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In this talk, we will investigate the necessary and sufficient conditions for algebraicity
of the values of certain infinite products.

Let K be an algebraic number field and r ≥ 2 be integer. We define Ωnz = (zrn

1 , . . . , zrn

m )
for z = (z1, . . . , zm) and put

Φ0(z) =
∞∏

k=0

Ek(Ωkz)

Fk(Ωkz)
,

where Ek(z) and Fk(z) are polynomials in K[z] such that the degrees are bounded and
the coefficients satisfy suitable conditions. Suppose that there exists a positive integer D
such that DFk(z) (k ≥ 0) are the polynomials with integer coefficients of K. Then the
main theorem can be stated as in the following;

Main theorem. Let α = (α1, . . . , αm) ∈ Km be an algebraic point with 0 <
|αi| < 1 (1 ≤ i ≤ m) such that |α1|, . . . , |αm| are multiplicatively independent and
Ek(Ωkα)Fk(Ωkα) 6= 0 (k ≥ 0). Then Φ0(α) is algebraic if and only if Φ0(z) is a ra-
tional function with coefficients in K.

As applications of the main theorem, we obtain the following results.
i) Let {a(i)

n }n≥0 (1 ≤ i ≤ m) be m sequences in K satisfying suitable conditions and

Φ0(z) =
∞∏

k=0

(
1 + a

(1)
k zrk

1 + · · · + a
(m)
k zrk

m

)
,

where a
(1)
n 6= 0 for infinitely many n. Let α be an algebraic point as in the main theorem.

Then Φ0(α) is algebraic if and only if r = 2, a
(i)
n = 0 (i 6= 1), and there exists a root of

unity ω such that a
(1)
n = ω2n

for every large n.
ii) The number

∞∏
k=0

(
1 +

ak

Frk

)
is transcendental, where Fn is n-th Fibonacci number and {an}n≥0 is suitable sequence of
algenraic numbers.
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