# Rational approximation of $(1+x)^{a}$ and applications to the Thue inequality 

Yuzen TANAKA

(Graduate School of Science and Technology, Chiba University)
The Thue equation (inequality) is defined by

$$
F(X, Y)=k, \quad(|F(X, Y)| \leq k)
$$

where $F \in \mathbb{Z}[X, Y]$ is a homogeneous polynomial of degree $n \geq 3$ and $k$ is a positive integer. We have two fundamental theorems on them:
Theorem $\mathbf{T}\left(\mathbf{A}\right.$. Thue, 1909) Thue equation has only finitely many solutions $(X, Y) \in \mathbb{Z}^{2}$.
This theorem is not effective. In 1968 A . Baker gave the upper bound of the solutions $(X, Y)$ :
Theorem B (A. Baker, 1968) Let $\kappa>n+1$ and $(X, Y) \in \mathbb{Z}^{2}$ be a solution of the Thue equation. Then

$$
\max \{|X|,|Y|\}<C e^{(\log k)^{\kappa}}
$$

where $C=C(n, \kappa, F)$ is an effectively computable number.
But generally this upper bound is too big to determine the exact solutions for a given equation (inequality).
Let $\alpha$ and $x$ be rational numbers in the open interval $(0,1)$. We denote $x=x_{1} / x_{2}$ and $a=\alpha / n=a_{1} / a_{2}$ where $x_{1}, x_{2}, a_{1}, a_{2} \in \mathbb{Z}^{+}$and $\operatorname{gcd}\left(x_{1}, x_{2}\right)=\operatorname{gcd}\left(a_{1}, a_{2}\right)=1$. By considering the integral

$$
I_{i n}(x)=\frac{1}{2 \pi \sqrt{-1}} \int_{\Gamma} \frac{z^{i}(1+z x)^{n+a}}{(z(z-1))^{n+1}} d z
$$

we have the Padé approximations to $(1+x)^{a}$. By the Padé approximations we obtain
Theorem 1 Let $d=a_{2}{ }^{1-\left(a_{2} \bmod 2\right)}, D=x_{2}, Q=a_{2}{ }^{\frac{3}{2}}, p=\frac{(1+\varepsilon)(1+x+\varepsilon x)}{1-\varepsilon}, P=\frac{1+x+\varepsilon x}{\varepsilon(1-\varepsilon)}$, $\varepsilon=\frac{-1-x+\sqrt{1+3 x+2 x^{2}}}{x}, l=\frac{\sin a \pi}{\pi}, L=\frac{1}{x^{2}}$ and

$$
\lambda=\frac{\log V}{\log U}, \quad c^{-1}=2 p d V C^{\lambda},
$$

where $V=P D Q, U=\frac{L}{D Q}$ and $C=\max \{1,2 d l\}$. If $x_{2}>x_{1}{ }^{2} a_{2}{ }^{\frac{3}{2}}$ then

$$
\left|(1+x)^{a}-\frac{X}{Y}\right|>\frac{c}{Y^{1+\lambda}}
$$

for arbitrary positive integers $(X, Y)$.
Using Theorem 1 we obtain
Theorem 2 Let $k$ be a positive real number. Suppose $x_{2}>x_{1}{ }^{2} a_{2}{ }^{\frac{3}{2}}$, then any solution $(X, Y) \in\left(\mathbb{Z}^{+}\right)^{2}$ of the Thue inequality

$$
\left|X^{n}-(1+x)^{\alpha} Y^{n}\right| \leq k
$$

satisfies

$$
Y< \begin{cases}\left(\frac{k}{n c}\right)^{\frac{1}{n-1-\lambda}} & (X \geq Y) \\ \left(\frac{k}{(1+x)^{\alpha}-1}\right)^{\frac{1}{n}} & (X<Y)\end{cases}
$$

This result depends on the method of G. V. Chudnovsky, J. H. Rickert and I. Wakabayashi. In the talk we shall show several examples.

