Some aspects of rigidity for self-affine tilings

Boris Solomyak

University of Washington

December 21, 2011, RIMS

Boris Solomyak (University of Washington)

Rigidity for self-affine tilings

- A structure is "rigid" if it doesn't allow a small perturbation
- This often means some algebraic constraints
- Another aspect: weak form of equivalence implies strong form of equivalence
- Substitution (self-affine) tilings exhibit both kinds of rigidity

くほと くほと くほと

Preliminaries

- Which expansions are possible for self-affine tilings? (Thurston, Kenyon, Kenyon & S.)
- When does the tiling have large discrete spectrum (diffraction or dynamical)? (J.-Y. Lee & S.)
- Topological and dynamical rigidity (J. Kwapisz)

くほと くほと くほと

I. Preliminaries on tilings

- Prototile set: A = {A₁,...,A_N}, compact sets in ℝ^d, which are closures of its interior; interior is connected.
- May have "colors" or "labels"
- A tiling of \mathbb{R}^d with the prototile set \mathcal{A} : collection of tiles whose union is \mathbb{R}^d and interiors are disjoint. All tiles are translates of the prototiles.
- A **patch** is a finite set of tiles. \mathcal{A}^+ denotes the set of patches with tiles from \mathcal{A} .
- Assume **translational** finite patch complexity (or finite pattern condition) (FPC).

イロト イポト イヨト イヨト 二日

Let $\phi : \mathbb{R}^d \to \mathbb{R}^d$ be an expanding linear map, that is, all its eigenvalues are greater than 1 in modulus.

Definition. Let $\{A_1, \ldots, A_m\}$ be a finite prototile set. A **tile-substitution** with expansion ϕ is a map $\omega : \mathcal{A} \to \mathcal{A}^+$, where each $\omega(A_i)$ is a patch made of translates of A_i , such that

$$\operatorname{supp}(\omega(A_i)) = \phi(A_i), \ i \leq m.$$

The substitution is extended to all translates of prototiles by $\omega(x + A_i) = \phi x + \omega(A_i)$, and to patches and tilings by

$$\omega(P) = \bigcup \{ \omega(T) : T \in P \}.$$

Self-similar and self-affine tilings

- Substitution matrix: $S = (S_{i,j})_{i,j \le m}$, where S(i,j) = # tiles of type i in $\omega(A_j)$
- Tile-substitution is **primitive** if S is primitive, that is, some power of S has only positive entries (equivalently, $\exists k \in \mathbb{N}, \forall i \leq m$, the patch $\omega^k(A_i)$ contains tiles of all types).
- We say that \mathcal{T} is a **fixed point** of the tile-substitution ω if $\omega(\mathcal{T}) = \mathcal{T}$. Such tilings are called **self-affine**.
- If ϕ is a similarity map (i.e. $|\phi(x)| = r|x|$ for some r > 1 and all $x \in \mathbb{R}^d$), then \mathcal{T} is called **self-similar**.

イロト 不得 トイヨト イヨト 二日

- φ is a pure dilation: φ(x) = λx, for λ > 1, in ℝ^d
 λ is the real expansion constant
- $\phi(z) = \lambda z$ for $\lambda \in \mathbb{C}$, for $|\lambda| > 1$, in $\mathbb{C} \approx \mathbb{R}^2$ λ is the complex expansion constant

くほと くほと くほと

Example: chair tiling

Examples are shamelessly taken from "Tiling Encyclopedia", see http://tilings.math.uni-bielefeld.de/

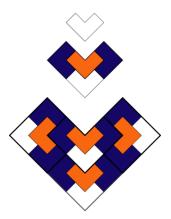


Figure: tile-substitution, real expansion constant $\lambda = 2$

Example: chair tiling

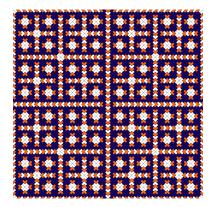


Figure: patch of the tiling

Boris Solomyak (University of Washington)

Rigidity for self-affine tilings

December 21, 2011, RIMS

(日) (周) (三) (三)

9 / 69

3

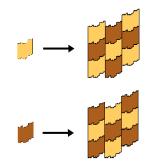


Figure: tile-substitution, real expansion constant $\lambda = 3$

Boris Solomyak (University of Washington)	Rigidity for self-affine tilings	December 21, 2011, RIMS	10 / 69

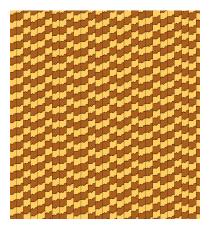


Figure: patch of the tiling

Boris Solomyak (University of Washington)

Rigidity for self-affine tilings

December 21, 2011, RIMS 11 / 69

イロト 不得下 イヨト イヨト 二日

To get the "self-similar" one, need to iterate and rescale...

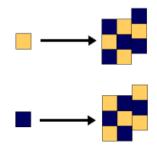


Figure: tile-substitution for the "pre-self-similar" tiling

		• •	▶ < 🗗 ▶	< ≣	► < E	Image: A second seco	Ξ.	9 L C
Boris Solomyak (University of Washing	gton) Rigidity for self-affine tilings		Decemb	er 21,	2011, R	IMS		12 / 69

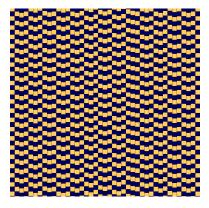


Figure: patch of the "pre-self-similar" tiling (note optical illusion!)

