Explicit algebraic relations for reciprocal sums of even powers of Fibonacci numbers

Carsten Elsner
Univ. Hannover, Shun Shimomura and Iekata Shiokawa
Keio Univ.

Let $\left\{F_{n}\right\}_{n \geq 0}$ and $\left\{L_{n}\right\}_{n \geq 0}$ be Fibonacci numbers and Lucas numbers defined by

$$
\begin{aligned}
& F_{0}=0, \quad F_{1}=1, \quad F_{n+2}=F_{n+1}+F_{n} \quad(n \geq 0), \\
& L_{0}=2, \quad L_{1}=1, \quad L_{n+2}=L_{n+1}+L_{n} \quad(n \geq 0) .
\end{aligned}
$$

Duverney, Ke. Nishioka, Ku. Nishioka, and the last named author proved the transcendence of the numbers

$$
\sum_{n=1}^{\infty} \frac{1}{F_{n}^{2 s}}, \quad \sum_{n=1}^{\infty} \frac{1}{L_{n}^{2 s}}, \quad \sum_{n=1}^{\infty} \frac{1}{F_{2 n-1}^{s}}, \quad \sum_{n=1}^{\infty} \frac{1}{L_{2 n}^{s}} \quad(s=1,2, \ldots)
$$

by using Nesterenko's theorem on Ramanujan functions $P(q), Q(q)$, and $R(q)$.
We prove the algebraic independence of the numbers

$$
\sum_{n=1}^{\infty} \frac{1}{F_{n}^{2}}, \quad \sum_{n=1}^{\infty} \frac{1}{F_{n}^{4}}, \quad \sum_{n=1}^{\infty} \frac{1}{F_{n}^{6}}
$$

and write each

$$
\sum_{n=1}^{\infty} \frac{1}{F_{n}^{2 s}} \quad(s=4,5,6, \ldots)
$$

as a rational function of these three numbers over \mathbb{Q}. Similar results are obtained for various series including the reciprocal sums of even powers of Lucas numbers.

