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What is rigidity?

A structure is ”rigid” if it doesn’t allow a small perturbation

This often means some algebraic constraints

Another aspect: weak form of equivalence implies strong form of
equivalence

Substitution (self-affine) tilings exhibit both kinds of rigidity
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Plan of the talk

1 Preliminaries

2 Which expansions are possible for self-affine tilings? (Thurston,
Kenyon, Kenyon & S.)

3 When does the tiling have large discrete spectrum (diffraction or
dynamical)? (J.-Y. Lee & S.)

4 Topological and dynamical rigidity (J. Kwapisz)
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I. Preliminaries on tilings

Prototile set: A = {A1, . . . ,AN}, compact sets in Rd , which are
closures of its interior; interior is connected.

May have “colors” or “labels”

A tiling of Rd with the prototile set A: collection of tiles whose union
is Rd and interiors are disjoint. All tiles are translates of the prototiles.

A patch is a finite set of tiles. A+ denotes the set of patches with
tiles from A.

Assume translational finite patch complexity (or finite pattern
condition) (FPC).
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Tile-substitutions in Rd

Let φ : Rd → Rd be an expanding linear map, that is, all its eigenvalues
are greater than 1 in modulus.

Definition. Let {A1, . . . ,Am} be a finite prototile set. A tile-substitution
with expansion φ is a map ω : A → A+, where each ω(Ai ) is a patch
made of translates of Aj , such that

supp(ω(Ai )) = φ(Ai ), i ≤ m.

The substitution is extended to all translates of prototiles by
ω(x + Aj) = φx + ω(Aj), and to patches and tilings by

ω(P) =
⋃
{ω(T ) : T ∈ P}.
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Self-similar and self-affine tilings

Substitution matrix: S = (Si ,j)i ,j≤m, where S(i , j) = # tiles of type i
in ω(Aj)

Tile-substitution is primitive if S is primitive, that is, some power of
S has only positive entries (equivalently, ∃ k ∈ N, ∀ i ≤ m, the patch
ωk(Ai ) contains tiles of all types).

We say that T is a fixed point of the tile-substitution ω if
ω(T ) = T . Such tilings are called self-affine.

If φ is a similarity map (i.e. |φ(x)| = r |x | for some r > 1 and all
x ∈ Rd), then T is called self-similar.
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Self-similar tilings: special cases

φ is a pure dilation: φ(x) = λx , for λ > 1, in Rd

λ is the real expansion constant

φ(z) = λz for λ ∈ C, for |λ| > 1, in C ≈ R2

λ is the complex expansion constant
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Example: chair tiling
Examples are shamelessly taken from ”Tiling Encyclopedia”, see
http://tilings.math.uni-bielefeld.de/

Figure: tile-substitution, real expansion constant λ = 2
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Example: chair tiling

Figure: patch of the tiling
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Example: non-FLC tiling (Kenyon)

Figure: tile-substitution, real expansion constant λ = 3
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Example: non-FLC tiling (Kenyon)

Figure: patch of the tiling
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Example: non-FLC tiling (Kenyon)
To get the ”self-similar” one, need to iterate and rescale...

Figure: tile-substitution for the ”pre-self-similar” tiling
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Example: non-FLC tiling (Kenyon)

Figure: patch of the ”pre-self-similar” tiling (note optical illusion!)
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Example: self-similar tiling of the plane with fractal
boundary

Figure: Self-similar tiling with complex expansion constant λ, λ4 + λ+ 1 = 0 (R.
Kenyon)
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Example: self-similar tiling of the plane with fractal
boundary

Figure: Substitution rule
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Example: self-affine of the plane

Figure: A self-affine tiling in the plane with diagonal expansion matrix Diag[x1, x2]
where x1 ≈ 2.19869, x2 ≈ −1.91223 are roots of x3 − x2 − 4x + 3 = 0.
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Example: self-affine of the plane (cont.)