Boris Solomyak (University of Washington)

Rigidity for self-affine tilings

December 21, 2011, RIMS 13 / 69

イロト 不得 トイヨト イヨト 二日

Example: self-similar tiling of the plane with fractal boundary

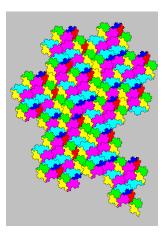


Figure: Self-similar tiling with complex expansion constant λ , $\lambda^4 + \lambda + 1 = 0$ (R. Kenyon)

Boris Solomyak (University of Washington)

Rigidity for self-affine tilings

▶ < ☐ ▶ < ≧ ▶ < ≧ ▶ ≧ December 21, 2011, RIMS

14 / 69

Example: self-similar tiling of the plane with fractal boundary

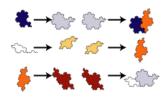


Figure: Substitution rule

イロト 不得下 イヨト イヨト

Example: self-affine of the plane

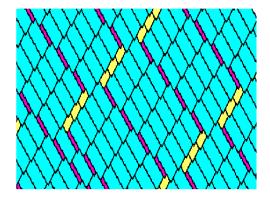


Figure: A self-affine tiling in the plane with diagonal expansion matrix $\text{Diag}[x_1, x_2]$ where $x_1 \approx 2.19869$, $x_2 \approx -1.91223$ are roots of $x^3 - x^2 - 4x + 3 = 0$.

Example: self-affine of the plane (cont.)

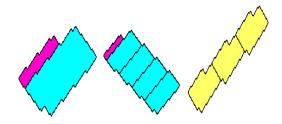


Figure: Subdivision rule: $1 \rightarrow \{3,2\}, 2 \rightarrow \{3,2,2,2,2\}, 3 \rightarrow \{1,1,1\}$. Construction uses free group F(a, b, c), with a, b, c corresponding to vectors $(1,1), (x_1 - 1, x_2 - 1), (x_1^2 - x_1, x_2^2 - x_2)$ in \mathbb{R}^2 , the endomorphsm $\psi(a) = ab, \psi(b) = c, \psi(c) = ab^4$ and tiles [b, a], [b, c], [a, c].

Boris Solomyak (University of Washington)

December 21, 2011, RIMS

17 / 69

(Some) constructions of tilings with fractal boundary

- Free group endomorphisms, iterating and rescaling, substitutions of higher-dimensional faces: [Dekking 1982], [Ito & Kimura 1991], [Ito & Ohtsuki 1991, 1993], [Kenyon 1990, 1996], [Arnoux & Ito 2001], [Sano, Arnoux & Ito 2001], [Ei & Ito 2005], [Ito & Rao 2006], [Ei, Ito & Rao 2006], [Furukado 2006], [Furukado, Ito & Robinson 2006], ...
- Finite state automata and numeration systems with a complex Pisot base:

[Thurston 1989], [Petronio 1994], [Akiyama & Sadahiro 1998], [Akiyama 2002], [Berthé & Siegel 2005], ...

 Connections with Markov partitions: Many of the same papers + [Praggastis 1992, 1999], [Kenyon & Vershik 1998], [Enomoto 2008], ...

イロト 不得 トイヨト イヨト 二日

Lemma. For any primitive tile-substitution ω , there exists $n \in \mathbb{N}$ such ω^n has a fixed point.

Definition A tiling \mathcal{T} of \mathbb{R}^d is repetitive if every patch $P \subset \mathcal{T}$ appears relatively dense in \mathbb{R}^d ; more precisely, there exists R = R(P) such that every ball of radius R contains a translated copy of P.

Lemma. Let T be an FLC fixed point of a tile-substitution with substitution matrix S.

 \mathcal{T} is repetitive if and only if S is primitive and a \mathcal{T} -patch, containing the origin in the interior of its support, occurs in $\omega^n(T)$ for some $T \in \mathcal{T}$ and some $n \in \mathbb{N}$ (in particular, if the origin lies in the interior of a tile).

イロト 不得 トイヨト イヨト 二日

Aperiodicity

Definition A tiling \mathcal{T} of \mathbb{R}^d is aperiodic if

$$\mathcal{T} + x = \mathcal{T} \quad \Rightarrow \quad x = 0.$$

(日) (同) (三) (三)

3

Lemma. Let \mathcal{T} be a self-affine tiling with expansion map ϕ whose rotational part is of infinite order (in \mathbb{R}^2 this means that the rotation is irrational modulo π). Then the tiles cannot be polyhedral, or even piecewise smooth.

Lemma. For any tile T of a self-affine tiling, $Vol(\partial T) = 0$.

Corollary. The PF eigenvalue of the substitution matrix of a self-affine tiling with expansion map ϕ is $|\det \phi|$. The vector $(Vol(A_j))_1^m$ is a left PF eigenvector.

Corollary. $|\det \phi|$ is a **Perron number**, *i.e.* an algebraic integer $\theta > 1$ whose Galois conjugates are strictly less than θ in modulus.

There exist finite sets $\mathcal{D}_{ij} \subset \mathbb{R}^d$, $i, j \leq m$:

$$\omega(A_j) = \{u + A_i : u \in \mathcal{D}_{ij}, i = 1, \dots, m\}, j \le m,$$

with

$$\phi A_j = \bigcup_{i=1}^m (\mathcal{D}_{ij} + A_i), \ j \le m.$$
(1)

Here all the sets in the right-hand side must have disjoint interiors; it is possible for some of the D_{ij} to be empty. Note that $S(i,j) = \#D_{ij}$.

