists an
element 2’ € Z[f] that |z — ®(2')| < /2. As (3 is a Pisot number, there exist
a positive integer M that |®(8M)| < ¢/2 and x + ™ > 0. Put y = 2/ + M,
then |z — y| < € and y € Z[f]>¢. This proves the assertion.

Let A =ara;_1---ay be a greedy expansion in base . Put degﬁ(A) =
deg(A) = L and ordg(A) = ord(A) = M. Define Sy = Sy a,_,.-ay b€ aset of
all elements in Fin() whose greedy expansion has the tail part A. In other
words, each element of S4 has a form:

brbg_1-+ bryiarar—1---ay.



Let Ty = ®(S4). For the empty word A\, we also define
Sy =9 ={z € Fin[f] | ordg(x) > 0}.

and deg(\) = —1. We designate by S = S. to avoid confusion. A tile is a set
T, with deg(A) = —1. A subtile is a set T4 with deg(A) > —1. Similarly, let
T =T = ®&(S) which is called the central tile. Against standard notations,
we do not assume that a tile should be a set coincides with the closure of its
interior. This fact is shown in a special case in corollary 1 of theorem 2.

Corollary. Let (3 be a Pisot number of degree n with property (F). Then

R"'= |J Ta
deg(A)=—1

Proof. By the assumption, it is clear that

Z[ﬁ]>0 - Z[ﬁfl]zo = U S~0«71a72"'a7M‘

.a—1a-2-a_ M

Applying the map ® to both hand sides and taking the closure, we get the
result.

The next lemma is most essential in the proof Theorem 1 in [1].

Lemma 1.
Let 8 > 1 be an algebraic unit of degree n, and M be a positive number.
Put
X(p) ={x € Fin(f) | |z| < M, ordg(x) = —p}.

Then

lim min max lx(J)’ = 00.
P—0 zeX(p) j=2,3,...,n

Proof. This was already proved in [3]. However, we restate it, for the
convenience of the reader. Assume that there exist a constant B and an
infinite sequence x; (i = 1,2,...) so that both

@ <B forj=2,3,..n and limords(z;) = —o0

1— 00



holds. Noting 3 is a unit and |z;] < M, these x;’s are finite. On the other
hand, by the definition of the greedy expansion, {z; | i = 1,2,...} is an
infinite set. This is absurd, which proves the lemma.

Let Inn(X) be a set of inner points of X.

Theorem 2. Let § be a Pisot unit with property (F). Then for each
element x € S, we have ®(z) € Inn(7). Especially, the origin is an inner
point of the central tile 7.

Proof. First we show that the origin ®(0) is an inner point of 7. Let z =
Ty + 29 with ordg(z1) > 0,degs(w2) < 0. As 3 is a Pisot number, there exist
an absolute constant C' that |x§j)\ < Cforall j =23, ---,n. Clearly z is
bounded by some absolute constant M. By using ordg(z) = ordg(zs) = =N
and Lemma 1, for any positive B, there exist N such that |:vgj )| > B+ C for
a certain j € Z N [2,n], which shows |#()| > B. Thus we have proved that,
for any positive B, there exist N such that if ordg(z) < —N then there exist
a conjugate || > B with j = 2,3,...n. Let z = 3~V*1y, then

ordg(y) < 0= dj € Zﬂ[?,n] \y(j)\ > |ﬁ(j)]N_1B.

Thus there are no elements ®(y) with y € Fin(5) of negative order in the
disk _
U={¢eR"" | |¢|<(min |39)¥'B}.

2<j<n
Here [£| is the Euclidian norm of ¢ in R"~!. By using Proposition 1, U C 7.
Thus 0 is an inner point of 7. Let = be an element of Fin(3) whose expansion
is
T = Tplp—1°""XQ-

Let m be the minimal length that [3]0™~'1 = [5]00---01 is admissible.
Subdivide 7 in a form:

T - U T$k+mxk+m—1"'l’0-7

where the index runs over all greedy expansion of length k£ + m + 1. We see
that 0 is also an inner point of Thr+m+1. By adding z, ®(zpxk_1 - - x0) is an
inner point of Tymy, 4, ..z, LThus the theorem is proved.

Corollary 1. Let 8 be a Pisot unit with property (F). For each x € S4,
we have ®(z) € Inn(74). Moreover, Inn(7T4) = Ta.

8



Proof. Multiplying a suitable power of 3, we may assume that degg(A) =
—1. In theorem 2, we already proved the first statement in the case when
A is an empty word. One may apply the same subdividing argument to
prove that ®(x) € Inn(Ty) if x € Sa. As T4 is closed, T4 D Inn(7y4). Let
x € Ty. Then for any € > 0, there exists y € Sy that |z — ®(y)| < e. As
®(y) € Inn(T4), we have Ty C Inn(T4). This shows the assertion.

Corollary 2. Let § be a Pisot unit with property (F) and 9(T4) be a
set of boundary elements of T4. Then 9(T}4) is closed and nowhere dense in
R 1.