Figure: Subdivision rule: 1→ {3, 2}, 2→ {3, 2, 2, 2, 2}, 3→ {1, 1, 1}.
Construction uses free group F (a, b, c), with a, b, c corresponding to vectors
(1, 1), (x1 − 1, x2 − 1), (x2

1 − x1, x
2
2 − x2) in R2, the endomorphsm

ψ(a) = ab, ψ(b) = c , ψ(c) = ab4 and tiles [b, a], [b, c], [a, c].

Boris Solomyak (University of Washington) Rigidity for self-affine tilings December 21, 2011, RIMS 17 / 69



(Some) constructions of tilings with fractal boundary

Free group endomorphisms, iterating and rescaling, substitutions of
higher-dimensional faces: [Dekking 1982], [Ito & Kimura 1991], [Ito
& Ohtsuki 1991, 1993], [Kenyon 1990, 1996], [Arnoux & Ito 2001],
[Sano, Arnoux & Ito 2001], [Ei & Ito 2005], [Ito & Rao 2006], [Ei, Ito
& Rao 2006], [Furukado 2006], [Furukado, Ito & Robinson 2006], . . .

Finite state automata and numeration systems with a complex Pisot
base:
[Thurston 1989], [Petronio 1994], [Akiyama & Sadahiro 1998],
[Akiyama 2002], [Berthé & Siegel 2005], . . .

Connections with Markov partitions:
Many of the same papers + [Praggastis 1992, 1999], [Kenyon &
Vershik 1998], [Enomoto 2008], . . .
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Self-affine tilings
Repetitivity

Lemma. For any primitive tile-substitution ω, there exists n ∈ N such ωn

has a fixed point.

Definition A tiling T of Rd is repetitive if every patch P ⊂ T appears
relatively dense in Rd ; more precisely, there exixts R = R(P) such that
every ball of radius R contains a translated copy of P.

Lemma. Let T be an FLC fixed point of a tile-substitution with
substitution matrix S.
T is repetitive if and only if S is primitive and a T -patch, containing the
origin in the interior of its support, occurs in ωn(T ) for some T ∈ T and
some n ∈ N (in particular, if the origin lies in the interior of a tile).
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Self-affine tilings
Aperiodicity

Definition A tiling T of Rd is aperiodic if

T + x = T ⇒ x = 0.
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Self-affine tilings
Boundary

Lemma. Let T be a self-affine tiling with expansion map φ whose
rotational part is of infinite order (in R2 this means that the rotation is
irrational modulo π). Then the tiles cannot be polyhedral, or even
piecewise smooth.

Lemma. For any tile T of a self-affine tiling, Vol(∂T ) = 0.

Corollary. The PF eigenvalue of the substitution matrix of a self-affine
tiling with expansion map φ is | detφ|. The vector (Vol(Aj))m1 is a left PF
eigenvector.

Corollary. | detφ| is a Perron number, i.e. an algebraic integer θ > 1
whose Galois conjugates are strictly less than θ in modulus.

Boris Solomyak (University of Washington) Rigidity for self-affine tilings December 21, 2011, RIMS 21 / 69



Self-affine tilings and iterated function systems

There exist finite sets Dij ⊂ Rd , i , j ≤ m:

ω(Aj) = {u + Ai : u ∈ Dij , i = 1, . . . ,m}, j ≤ m,

with

φAj =
m⋃
i=1

(Dij + Ai ), j ≤ m. (1)

Here all the sets in the right-hand side must have disjoint interiors; it is
possible for some of the Dij to be empty. Note that S(i , j) = #Dij .
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Self-affine tilings and iterated function systems (cont.)

Rewrite the system of set equations (1):

Aj =
m⋃
i=1

(φ−1Ai + φ−1Dij), j ≤ m.

φ−1 is a contraction, so there is always a unique nonempty compact
solution {A1, . . . ,Am} (attractor of a graph-directed IFS). The difficulty is
to have Aj with nonempty interiors.
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II. Characterization of expansions I

Theorem. There is a self-similar tiling of the line R with expansion λ if
and only if |λ| is a Perron number.

We already know the necessity. Sufficiency follows from Lind’s Theorem:
every Perron number is the PF eigenvalue of a primitive matrix.