Rewrite the system of set equations (1):

$$A_j = \bigcup_{i=1}^m (\phi^{-1}A_i + \phi^{-1}\mathcal{D}_{ij}), \ j \leq m.$$

 ϕ^{-1} is a contraction, so there is always a unique nonempty compact solution $\{A_1, \ldots, A_m\}$ (attractor of a graph-directed IFS). The difficulty is to have A_i with nonempty interiors.

Theorem. There is a self-similar tiling of the line \mathbb{R} with expansion λ if and only if $|\lambda|$ is a Perron number.

We already know the necessity. Sufficiency follows from Lind's Theorem: every Perron number is the PF eigenvalue of a primitive matrix.

Theorem [Lind '84] If $\lambda > 1$ is a Perron number, then there is a primitive non-negative integral matrix M with the PF eigenvalue equal to λ . Moreover, M can be chosen so that $M_{11} > 0$ and $\sum_{i=1}^{m} M_{i1} \ge 3$. **Theorem (?)** [Thurston '89] In $\mathbb{R}^2 \approx \mathbb{C}$, $\phi(z) = \lambda z$ with complex λ , is an expansion of a self-similar tiling if and only if λ is a complex Perron number, i.e. an algebraic integer of modulus > 1 whose Galois conjugates, except the complex conjugate, $\overline{\lambda}$, are strictly less than $|\lambda|$ in modulus.

Sufficiency in the theorem above was claimed by Thurston and proved by Kenyon in his GAFA 1996 paper, but there still seems to be a gap... In this talk I will focus on the proof of **necessity**.

Remark. $|\lambda|^2$ Perron does not imply that λ is complex Perron. For example: $\lambda = -1 + i\sqrt{1 + \sqrt{5}}$ has $|\lambda|^2 = 2 + \sqrt{5}$, which is Perron (even Pisot), but λ has conjugates $\overline{\lambda}$ and $-1 \pm \sqrt{-1 + \sqrt{5}}$, one of which is ≈ -2.11179 , whereas $|\lambda| \approx 2.05817$.

Theorem [Kenyon-S. 2010] Let ϕ be an expanding linear map on \mathbb{R}^d , which is diagonalizable over \mathbb{C} , and suppose there exists a self-affine tiling of \mathbb{R}^d with expansion ϕ . Let λ be an eigenvalue of ϕ , and let γ be a Galois conjugate of λ . Then either $|\gamma| < |\lambda|$, or γ is also an eigenvalue of ϕ , and its multiplicity is \geq multiplicity of λ .

- The case of non-diagonalizable maps (Jordan blocks) is open.
- Similarity maps are diagonalizable over $\mathbb{C},$ so this covers all self-similar tilings.

I will present a sketch of the proof, skipping (many!) technical details; it will be more complete in the self-similar case.

イロト 不得 トイヨト イヨト 二日

Definition. For each \mathcal{T} -tile T, fix a tile γT in the patch $\omega(T)$; choose γT with the same relative position for all tiles of the same type. This defines a map $\gamma : \mathcal{T} \to \mathcal{T}$ called the *tile map*. Then define the *control point* for a tile $T \in \mathcal{T}$ by

$$\{c(T)\} = \bigcap_{n=0}^{\infty} \phi^{-n}(\gamma^n T).$$

There are finitely many choices for control points, depending on γ .

Let
$$C = C(T) = \{c(T) : T \in T\}.$$

イロト イポト イヨト イヨト 二日

If T' ≈ T in T, that is, T' = T + x, then c(T') = c(T) + x
φ(c(T)) = c(γT), for T ∈ T
φ(C) ⊂ C

Proof of algebraicity of eigenvalues

Lemma. Let \mathcal{T} be a self-affine tiling of \mathbb{R}^d with expansion ϕ . Then all the eigenvalues of ϕ are algebraic integers.

- Proof: J := ⟨C⟩, the subgroup of ℝ^d generated by C = C(T). It is a finitely generated abelian group (by FLC).
- By the Structure Theorem for Free Abelian Groups, there exist *free* generators $v_1, \ldots, v_N \in \mathbb{R}^d$, i.e.,

$$\forall \xi \in J, \exists ! a_1, \ldots, a_N \in \mathbb{Z} : \xi = \sum_{j=1}^N a_j v_j.$$

• Let $V = [v_1 \dots v_N]$, a $d \times N$ matrix, and $a(\xi) = [a_1, \dots, a_N]^T \in \mathbb{Z}^N$. Then $\xi = Va(\xi)$.

Proof of algebraicity of eigenvalues (cont.)

- rank(V) = d since C spans \mathbb{R}^d , hence $Ker(V^T) = \{0\}$.
- φ(C) ⊂ C ⇒ φJ ⊂ J, hence there exists an integer N × N matrix M such that

$$\phi V = VM.$$

 Every eigenvalue of φ is an eigenvalue of M: let e_γ be an eigenvector of φ^T:

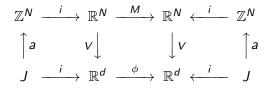
$$\phi^{\mathsf{T}} \mathbf{e}_{\gamma} = \gamma \mathbf{e}_{\gamma} \Rightarrow M^{\mathsf{T}} V^{\mathsf{T}} \mathbf{e}_{\gamma} = V^{\mathsf{T}} \phi^{\mathsf{T}} \mathbf{e}_{\gamma} = \gamma V^{\mathsf{T}} \mathbf{e}_{\gamma}.$$

Thus, $V^T \mathbf{e}_{\gamma} \neq 0$ is an eigenvector for M^T corresponding to γ , hence γ is an algebraic integer.

