NEW SERIES TRANSFORMATIONS FOR EULER'S CONSTANT

Carsten Elsner

Institut für Mathematik, Universität Hannover, Welfengarten 1,
D-30167 Hannover, Germany

Abstract

Let $s_{n}=1+1 / 2+\ldots+1 /(n-1)-\log n$. In 1995 , the author has found a series transformation of the type $\sum_{k=0}^{n} \mu_{n, k, \tau} s_{k+\tau}$ with integer coefficients $\mu_{n, k, \tau}$, from which geometric convergence to Euler's constant γ for $\tau=\mathcal{O}(n)$ results. In recently published papers T.Rivoal and $K h$. and T.Hessami Pilehrood have generalized this result. In the lecture a series transformation $\sum_{k=0}^{n} \mu_{n, k, \tau_{1}} s_{k+\tau_{2}}$ with two parameters τ_{1} and τ_{2} satisfying $\tau_{1}+1 \leq \tau_{2} \leq n+\tau_{1}+1$ and integer coefficients $\mu_{n, k, \tau_{1}}$ will be introduced. By applying the Mellin-Barnes integral representation of the ${ }_{3} F_{2}$-function, combinatorial identities and the analysis of the ψ-function, for $n=2 m$, $\tau_{1}=m-1$ and $\tau_{2}=2 m$ it is shown that $S:=\left|\sum_{k=0}^{n} \mu_{n, k, \tau_{1}} s_{k+\tau_{2}}-\gamma\right| \leq m / 2 \cdot\left|\zeta(2)-q_{m}\right|$, where q_{m} are explicitly given rational numbers. Finally, $\zeta(2)-q_{m}$ can be expressed in terms of Legendre-type integrals, which give upper bounds for S. In particular, for $n=2 m$, $\tau_{1}=m-1$ and $\tau_{2}=2 m$ this bound equals to $2 m \cdot 64^{-m}$. By the way, we find a linear three-term recurrence formula for a specific weighted sum on a ${ }_{3} F_{2}$-function.