Proof. Let x € 0(T4). For any € > 0, there exist infinite elements
y; € Fin(8) (i = 1,2,---) that y; € Sa and |z — ®(y;)| < €. One may
assume that all y; are in a single Sp with a greedy expansion B # A, as
there exist only finite number of tiles which have common points with T'4.
Thus

finite

(Ta) = U (TanTp),

which shows 0(T) is closed. For any = € 90(T4) and € > 0, there exist y € Sy
with |z — ®(y)| <e. As ®(y) € Inn(T,), there exist no elements of I(7T4) in
a sufficiently small neighborhood of ®(y). This shows that 9(T4) is nowhere
dense in R,

Let 3 be a Pisot unit with (F) and 1 =a_187 ' +a 982 +...+a_yB M
be an expansion of 1 defined by an algorithm

c_i = fc_ip1 — [60—1'4-1] a_; = [ﬁc—z’-&-l]

with ¢g = 1. It is well known that the word bipbi_;---b; with alphabet
b; € [0, 8) NZ is admissible if and only if byb_1 - - - by is lexicographically less
than a_ja_5---a_y; at any starting point. The equation

M= a_lfol + a_2xM72 +---ta_nm

is the ’characteristic equation’ defined in [9]. It is likely that a_j; = 1 holds
for all Pisot unit with (F). Now we prove

Theorem 3. Let 3 be a Pisot unit with (F) with a_p; = 1. Then each
tile is arcwise connected.



Proof. First, note that there exist only finite tiles up to parallel trans-
lation. Let T'4,,T4a,,---,Ta, be a representative system of different tiles.
Define an open disk

D(x,r)={z€ R : |z —2a| <71}

Let R > 0 be a radius that T, C D(®(A,), R) for ¢ = 1,2,---,h. Consider
afixed tile T'=T4 = T4y09 0, = P(Sa). Now we have

SA = U507
C

where the sum is taken over all greedy expansion of the form C' = b1by - - - bj.a1az - - -

This relation give rise to a subdivision of the tile T" into subtiles T-. Hence
T = ®(S4) C Ue D(®(C), 5 R) with § = max;—p3...,, |37 Put K(A,j) =
Ue D(®(C),¢’R) then T C N2 K(A,j). Noting § < 1, we also have
N2 K (A, j) C T, which shows T'= 72 K (A, j). Take arbitrary two points
x1, 9 € T. Our purpose is to construct a curve in 7" which join x, x5. Note
that, by the definition of R, if there exist a common point & of two tiles Tz,
and Tg,, then £ € D(®(By), R)ND(P(By), R). Using characteristic equation
of 3, we can construct infinitely many elements of T, N T;.. Moreover we
have

Thiereserns VT herenen 7 0

for |fi — f2] = 1. Using these facts, one can show by induction on j, that
K(A,j) is arcwise connected. In fact, we can take y(j, k) k = 1,2,--- M;
which satisfies y(j,1) = z1,y(j, M;) = x5 and

LG) = U LlyG.k), Gk + )] € K(A,j)
k=1

with rnaxiij1 ly(4, k) —y(j, k+1)| = O(¢8) and y(j, k) for k =2,3,---, M; —1
is the center of the disk appeared in the definition of K (A, j). Here L[z, ]
is the line segment which join z,y € R"~!. Moreover we can choose distinct
y(j, k) k=1,2,--- M; such that

Define L;(k) by y(j, k) = y(j + 1, L;(k)). We may also assume that

y(i +1,€) € D(y(j. k),0’R) U D(y(j, k +1),0’R)

10
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for & € [L;(k),L;(k+1)]NZ.
Now let us define g(j,k) € [0,1] for j = 1,2,--- and k = 1,2,---, M,
inductively. First let g(1,k) = k/M; for j = 1,2,--- My. If j > 2, then
define
90U —1,8)(Lj—1(s+1) —k)+9(j —1,s + 1)(k — L;—1(s))

905, k) = Lya(s+1) = Ly1(s) |

for L;_1(s) <k < L;_1(s+1). Define the value f at a dense subset of [0, 1]
by f(9(j,k)) = y(j, k). We can extend f continuously to [0, 1] by

f() = lim y(j, k5 (1)),
where k;(t) is defined by ¢ € [g(J, k;(t)), 9(4, k;(t) + 1)]. As y(j, k) € Inn(T)

for j =2,3,---,M;—1, f is a continuous map from [0, 1] to 7" with f(0) = x4
and f(1) = x9. This proves the assertion.
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3 Examples of the tilings

Example 1. Let § = 1.3247... be a positive root of 2> —x —1 = 0. It is
known that € is a minimal Pisot number. See [5]. The corresponding word
apajasy - - - consists of two alphabets {0, 1} with admissiblity condition:

ap =1— Up41 = Apy2 = Qpi3 = Qpigq = 0.

The tiling of C ~ R? attached to this Pisot numeration system in base 6
can be found in [11]. See also [3], for a precise study on the boundary of this
tiling.
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Example 2. Let 3 = 1.839... be a positive root of 2® — 22 — x — 1.

The corresponding word consists of two alphabets {0,1} with admissiblity
condition:
Ap = Apy1 = 1 — Apyo = 0.

The tiling of C ~ R? attached to f3 is called the Rauzy Fractal. There exist
many results on this tiling studied by means of substitution and finite state
automata. For example, see [10], [7], [8].
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