Boris Solomyak (University of Washington)

イロト イポト イヨト イヨト 二日

We call $\xi \mapsto a(\xi)$ the address map. Note that $a: J \to \mathbb{Z}^N$.



Lemma. The matrix M is diagonalizable over \mathbb{C} .

Proof in the case of a self-similar tiling of the plane, with a complex expansion constant λ .

- J = ⟨C⟩ is a finitely-generated Z-module. Then Q ⋅ J is a vector space over Q, on which φ acts. Note that {y₁,..., y_N} is a basis, and the matrix of φ in this basis is M.
- Note that $\mathbb{Q} \cdot J$ is also a vector space over $\mathbb{Q}(\lambda)$ (the field). Let $\{\zeta_1, \ldots, \zeta_r\}$ be a basis of $\mathbb{Q} \cdot J$ over $\mathbb{Q}(\lambda)$ and let *n* be the degree of λ . Then

$$\{\lambda^{s}\zeta_{k}: 0 \leq s \leq n-1, 1 \leq k \leq r\}$$

is a basis for $\mathbb{Q} \cdot J$ over \mathbb{Q} .

- In this basis, φ = multiplication by λ has a matrix which is a direct sum of r copies of the companion matrix of λ.
- Each of them is diagonalizable over \mathbb{C} , since the minimal polynomial of λ has no repeated roots. Thus, the linear operator given by M is diagonalizable.

Remark. In fact, r = 1, which implies that $C \subset \mathbb{Z}[\lambda]\zeta$ for some ζ . This is also a kind of "rigidity". This is a special case of Structure Theorem for control points [Kenyon 1994,1996], [J.-Y. Lee & S. 2012].

Boris Solomyak (University of Washington)

イロト イポト イヨト イヨト 二日

Proof sketch of the Perron condition (cont.)

- Suppose that γ is a conjugate of λ and $|\gamma| \ge |\lambda| > 1$. Then γ is an eigenvalue of M. We want to show that γ is an eigenvalue of ϕ .
- Let U_{γ} be the (real) eigenspace for M corresponding to γ . The only eigenvalues of $M_{\gamma} := M|_{U_{\gamma}}$ are γ and $\overline{\gamma}$ (if γ is nonreal).
- Since M is diagonalizable over \mathbb{C} , there is a projection π_{γ} from \mathbb{R}^{N} to U_{γ} commuting with M.
- Consider the mapping $f_\gamma:\,\mathcal{C} o U_\gamma$ given by

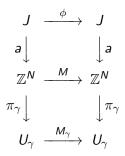
$$f_{\gamma}(\xi) = \pi_{\gamma} a(\xi), \quad \xi \in \mathcal{C}.$$

Boris Solomyak (University of Washington)

イロト イポト イヨト イヨト 二日

Proof sketch of the Perron condition (cont.)

We have a commutative diagram:



Proof sketch of the Perron condition (cont.)

Let

$$f_{\gamma}(\phi^{-k}\xi) = M^{-k}f_{\gamma}(\xi), \quad \xi \in \mathcal{C}.$$

This is well-defined.

• Now we have f_{γ} defined on a dense set

$$\mathcal{C}_{\infty} := \bigcup_{k=0}^{\infty} \phi^{-k} \mathcal{C}.$$

Boris Solomyak (University of Washington)

December 21, 2011, RIMS 36 / 69

Proof sketch of the Perron condition (cont.)

Lemma The map f_{γ} is uniformly continuous on C_{∞} , and thus it extends by continuity to \mathbb{R}^d , satisfying

$$f_{\gamma} \circ \phi = M \circ f_{\gamma}.$$

Proof sketch. Step 1: the address map *a*, and hence f_{γ} is uniformly Lipschitz on C (large-scale):

$$\|a(\xi) - a(\xi')\| \le L_1 \|\xi - \xi'\|, \ \xi, \xi' \in C.$$

This is Thurston's argument: one can get "quasi-efficiently" from a control point to a distant control point by moving from neighbor to neighbor, and then use FLC.

Remark. The address map is usually not continuous on $J = \langle C \rangle$, since J is usually dense, and the map is into \mathbb{Z}^N .

Step 2: The map f_{γ} is Hölder continuous on \mathcal{C}_{∞} : there exist r > 0 and $L_2 > 0$ such that for all $\xi, \xi' \in \mathcal{C}_{\infty}$ with $\|\xi - \xi'\| < r$,

$$\|f_{\gamma}(\xi)-f_{\gamma}(\xi')\|\leq L_{2}\|\xi-\xi'\|^{\alpha},$$

where

$$\alpha = \frac{\log |\gamma|}{\log |\lambda_{\max}|}, \ \ \, \lambda_{\max} = \text{largest eigenvalue of } \phi.$$

Note: if ϕ is a similarity map, then $|\lambda_{\max}| = |\lambda|$, and $|\gamma| \ge |\lambda|$ by assumption. We then have that $|\gamma| = |\lambda|$ (otherwise $f_{\gamma} \equiv \text{const}$), and f_{γ} is Lipschitz on \mathbb{R}^d .

Boris Solomyak (University of Washington)

Lemma. The function f_{γ} (now defined on all \mathbb{R}^d) depends only on the tile type in \mathcal{T} up to an additive constant: if $T, T + x \in \mathcal{T}$ and $\xi \in T$, then

$$f_{\gamma}(\xi + x) = f_{\gamma}(\xi) + \pi_{\gamma}a(x).$$

Proof sketch. It is enough to check this on the dense set C_{∞} and then it is a straightforward verification.