Theorem [Lind ’84] If λ > 1 is a Perron number, then there is a primitive
non-negative integral matrix M with the PF eigenvalue equal to λ.
Moreover, M can be chosen so that M11 > 0 and

∑m
i=1 Mi1 ≥ 3.
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Characterization of expansions II

Theorem (?) [Thurston ’89] In R2 ≈ C, φ(z) = λz with complex λ, is an
expansion of a self-similar tiling if and only if λ is a complex Perron
number, i.e. an algebraic integer of modulus > 1 whose Galois conjugates,
except the complex conjugate, λ, are strictly less than |λ| in modulus.

Sufficiency in the theorem above was claimed by Thurston and proved by
Kenyon in his GAFA 1996 paper, but there still seems to be a gap... In
this talk I will focus on the proof of necessity.

Remark. |λ|2 Perron does not imply that λ is complex Perron. For

example: λ = −1 + i
√

1 +
√

5 has |λ|2 = 2 +
√

5, which is Perron (even

Pisot), but λ has conjugates λ and −1±
√
−1 +

√
5, one of which is

≈ −2.11179, whereas |λ| ≈ 2.05817.
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Characterization of expansions III

Theorem [Kenyon-S. 2010] Let φ be an expanding linear map on Rd ,
which is diagonalizable over C, and suppose there exists a self-affine tiling
of Rd with expansion φ. Let λ be an eigenvalue of φ, and let γ be a Galois
conjugate of λ. Then either |γ| < |λ|, or γ is also an eigenvalue of φ, and
its multiplicity is ≥ multiplicity of λ.

The case of non-diagonalizable maps (Jordan blocks) is open.

Similarity maps are diagonalizable over C, so this covers all
self-similar tilings.

I will present a sketch of the proof, skipping (many!) technical details; it
will be more complete in the self-similar case.
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Control points

Definition. For each T -tile T , fix a tile γT in the patch ω(T ); choose
γT with the same relative position for all tiles of the same type. This
defines a map γ : T → T called the tile map. Then define the control
point for a tile T ∈ T by

{c(T )} =
∞⋂
n=0

φ−n(γnT ).

There are finitely many choices for control points, depending on γ.

Let C = C(T ) = {c(T ) : T ∈ T }.
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Properties of control points

1 If T ′ ≈ T in T , that is, T ′ = T + x , then c(T ′) = c(T ) + x

2 φ(c(T )) = c(γT ), for T ∈ T

3 φ(C) ⊂ C
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Proof of algebraicity of eigenvalues

Lemma. Let T be a self-affine tiling of Rd with expansion φ. Then all the
eigenvalues of φ are algebraic integers.

Proof: J := 〈C〉, the subgroup of Rd generated by C = C(T ). It is a
finitely generated abelian group (by FLC).

By the Structure Theorem for Free Abelian Groups, there exist free
generators v1, . . . , vN ∈ Rd , i.e.,

∀ ξ ∈ J, ∃ ! a1, . . . , aN ∈ Z : ξ =
N∑
j=1

ajvj .

Let V = [v1 . . . vN ], a d × N matrix, and a(ξ) = [a1, . . . , aN ]T ∈ ZN .
Then ξ = Va(ξ).
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Proof of algebraicity of eigenvalues (cont.)

rank(V ) = d since C spans Rd , hence Ker(V T ) = {0}.
φ(C) ⊂ C ⇒ φJ ⊂ J, hence there exists an integer N × N matrix M
such that

φV = VM.

Every eigenvalue of φ is an eigenvalue of M: let eγ be an eigenvector
of φT :

φTeγ = γeγ ⇒ MTV Teγ = V TφTeγ = γV Teγ .

Thus, V Teγ 6= 0 is an eigenvector for MT corresponding to γ, hence
γ is an algebraic integer.
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Address map

We call ξ 7→ a(ξ) the address map. Note that a : J → ZN .

ZN i−−−−→ RN M−−−−→ RN i←−−−− ZNxa V

y yV

xa

J
i−−−−→ Rd φ−−−−→ Rd i←−−−− J
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Proof sketch of the Perron condition

Lemma. The matrix M is diagonalizable over C.

