Algebraic independence of a certain series and its subseries with subscripts in a geometric progression

Taka-aki Tanaka

The main result of this talk asserts the algebraic independence of $\sum_{n=1}^{\infty} a_{n}$ and its subseries $\sum_{n=1}^{\infty} a_{d^{n}}$, where $\left\{a_{n}\right\}_{n \geq 1}$ is a sequence of rational numbers such that $\sum_{n=1}^{\infty} a_{n}$ absolutely converges and d is an integer greater than 1.

Let $\left\{F_{n}\right\}_{n \geq 0}$ be the sequence of Fibonacci numbers defined by $F_{0}=0, F_{1}=1$, $F_{n+2}=F_{n+1}+F_{n}(n \geq 0)$. Rabinowitz [2] proved that for every $k \in \mathbb{N}=\{1,2,3, \ldots\}$

$$
\sum_{n=1}^{\infty} \frac{1}{F_{n} F_{n+2 k}}=\frac{1}{F_{2 k}} \sum_{n=1}^{k} \frac{1}{F_{2 n-1} F_{2 n}}
$$

In this talk we consider the similarly constructed series such as $\sum_{n=1}^{\infty} \frac{\left[\log _{d} n\right]}{F_{n} F_{n+2 k}}(k \in \mathbb{N})$, where $[x]$ denotes the largest integer not exceeding the real number x. These sums are not only transcendental but also algebraically independent. For example, the numbers

$$
\sum_{n=1}^{\infty} \frac{\left[\log _{d} n\right]}{F_{n} F_{n+2 k}}, \quad \sum_{n=1}^{\infty} \frac{n}{F_{d^{n}} F_{d^{n}+2 k}} \quad(k \in \mathbb{N})
$$

are algebraically independent. This result is proved by using Mahler's method with linear relations between the numbers

$$
\sum_{n=1}^{\infty} \frac{\left[\log _{d} n\right]}{F_{n} F_{n+2 k}}, \quad \sum_{n=1}^{\infty} \frac{1}{F_{d^{n}} F_{d^{n}+k}} \quad(k \in \mathbb{N})
$$

It seems difficult to find in literature the results which assert the algebraic independence of $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} a_{d^{n}}$ mentioned above. For example, the algebraic independency of the numbers $\sum_{n=1}^{\infty} 1 / F_{n}$ and $\sum_{n=1}^{\infty} 1 / F_{d^{n}}(d \geq 3)$ is open, while Nishioka, Tanaka, and Toshimitsu [1] proved that the numbers $\sum_{n=1}^{\infty} 1 / F_{d^{n}}(d \geq 3)$ are algebraically independent.

References

[1] K. Nishioka, T. Tanaka, and T. Toshimitsu, Algebraic independence of sums of reciprocals of the Fibonacci numbers, Math. Nachr. 202 (1999), 97-108.
[2] S. Rabinowitz, Algorithmic summation of reciprocals of products of Fibonacci numbers, Fibonacci Quart. 37 (1999), 122-127.