Proof sketch of the Perron condition (cont.)

Conclusion in the self-similar case

We have

$$f_{\gamma} \circ \phi = M \circ f_{\gamma}$$
 on \mathbb{R}^d .

We want to show that f_{γ} is linear.

- f_{γ} is Lipschitz \Rightarrow it is is differentiable a.e.
- f_{γ} is "almost flat" on a small neighborhood of some $x \in \mathbb{R}^d$. Apply ϕ^k and notice that f_{γ} gets flatter and flatter near $\phi^k x$.
- Now find a patch in some fixed B_R(0) where T has the same pattern as near φ^kx for all k (possible by repetitivity).

・帰る くらん くらん しき

- By the last lemma, there are points x_k ∈ B_R(0) near which f_γ is the same as near φ^kx (up to an additive constant), hence it is almost flat there. By compactness, it must be exactly flat somewhere.
- Using the expansiveness of ϕ and conjugation again, conclude that f_γ is flat everywhere.
- $f_{\gamma}(0) = 0$ by construction $\Rightarrow f_{\gamma}$ is linear. It is a surjection onto U_{γ} , hence $M_{\gamma} = M|_{U_{\gamma}}$ is isomorphic, as a linear map, to a restriction of ϕ , therefore, γ is an eigenvalue of ϕ .

・ 回 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Diffraction spectrum and Dynamical spectrum
- Modern definition of a crystal: material with pure point diffraction
- Dworkin (1993) showed that diffraction spectrum is a "part" of dynamical spectrum, so we will be concerned with the latter.
- Question: when is there "large" discrete component of the spectrum?

Theorem [Jeong-Yup Lee & S., 2008, 2012] Let \mathcal{T} be self-affine with a diagonalizable over \mathbb{C} expansion map ϕ . Suppose that all the eigenvalues of ϕ are algebraic conjugates with the same multiplicity. Then the following are equivalent:

(i) the set of eigenvalues of the tiling dynamical system associated with \mathcal{T} (defined below) is relatively dense in \mathbb{R}^d ;

(ii) the spectrum of ϕ is a Pisot family: for every eigenvalue λ of ϕ and its conjugate γ , either $|\gamma| < 1$, or γ is also an eigenvalue of ϕ ; (iii) the set of control points C = C(T) is a Meyer set, i.e. C - C is

uniformly discrete.

イロト イポト イヨト イヨト 二日

Remarks

- (i) ⇒ (iii) is proved in [J.-Y. Lee & S. 2008], whereas (iii) ⇒ (i) follows from [Strungaru 2005] and [Dworkin 1993].
- (i) \Rightarrow (ii) was proved by [E. A. Robinson 2004], using the criterion for eigenvalues in [S. 1997].
- (ii) ⇒ (i), the most technically difficult part, is proved in [J.-Y. Lee & S. 2012].
- Examples show that the condition of having conjugates with the same multiplicity cannot be omitted, but it is an open question how to handle non-diagonalizable cases, or cases when not all eigenvalues of \$\phi\$ are conjugates.

We will sketch the proof of (i) \Leftrightarrow (ii), but first we need to define the tiling dynamical system.

イロト 不得 トイヨト イヨト 二日

Tiling space

Tiling space, or hull, generated by \mathcal{T} :

$$X_{\mathcal{T}} = \overline{\{-g + \mathcal{T} : g \in \mathbb{R}^d\}},$$

where the closure is in the "local" topology: two tilings are close if after a small translation they agree on a large ball around the origin.

More precisely:

$$\widetilde{\varrho}(\mathcal{T}_1, \mathcal{T}_2) := \inf\{r \in (0, 2^{-1/2}) : \exists g \in B_r : \\ \mathcal{T}_1 - g \text{ and } \mathcal{T}_2 \text{ agree on } B_{1/r}\}.$$

Then $\varrho(\mathcal{T}_1, \mathcal{T}_2) := \min\{2^{-1/2}, \varrho(\mathcal{T}_1, \mathcal{T}_2)\}$ is a metric.

イロト イポト イヨト イヨト 二日

Theorem. *FLC* \iff X_T *is compact.*

 \mathbb{R}^d acts by translations: $T^t(\mathcal{S}) = \mathcal{S} - \mathbf{t}$. Topological dynamical system (action of \mathbb{R}^d by homeomorphisms):

$$(X_{\mathcal{T}}, T^{\mathbf{t}})_{\mathbf{t} \in \mathbb{R}^d} = (X_{\mathcal{T}}, \mathbb{R}^d)$$

Definition. A topological dynamical system is *minimal* if every orbit is dense (equivalently, if it has no nontrivial closed invariant subsets).

Theorem. \mathcal{T} is repetitive $\iff (X_{\mathcal{T}}, \mathbb{R}^d)$ is minimal.

Uniform patch frequencies

For a patch $P \subset \mathcal{T}$ let $L_P(\mathcal{T}, A) :=$

$$\#\{\mathbf{t}\in\mathbb{R}^d:\ -\mathbf{t}+P\subset\mathcal{T},\ -\mathbf{t}+\mathrm{supp}(P)\subset A\},\$$

the number of \mathcal{T} -patches equivalent to P that are contained in A.

