## On the irrationality of a certain series

## Florian Luca

Let $q>1$ be an integer. In 1995, Daniel Duverney used elementary considerations together with results concerning the distribution of numbers which are sums of two squares to show that the Tchakaloff number

$$
\sum_{n \geq 1} \frac{1}{q^{n(n+1) / 2}}
$$

is not quadratic. In my talk, I will extend Duverney's method to show that if $K>1$ is any given constant and $f(X) \in \mathbf{Q}(X)$ is any integer valued quadratic polynomial with positive leading term, then the number

$$
\sum_{n \geq 1} \frac{a_{n}}{q^{f(n)}} \quad \text { with } 0<\left|a_{n}\right|<K \text { for all } n \geq 1
$$

is not quadratic. The proof uses sieves and a result of Iwaniecz on primes represented as a sum of two values of a quadratic polynomial.