Proof in the case of a self-similar tiling of the plane, with a complex
expansion constant λ.

J = 〈C〉 is a finitely-generated Z-module. Then Q · J is a vector space
over Q, on which φ acts. Note that {y1, . . . , yN} is a basis, and the
matrix of φ in this basis is M.

Note that Q · J is also a vector space over Q(λ) (the field). Let
{ζ1, . . . , ζr} be a basis of Q · J over Q(λ) and let n be the degree of
λ. Then

{λsζk : 0 ≤ s ≤ n − 1, 1 ≤ k ≤ r}

is a basis for Q · J over Q.

Boris Solomyak (University of Washington) Rigidity for self-affine tilings December 21, 2011, RIMS 32 / 69



Proof of the lemma (cont.)

In this basis, φ = multiplication by λ has a matrix which is a direct
sum of r copies of the companion matrix of λ.

Each of them is diagonalizable over C, since the minimal polynomial
of λ has no repeated roots. Thus, the linear operator given by M is
diagonalizable.

Remark. In fact, r = 1, which implies that C ⊂ Z[λ]ζ for some ζ. This is
also a kind of “rigidity”. This is a special case of Structure Theorem for
control points [Kenyon 1994,1996], [J.-Y. Lee & S. 2012].
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Proof sketch of the Perron condition (cont.)

Suppose that γ is a conjugate of λ and |γ| ≥ |λ| > 1. Then γ is an
eigenvalue of M. We want to show that γ is an eigenvalue of φ.

Let Uγ be the (real) eigenspace for M corresponding to γ. The only
eigenvalues of Mγ := M|Uγ are γ and γ (if γ is nonreal).

Since M is diagonalizable over C, there is a projection πγ from RN to
Uγ commuting with M.

Consider the mapping fγ : C → Uγ given by

fγ(ξ) = πγa(ξ), ξ ∈ C.
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Proof sketch of the Perron condition (cont.)

We have a commutative diagram:

J
φ−−−−→ J

a
y ya

ZN M−−−−→ ZN

πγ
y yπγ

Uγ
Mγ−−−−→ Uγ
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Proof sketch of the Perron condition (cont.)

Let
fγ(φ−kξ) = M−k fγ(ξ), ξ ∈ C.

This is well-defined.

Now we have fγ defined on a dense set

C∞ :=
∞⋃
k=0

φ−kC.
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Proof sketch of the Perron condition (cont.)

Lemma The map fγ is uniformly continuous on C∞, and thus it extends
by continuity to Rd , satisfying

fγ ◦ φ = M ◦ fγ .

Proof sketch. Step 1: the address map a, and hence fγ is uniformly
Lipschitz on C (large-scale):

‖a(ξ)− a(ξ′)‖ ≤ L1‖ξ − ξ′‖, ξ, ξ′ ∈ C.

This is Thurston’s argument: one can get “quasi-efficiently” from a
control point to a distant control point by moving from neighbor to
neighbor, and then use FLC.

Remark. The address map is usually not continuous on J = 〈C〉, since J is
usually dense, and the map is into ZN .
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Proof sketch of the Perron condition (cont.)

Step 2: The map fγ is Hölder continuous on C∞: there exist r > 0 and
L2 > 0 such that for all ξ, ξ′ ∈ C∞ with ‖ξ − ξ′‖ < r ,

‖fγ(ξ)− fγ(ξ′)‖ ≤ L2‖ξ − ξ′‖α,

where

α =
log |γ|

log |λmax|
, λmax = largest eigenvalue of φ.

Note: if φ is a similarity map, then |λmax| = |λ|, and |γ| ≥ |λ| by
assumption. We then have that |γ| = |λ| (otherwise fγ ≡ const), and fγ is
Lipschitz on Rd .
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Proof sketch of the Perron condition (cont.)

Lemma. The function fγ (now defined on all Rd) depends only on the tile
type in T up to an additive constant: if T ,T + x ∈ T and ξ ∈ T , then

fγ(ξ + x) = fγ(ξ) + πγa(x).

