Number of Solutions to Simultaneous Pell Equations of Indefinite Signature

Ryotaro Okazaki
Doshisha University

Let a_{1}, a_{2}, b_{1} and b_{2} be given positive integers such that $a_{1} a_{2}, b_{1} b_{2}$ and $a_{1} a_{2} b_{1} b_{2}$ are non-square. We consider the system

$$
\left\{\begin{aligned}
a_{1} x^{2}-a_{2} z^{2} & = \pm 4 \\
b_{1} y^{2}-b_{2} z^{2} & = \pm 4
\end{aligned}\right.
$$

of Diophantine equations in unknown positive integers x, y and z, where signature of the right hand side may depend on x, y and z. We showed this system has at most 3 solutions under the technical assumption $\max \left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$ $\geq 10^{13}$.

In this talk, the speaker attempt to give a simpler proof for an exponential gap principle.