Definition. A tiling T has *uniform patch frequencies* (UPF) if for any non-empty patch P, the limit

$$\operatorname{freq}(P,\mathcal{T}) := \lim_{r \to \infty} \frac{L_P(\mathcal{T}, \mathbf{t} + Q_r)}{r^d} \ge 0$$

exists uniformly in $\mathbf{t} \in \mathbb{R}^d$. Here $Q_r = [-\frac{r}{2}, \frac{r}{2}]^d$.

Theorem. Let \mathcal{T} be a tiling with FLC. Then the dynamical system $(X_{\mathcal{T}}, \mathbb{R}^d)$ is uniquely ergodic, i.e. has a unique invariant probability measure, if and only if \mathcal{T} has UPF.

Theorem. Let \mathcal{T} be a self-affine tiling. Then the dynamical system $(X_{\mathcal{T}}, \mathbb{R}^d)$ is uniquely ergodic.

Denote by μ the unique invariant measure.

Definition. $\alpha \in \mathbb{R}^d$ is an eigenvalue for the measure-preserving \mathbb{R}^d -action $(X, T^t, \mu)_{t \in \mathbb{R}^d}$ if \exists eigenfunction $f_\alpha \in L^2(X, \mu)$, i.e., f_α is not 0 in L^2 and for μ -a.e. $x \in X$

$$f_{\alpha}(T^{\mathbf{t}}x) = e^{2\pi i \langle \mathbf{t}, lpha
angle} f_{\alpha}(x), \ \mathbf{t} \in \mathbb{R}^{d}.$$

Here $\langle \cdot, \cdot \rangle$ is the scalar product in \mathbb{R}^d .

Warning: eigenvalue is a vector! (like "wave vector" in physics)

Theorem. If \mathcal{T} is a self-affine tiling, then every measurable eigenfunction for the system $(X_{\mathcal{T}}, \mathbb{R}^d, \mu)$ coincides with a continuous function μ -a.e.

Return vectors for the tiling:

$$\mathcal{Z}(\mathcal{T}) := \{ z \in \mathbb{R}^d : \exists T, T' \in \mathcal{T}, T' = T + z \}.$$

Theorem [S. 1997] Let \mathcal{T} be an aperiodic self-affine tiling with expansion map ϕ . Then the following are equivalent for $\alpha \in \mathbb{R}^d$: (i) α is an eigenvalue for the topological dynamical system $(X_{\mathcal{T}}, \mathbb{R}^d)$; (ii) α is an eigenvalue for the measure-preserving system $(X_{\mathcal{T}}, \mathbb{R}^d, \mu)$; (iii) α satisfies the condition:

$$\lim_{n \to \infty} e^{2\pi i \langle \phi^n z, \alpha \rangle} = 1 \quad \text{for all } z \in \mathcal{Z}(\mathcal{T}).$$
(2)

Proof of $(i) \Rightarrow (iii)$

- Let z ∈ Z(T), i.e., for some T ∈ T we have T + z ∈ T. Let ξ be any point in the interior of T. Then T − ξ and T − z − ξ agree on some B_ε.
- Applying ω^n we obtain that

$$\omega^n(\mathcal{T}-\xi)=\mathcal{T}-\phi^n\xi$$

and

$$\omega^n(\mathcal{T}-z-\xi)=\mathcal{T}-\phi^n z-\phi^n \xi$$

agree on $\phi^n B_{\varepsilon}$.

By the definition of tiling metric,

$$\varrho(\mathcal{T}-\phi^n\xi,\mathcal{T}-\phi^nz-\phi^n\xi)
ightarrow0, \ \ \text{as} \ n
ightarrow\infty.$$

- 本間 と えき と えき とうき

• A continuous function on a compact metric space is uniformly continuous, hence

$$|f(\mathcal{T}-\phi^n\xi)-f(\mathcal{T}-\phi^nz-\phi^n\xi)|
ightarrow 0, \ \ \text{as} \ n
ightarrow\infty.$$

• Using the eigenfunction equation we obtain

$$\left|1-e^{2\pi i\langle\phi^n z,\alpha\rangle}\right|\to 0, \ n\to\infty,$$

proving (2).

- 32

- 4 週 ト - 4 三 ト - 4 三 ト

This uses a generalization of Pisot Theorem, due to I. Körneyi (1986) (a similar result was independently obtained by C. Mauduit (1989)).

Theorem [Körneyi] (partial statement in a special case). Let $\lambda_1, \ldots, \lambda_r$ be distinct complex algebraic integers, with $|\lambda_j| \ge 1$, and there exist nonzero α_j , $j \le r$, such that

dist
$$\left(\sum_{j=1}^{r} \alpha_j \lambda_j^n, \mathbb{Z}\right) \to 0, \quad n \to \infty.$$

Then $\{\lambda_1, \ldots, \lambda_r\}$ is a Pisot family and $\alpha_j = \frac{p(\lambda_j)}{q(\lambda_j)}$ for some $p, q \in \mathbb{Z}[x]$.

Relatively dense set of eigenvalues implies Pisot family (cont.)

• From (2) we obtain

 $\operatorname{dist}(\langle \phi^n z, \alpha \rangle, \mathbb{Z}) \to 0, \quad n \to \infty$

for a return vector $z \in \mathbb{R}^d$ and an eigenvalue $\alpha \in \mathbb{R}^d$.

- We assumed φ is diagonalizable over C, hence there is a basis {e_i} of eigenvectors (need to be a bit careful with complex eigenvalues).
- The set of return vectors is relatively dense, hence we can choose z so that all of its coordinates w.r.t. to {e_i} are nonzero. And we can make sure that (e_i, α) ≠ 0 for all i.
- Now application of Körneyi's Theorem yields the result.