Proof sketch. It is enough to check this on the dense set C∞ and then it is
a straightforward verification.
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Proof sketch of the Perron condition (cont.)
Conclusion in the self-similar case

We have
fγ ◦ φ = M ◦ fγ on Rd .

We want to show that fγ is linear.

fγ is Lipschitz ⇒ it is is differentiable a.e.

fγ is “almost flat” on a small neighborhood of some x ∈ Rd . Apply
φk and notice that fγ gets flatter and flatter near φkx .

Now find a patch in some fixed BR(0) where T has the same pattern
as near φkx for all k (possible by repetitivity).
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Proof sketch of the Perron condition (conclusion!)

By the last lemma, there are points xk ∈ BR(0) near which fγ is the
same as near φkx (up to an additive constant), hence it is almost flat
there. By compactness, it must be exactly flat somewhere.

Using the expansiveness of φ and conjugation again, conclude that fγ
is flat everywhere.

fγ(0) = 0 by construction ⇒ fγ is linear. It is a surjection onto Uγ ,
hence Mγ = M|Uγ is isomorphic, as a linear map, to a restriction of
φ, therefore, γ is an eigenvalue of φ.

Boris Solomyak (University of Washington) Rigidity for self-affine tilings December 21, 2011, RIMS 41 / 69



III. Discrete spectrum of self-affine tilings

Diffraction spectrum and Dynamical spectrum

Modern definition of a crystal: material with pure point diffraction

Dworkin (1993) showed that diffraction spectrum is a “part” of
dynamical spectrum, so we will be concerned with the latter.

Question: when is there “large” discrete component of the spectrum?
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Partial answer

Theorem [Jeong-Yup Lee & S., 2008, 2012] Let T be self-affine with a
diagonalizable over C expansion map φ. Suppose that all the eigenvalues
of φ are algebraic conjugates with the same multiplicity. Then the
following are equivalent:
(i) the set of eigenvalues of the tiling dynamical system associated with T
(defined below) is relatively dense in Rd ;
(ii) the spectrum of φ is a Pisot family: for every eigenvalue λ of φ and its
conjugate γ, either |γ| < 1, or γ is also an eigenvalue of φ;
(iii) the set of control points C = C(T ) is a Meyer set, i.e. C − C is
uniformly discrete.
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Remarks

1 (i) ⇒ (iii) is proved in [J.-Y. Lee & S. 2008], whereas (iii) ⇒ (i)
follows from [Strungaru 2005] and [Dworkin 1993].

2 (i) ⇒ (ii) was proved by [E. A. Robinson 2004], using the criterion for
eigenvalues in [S. 1997].

3 (ii) ⇒ (i), the most technically difficult part, is proved in [J.-Y. Lee &
S. 2012].

4 Examples show that the condition of having conjugates with the same
multiplicity cannot be omitted, but it is an open question how to
handle non-diagonalizable cases, or cases when not all eigenvalues of
φ are conjugates.

We will sketch the proof of (i) ⇔ (ii), but first we need to define the tiling
dynamical system.
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Tiling space

Tiling space, or hull, generated by T :

XT = {−g + T : g ∈ Rd},

where the closure is in the “local” topology: two tilings are close if after a
small translation they agree on a large ball around the origin.

More precisely:

%̃(T1, T2) := inf{r ∈ (0, 2−1/2) : ∃ g ∈ Br :

T1 − g and T2 agree on B1/r}.

Then %(T1, T2) := min{2−1/2, %(T1, T2)} is a metric.
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Tiling dynamical system

Theorem. FLC ⇐⇒ XT is compact.

Rd acts by translations: T t(S) = S − t. Topological dynamical system
(action of Rd by homeomorphisms):

(XT ,T
t)t∈Rd = (XT ,Rd)

Definition. A topological dynamical system is minimal if every orbit is
dense (equivalently, if it has no nontrivial closed invariant subsets).

Theorem. T is repetitive ⇐⇒ (XT ,Rd) is minimal.
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Uniform patch frequencies

For a patch P ⊂ T let LP(T ,A) :=

#{t ∈ Rd : −t + P ⊂ T , −t + supp(P) ⊂ A},

the number of T -patches equivalent to P that are contained in A.

