Algebraic independence of a certain series and its
subseries with subscripts in a geometric progression
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The main result of this talk asserts the algebraic independence of >~>° @, and
its subseries Z agn, where {a,},>1 is a sequence of rational numbers such that
oo an absolutely converges and d is an integer greater than 1.

Let {F, }n>0 be the sequence of Fibonacci numbers defined by Fy = 0, F} = 1,
Frio = Foi1+F, (n > 0). Rabinowitz [2] proved that for every k € N = {1,2,3,...}
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In this talk we consider the similarly constructed series such as Z M
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where [x] denotes the largest integer not exceeding the real number x. These sums

(k € N),
are not only transcendental but also algebraically independent. For example, the
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are algebraically independent. This result is proved by using Mahler’s method with
linear relations between the numbers
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It seems difficult to find in literature the results which assert the algebraic in-
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dependence of Y~ a, and Y | agn mentioned above. For example, the algebraic
independency of the numbers > 7 1/F, and Y~ 1/Fy (d > 3) is open, while
Nishioka, Tanaka, and Toshimitsu [1] proved that the numbers > >°  1/Fy (d > 3)
are algebraically independent.
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