イロト イポト イヨト イヨト 二日

Pisot family implies relatively dense set of eigenvalues

To outline the proof, assume for simplicity that

- all these eigenvalues are real;
- \bullet the tiling \mathcal{T} is aperiodic.

Without loss of generality, we can assume that

$$\phi = \left[\begin{array}{ccc} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_d \end{array} \right],$$

and $|\lambda_1| \leq |\lambda_2| \leq \ldots \leq |\lambda_d|$.

Pisot family implies relatively dense set of eigenvalues (cont.)

Let

$$\mathbb{Q}[\phi] := \{ p(\phi): \ p \in \mathbb{Q}[x] \}, \ \mathbb{Z}[\phi] := \{ p(\phi): \ p \in \mathbb{Z}[x] \}.$$

The crucial step is to determine the structure of the control point set $\mathcal{C} = \mathcal{C}(\mathcal{T}).$

Structure Theorem Let \mathcal{T} be a self-affine tiling of \mathbb{R}^d with a diagonalizable expansion map ϕ whose eigenvalues are all algebraically conjugate. Suppose that the additional assumptions (1)-(3) are satisfied. Then there exists a vector $\alpha \in \mathbb{R}^d$ such that

 $\mathcal{C} \subset \mathbb{Z}[\phi] \alpha.$

Pisot family implies relatively dense set of eigenvalues (cont.)

First we use the Structure Theorem to finish the proof.

- Observe that the set of return vectors satisfies $\mathcal{Z} \subset \mathcal{C} \mathcal{C} \subset \mathbb{Z}[\phi] lpha$
- $\bullet\,$ The set of control points ${\mathcal C}$ is relatively dense, hence the vector

$$\boldsymbol{lpha} := [a_1, \dots, a_d]^{\mathcal{T}}$$
 has all $a_j
eq 0$

Consider

$$\boldsymbol{\beta} := [\boldsymbol{a}_1^{-1}, \dots, \boldsymbol{a}_d^{-1}]^T.$$

We claim that the set $\{\phi^j\beta\}_{j=0}^{d-1}$ is contained in the set of eigenvalues. This set is a basis of \mathbb{R}^d (over \mathbb{R}), and since the set of eigenvalues forms an additive group, the proof will be complete.

Pisot family implies relatively dense set of eigenvalues (cont.)

We have for $\mathbf{x} = \phi^i \boldsymbol{\alpha}, \ \boldsymbol{\gamma} = \phi^j \boldsymbol{\beta}$:

$$\langle \phi^n \mathbf{x}, \mathbf{\gamma}
angle = \langle \phi^{n+i} \mathbf{\alpha}, \phi^j \boldsymbol{\beta}
angle = \sum_{k=1}^d \lambda_k^{n+i+j} o 0 \pmod{\mathbb{Z}}.$$

The convergence follows from the Pisot family property.

Proof sketch of Structure Theorem

- Consider ⟨C⟩_Q, the linear space over Q generated by the set of control points C. The FLC property implies that this space is finite-dimensional over Q.
- An easy argument shows that $\mathbb{Q}[\phi]$ is a field. Since $\phi(\mathcal{C}) \subset \mathcal{C}$, it follows that

$$\mathcal{H} := \langle \mathcal{C} \rangle_{\mathbb{Q}} = \langle \mathcal{C} \rangle_{\mathbb{Q}[\phi]}.$$

Our result will follow if we show that ${\mathcal H}$ has dimension one as a linear space over ${\mathbb Q}[\phi].$

• Choose any control point $\boldsymbol{\xi} \in C$ with all non-zero coordinates. We can define $\sigma : \mathcal{H} \to \mathbb{Q}[\phi]\boldsymbol{\xi}$ as a $\mathbb{Q}[\phi]$ -module homomorphism which is identical on $\mathbb{Q}[\phi]\boldsymbol{\xi}$ (basically, a projection commuting with ϕ), and then let σ' be the restriction of σ to the set $\mathcal{C}_{\infty} = \bigcup_{k=0}^{\infty} \phi^{-k} \mathcal{C}$.

Proof sketch of Structure Theorem (cont.)

- The function σ' is uniformly continuous on the dense set \mathcal{C}_{∞} , and so can be extended by continuity to \mathbb{R}^d . The extension commutes with ϕ . This proceeds essentially following Thurston's and Kenyon's arguments (see part II).
- Next we show that the extension of σ' to \mathbb{R}^d , which we also denote σ' , is linear over \mathbb{R} . This will be sufficient, since σ' is the identity on a relatively dense set, hence it is the identity on all of \mathbb{R}^d whence $\mathcal{C} \subset \mathbb{Q}[\phi]\boldsymbol{\xi}$, as desired.
- Establishing linearity is the hardest part of the proof; it follows the scheme worked out in [Kenyon & S. 2010].

Proof sketch of Structure Theorem (end)

- σ' is Lipschitz on all lines parallel to the eigenvector e₁ of φ with the smallest in modulus eigenvalue λ₁.
- By Rademacher's Theorem, this implies that σ' is differentiable almost everywhere in the \mathbf{e}_1 direction.
- Another useful property of σ' is that it depends only on the tile type, up to an additive constant.
- Taking points of differentiability, "blowing up" by the expansion ϕ and using the last item we prove that σ' is affine linear on all lines parallel to \mathbf{e}_1 .
- Projections of C to the coordinate axes cannot be discrete; this yields linearity on the entire ℝ^d.