Definition. A tiling T has uniform patch frequencies (UPF) if for any
non-empty patch P, the limit

freq(P, T ) := lim
r→∞

LP(T , t + Qr )

rd
≥ 0

exists uniformly in t ∈ Rd . Here Qr = [− r
2 ,

r
2 ]d .
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Unique ergodicity for tiling systems

Theorem. Let T be a tiling with FLC. Then the dynamical system
(XT ,Rd) is uniquely ergodic, i.e. has a unique invariant probability
measure, if and only if T has UPF.

Theorem. Let T be a self-affine tiling. Then the dynamical system
(XT ,Rd) is uniquely ergodic.

Denote by µ the unique invariant measure.
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Eigenvalues and Eigenfunctions

Definition. α ∈ Rd is an eigenvalue for the measure-preserving Rd -action
(X ,T t, µ)t∈Rd if ∃ eigenfunction fα ∈ L2(X , µ), i.e., fα is not 0 in L2 and
for µ-a.e. x ∈ X

fα(T tx) = e2πi〈t,α〉fα(x), t ∈ Rd .

Here 〈·, ·〉 is the scalar product in Rd .

Warning: eigenvalue is a vector! (like “wave vector” in physics)

Theorem. If T is a self-affine tiling, then every measurable eigenfunction
for the system (XT ,Rd , µ) coincides with a continuous function µ-a.e.
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Characterization of eigenvalues

Return vectors for the tiling:

Z(T ) := {z ∈ Rd : ∃T ,T ′ ∈ T , T ′ = T + z}.

Theorem [S. 1997] Let T be an aperiodic self-affine tiling with expansion
map φ. Then the following are equivalent for α ∈ Rd :
(i) α is an eigenvalue for the topological dynamical system (XT ,Rd);
(ii) α is an eigenvalue for the measure-preserving system (XT ,Rd , µ);
(iii) α satisfies the condition:

lim
n→∞

e2πi〈φnz,α〉 = 1 for all z ∈ Z(T ). (2)
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Proof of (i)⇒ (iii)

Let z ∈ Z(T ), i.e., for some T ∈ T we have T + z ∈ T . Let ξ be
any point in the interior of T . Then T − ξ and T − z − ξ agree on
some Bε.

Applying ωn we obtain that

ωn(T − ξ) = T − φnξ

and
ωn(T − z − ξ) = T − φnz − φnξ

agree on φnBε.

By the definition of tiling metric,

%(T − φnξ, T − φnz − φnξ)→ 0, as n→∞.

Boris Solomyak (University of Washington) Rigidity for self-affine tilings December 21, 2011, RIMS 51 / 69



Proof (cont.)

A continuous function on a compact metric space is uniformly
continuous, hence

|f (T − φnξ)− f (T − φnz − φnξ)| → 0, as n→∞.

Using the eigenfunction equation we obtain∣∣∣1− e2πi〈φnz,α〉
∣∣∣→ 0, n→∞,

proving (2).
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Relatively dense set of eigenvalues implies Pisot family

This uses a generalization of Pisot Theorem, due to I. Körneyi (1986) (a
similar result was independently obtained by C. Mauduit (1989)).

Theorem [Körneyi] (partial statement in a special case). Let λ1, . . . , λr
be distinct complex algebraic integers, with |λj | ≥ 1, and there exist
nonzero αj , j ≤ r , such that

dist

 r∑
j=1

αjλ
n
j ,Z

→ 0, n→∞.

Then {λ1, . . . , λr} is a Pisot family and αj =
p(λj )
q(λj )

for some p, q ∈ Z[x ].
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Relatively dense set of eigenvalues implies Pisot family
(cont.)

From (2) we obtain

dist(〈φnz , α〉,Z)→ 0, n→∞

for a return vector z ∈ Rd and an eigenvalue α ∈ Rd .

We assumed φ is diagonalizable over C, hence there is a basis {ei} of
eigenvectors (need to be a bit careful with complex eigenvalues).