- 4回 ト 4 ヨ ト - 4 ヨ ト - - ヨ

Remark. The last "non-discreteness" claim may seem surprising: why can't we have the tiling \mathcal{T} as a direct product of, say, two tilings corresponding to a partition of the set of eigenvalues of ϕ ? The answer is that this is prohibited by the Characterization of Expansions III from [Kenyon & S. 2010]: it is impossible to split the set of eigenvalues of ϕ in such a way that both parts form a Perron family.

It turns out that the topology of the tiling space already determines dynamics!

Theorem [J. Kwapisz, ETDS, published online 2011] Suppose that \mathcal{T}_0 and $\widetilde{\mathcal{T}}_0$ are self-similar aperiodic tilings of \mathbb{R}^d , with expansions ϕ and $\widetilde{\phi}$, repsectively. Let $X = X_{\mathcal{T}_0}$ and $\widetilde{X} = X_{\widetilde{\mathcal{T}}_0}$ be the corresponding tiling spaces. If there is a homeomorphism $h_0 : X \to \widetilde{X}$, then there is a linear isomorphism $A : \mathbb{R}^d \to \mathbb{R}^d$ and a homeomorphism $h : X \to \widetilde{X}$ conjugating the translation action on X to the rescaling of the translation action on \widetilde{X} :

$$h(\mathcal{T}-g)=h(\mathcal{T})-\mathcal{A}g, \ \mathcal{T}\in X, \ g\in \mathbb{R}^d.$$

Open Question: is the same true for self-affine tilings?

Theorem [J. Kwapisz] In the context of the last theorem, if additionally $h_0(\mathcal{T}_0) = \widetilde{\mathcal{T}}_0$, then h_0 is homotopic to some homeomorphism $h_{\text{lin}} : X \to \widetilde{X}$ such that $h_{\text{lin}}(\mathcal{T}_0) = \widetilde{\mathcal{T}}_0$ and h_{lin} is linear, i.e. for some linear map L,

$$h_{\mathrm{lin}}(\mathcal{T}-g)=h_{\mathrm{lin}}(\mathcal{T})-Lg,\ g\in\mathbb{R}^d.$$

- Aperiodic tiling spaces are locally: $\mathbb{R}^d \times$ Cantor set.
- A homeomorphism $h_0: X \to \widetilde{X}$ has to take orbits to orbits:

$$h_0(\mathcal{T}-g) = h_0(\mathcal{T}) - \alpha(\mathcal{T},g),$$

where $\alpha(\mathcal{T}, g)$ is a cocycle over the \mathbb{R}^d -action on X:

$$\alpha(\mathcal{T}, g_1 + g_2) = \alpha(\mathcal{T}, g_1) + \alpha(\mathcal{T} - g_1, g_2).$$

Boris Solomyak (University of Washington)

Idea: cocycles are linear on large scales.

Lemma There exists a linear isomorphism A_{α} : $\mathbb{R}^d \to \mathbb{R}^d$ such that

$$\lim_{s\to\infty}\frac{\alpha(\mathcal{T},sv)}{s}=A_{\alpha}v, \ \forall \mathcal{T}\in X, \ v\in\mathbb{R}^d.$$

The limit is uniform in the sense that

$$\lim_{s\to\infty}\sup_{|v|=1,\,\mathcal{T}\in X}\left|\frac{\alpha(\mathcal{T},sv)}{s}-A_{\alpha}v\right|=0.$$

Boris Solomyak (University of Washington)

66 / 69

Technical lemma. For any linear isomorphism A_{α} , if each of ϕ, ϕ is similar to an orthogonal transformation of \mathbb{R}^d , then there are sequences $m_k, n_k \to \infty$ of integers and a linear isomorphism A such that

$$\begin{split} \|\widetilde{\phi}^{-n_k}\phi^{m_k} - I\| \to 0, \\ \|\widetilde{\phi}^{-n_k}A_{\alpha}\phi^{m_k} - A\| \to 0, \\ \sup_k \|\phi^{m_k}\|\|\widetilde{\phi}^{-n_k}\| < \infty \quad \text{and} \quad \sup_k \|\phi^{-m_k}\|\|\widetilde{\phi}^{n_k}\| < \infty. \end{split}$$

This follows from the compactness of the orthogonal group.

67 / 69

Step 3: "Ironing" homeomorphisms to conjugacies

- Aperiodicity of the tiling T₀ implies that the substitution ("inflate and subdivide") action ω : X → X is invertible ("recognizability"); it is hyperbolic in the Smale space sense; similarly for ω̃ : X̃ → X̃.
- The next idea goes back to linearization results in hyperbolic dynamics (compare with Thurston's argument!)
- Step 1 (averaging) tells us that h_0 is approximately linear on a large scale, and we attempt to bring this linearity to the microscopic scale by renormalizing h_0 with the aid of high iterates ω^{m_k} and $\tilde{\omega}^{-n_k}$.

Lemma. The family of homeomorphisms

 $h_k := \widetilde{\omega}^{-n_k} \circ h_0 \circ \omega^{m_k}$ is equicontinuous.

68 / 69

- Interchanging the roles of ω and $\tilde{\omega}$ we see that h_k^{-1} is also an equicontinuous family.
- By passing to a subsequence we can ensure that h_k and h_k^{-1} converge uniformly. Thus they must converge to h and h^{-1} respectively, where h is a homeomorphism.
- Then one shows that

$$h(\mathcal{T}-g)=h(\mathcal{T})-Ag, \ \mathcal{T}\in X, \ g\in \mathbb{R}^d.$$

where A is from the Technical Lemma.