The set of return vectors is relatively dense, hence we can choose z so
that all of its coordinates w.r.t. to {ei} are nonzero. And we can
make sure that 〈ei , α〉 6= 0 for all i .

Now application of Körneyi’s Theorem yields the result.
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Pisot family implies relatively dense set of eigenvalues

To outline the proof, assume for simplicity that

1 φ has eigenvalues of multiplicity one (hence the characteristic
polynomial is irreducible);

2 all these eigenvalues are real;

3 the tiling T is aperiodic.

Without loss of generality, we can assume that

φ =

 λ1 · · · 0
...

. . .
...

0 · · · λd

 ,
and |λ1| ≤ |λ2| ≤ . . . ≤ |λd |.
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Pisot family implies relatively dense set of eigenvalues
(cont.)

Let
Q[φ] := {p(φ) : p ∈ Q[x ]}, Z[φ] := {p(φ) : p ∈ Z[x ]}.

The crucial step is to determine the structure of the control point set
C = C(T ).

Structure Theorem Let T be a self-affine tiling of Rd with a
diagonalizable expansion map φ whose eigenvalues are all algebraically
conjugate. Suppose that the additional assumptions (1)-(3) are satisfied.
Then there exists a vector α ∈ Rd such that

C ⊂ Z[φ]α.
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Pisot family implies relatively dense set of eigenvalues
(cont.)

First we use the Structure Theorem to finish the proof.

Observe that the set of return vectors satisfies Z ⊂ C − C ⊂ Z[φ]α

The set of control points C is relatively dense, hence the vector

α := [a1, . . . , ad ]T has all aj 6= 0

Consider
β := [a−1

1 , . . . , a−1
d ]T .

We claim that the set {φjβ}d−1
j=0 is contained in the set of

eigenvalues. This set is a basis of Rd (over R), and since the set of
eigenvalues forms an additive group, the proof will be complete.
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Pisot family implies relatively dense set of eigenvalues
(cont.)

We have for x = φiα, γ = φjβ:

〈φnx,γ〉 = 〈φn+iα, φjβ〉 =
d∑

k=1

λn+i+j
k → 0 (mod Z).

The convergence follows from the Pisot family property.
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Proof sketch of Structure Theorem

Consider 〈C〉Q, the linear space over Q generated by the set of control
points C. The FLC property implies that this space is
finite-dimensional over Q.

An easy argument shows that Q[φ] is a field. Since φ(C) ⊂ C, it
follows that

H := 〈C〉Q = 〈C〉Q[φ].

Our result will follow if we show that H has dimension one as a linear
space over Q[φ].

Choose any control point ξ ∈ C with all non-zero coordinates. We
can define σ : H → Q[φ]ξ as a Q[φ]-module homomorphism which is
identical on Q[φ]ξ (basically, a projection commuting with φ), and
then let σ′ be the restriction of σ to the set C∞ =

⋃∞
k=0 φ

−kC.
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Proof sketch of Structure Theorem (cont.)

The function σ′ is uniformly continuous on the dense set C∞, and so
can be extended by continuity to Rd . The extension commutes with
φ. This proceeds essentially following Thurston’s and Kenyon’s
arguments (see part II).

Next we show that the extension of σ′ to Rd , which we also denote
σ′, is linear over R. This will be sufficient, since σ′ is the identity on a
relatively dense set, hence it is the identity on all of Rd whence
C ⊂ Q[φ]ξ, as desired.

Establishing linearity is the hardest part of the proof; it follows the
scheme worked out in [Kenyon & S. 2010].
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Proof sketch of Structure Theorem (end)

σ′ is Lipschitz on all lines parallel to the eigenvector e1 of φ with the
smallest in modulus eigenvalue λ1.

By Rademacher’s Theorem, this implies that σ′ is differentiable
almost everywhere in the e1 direction.

Another useful property of σ′ is that it depends only on the tile type,
up to an additive constant.

Taking points of differentiability, “blowing up” by the expansion φ
and using the last item we prove that σ′ is affine linear on all lines
parallel to e1.

Projections of C to the coordinate axes cannot be discrete; this yields
linearity on the entire Rd .
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Remark. The last “non-discreteness” claim may seem surprising: why
can’t we have the tiling T as a direct product of, say, two tilings
corresponding to a partition of the set of eigenvalues of φ? The answer is
that this is prohibited by the Characterization of Expansions III from
[Kenyon & S. 2010]: it is impossible to split the set of eigenvalues of φ in
such a way that both parts form a Perron family.
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IV. Topological rigidity (after J. Kwapisz)

It turns out that the topology of the tiling space already determines
dynamics!

Theorem [J. Kwapisz, ETDS, published online 2011] Suppose that T0 and
T̃0 are self-similar aperiodic tilings of Rd , with expansions φ and φ̃,
repsectively. Let X = XT0 and X̃ = XT̃0

be the corresponding tiling spaces.

If there is a homeomorphism h0 : X → X̃ , then there is a linear
isomorphism A : Rd → Rd and a homeomorphism h : X → X̃ conjugating
the translation action on X to the rescaling of the translation action on X̃ :

h(T − g) = h(T )− Ag , T ∈ X , g ∈ Rd .

Open Question: is the same true for self-affine tilings?
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Global linearization

Theorem [J. Kwapisz] In the context of the last theorem, if additionally
h0(T0) = T̃0, then h0 is homotopic to some homeomorphism hlin : X → X̃
such that hlin(T0) = T̃0 and hlin is linear, i.e. for some linear map L,

hlin(T − g) = hlin(T )− Lg , g ∈ Rd .
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Rough sketch of the proof

Aperiodic tiling spaces are locally: Rd× Cantor set.

A homeomorphism h0 : X → X̃ has to take orbits to orbits:

h0(T − g) = h0(T )− α(T , g),

where α(T , g) is a cocycle over the Rd -action on X :

α(T , g1 + g2) = α(T , g1) + α(T − g1, g2).
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Step 1: Averaging of cocycles

Idea: cocycles are linear on large scales.

Lemma There exists a linear isomorphism Aα : Rd → Rd such that

lim
s→∞

α(T , sv)

s
= Aαv , ∀ T ∈ X , v ∈ Rd .

The limit is uniform in the sense that

lim
s→∞

sup
|v |=1, T ∈X

∣∣∣∣α(T , sv)

s
− Aαv

∣∣∣∣ = 0.
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Step 2: Using that φ, φ̃ are similarities (conformality)

Technical lemma. For any linear isomorphism Aα, if each of φ, φ̃ is
similar to an orthogonal transformation of Rd , then there are sequences
mk , nk →∞ of integers and a linear isomorphism A such that

‖φ̃−nkφmk − I‖ → 0,

‖φ̃−nk Aαφ
mk − A‖ → 0,

sup
k
‖φmk‖‖φ̃−nk‖ <∞ and sup

k
‖φ−mk‖‖φ̃nk‖ <∞.

This follows from the compactness of the orthogonal group.
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Step 3: ”Ironing” homeomorphisms to conjugacies

Aperiodicity of the tiling T0 implies that the substitution (“inflate and
subdivide”) action ω : X → X is invertible (“recognizability”); it is
hyperbolic in the Smale space sense; similarly for ω̃ : X̃ → X̃ .

The next idea goes back to linearization results in hyperbolic
dynamics (compare with Thurston’s argument!)

Step 1 (averaging) tells us that h0 is approximately linear on a large
scale, and we attempt to bring this linearity to the microscopic scale
by renormalizing h0 with the aid of high iterates ωmk and ω̃−nk .

Lemma. The family of homeomorphisms

hk := ω̃−nk ◦ h0 ◦ ωmk is equicontinuous.
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Conclusion of proof sketch

Interchanging the roles of ω and ω̃ we see that h−1
k is also an

equicontinuous family.

By passing to a subsequence we can ensure that hk and h−1
k converge

uniformly. Thus they must converge to h and h−1 respectively, where
h is a homeomorphism.

Then one shows that

h(T − g) = h(T )− Ag , T ∈ X , g ∈ Rd .

where A is from the Technical Lemma.
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