Aztec diamond

An Aztec diamond of order n is the union of the unit squares with lattice point coordinates in the region given by

 $|x|+|y|\leq n+1.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Aztec diamond

An Aztec diamond of order n is the union of the unit squares with lattice point coordinates in the region given by

イロト イポト イヨト イヨト

э

$$|x|+|y|\leq n+1.$$

Domino Tilings

The number of domino tilings of aztec diamond of order *n* is $2^{\frac{n(n+1)}{2}}$

Domino Tilings

The number of domino tilings of aztec diamond of order *n* is $2^{\frac{n(n+1)}{2}}$

Arctic circle phenomenon

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲目 ● ● ●

Tilings as matchings

Tilings as matchings

diamond of order 5

 5×7 rectangle

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへで

 5×7 rectangle

Add diagonal edges connecting nearest black vertices

 5×7 rectangle

Add diagonal edges connecting nearest black vertices

A matching of $m \times n$ rectangle contains $\frac{|m-n|}{2}$ diagonal edges.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 5×7 rectangle

Add diagonal edges connecting nearest black vertices

A matching of $m \times n$ rectangle contains $\frac{|m-n|}{2}$ diagonal edges.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 5×7 rectangle

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Our first result: Local transformation rule

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Our first result: Local transformation rule

Our first result: Local transformation rule

These local moves connects all tilings.

We can construct an ergodic Markov chain whose state space is the set of all tilings.

Typical domino tiling of an Aztec rectangle

Our result 2

Theorem

For any simply connected subgraph G of the square lattice graph with a prescribed special vertex r called root, there exists a simply connected area R_G which can be tiled with dominos and one diagonal impurity.

The probability of finding the impurity at a given position can be explicitly represented in terms of the probability concerning the simple random walk on G.

Our result 2

Theorem

For any simply connected subgraph G of the square lattice graph with a prescribed special vertex r called root, there exists a simply connected area R_G which can be tiled with dominos and one diagonal impurity.

The probability of finding the impurity at a given position can be explicitly represented in terms of the probability concerning the simple random walk on G.

Remark

Always possible

$$G \longmapsto R_G$$

Our result 2

Theorem

For any simply connected subgraph G of the square lattice graph with a prescribed special vertex r called root, there exists a simply connected area R_G which can be tiled with dominos and one diagonal impurity.

The probability of finding the impurity at a given position can be explicitly represented in terms of the probability concerning the simple random walk on G.

Remark

Always possible

$$G \longmapsto R_G$$

Not always possible

$$R \longmapsto G_R$$

with 1×2 rectangles.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

with 1×2 rectangles.

192 tilings exist.

Tile the 5×5 rectangle with a corner removed

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

No tilings

くしゃ (中)・(中)・(中)・(日)

No tilings

There are two more blacks.

Use a special type of tile.

イロト イ団ト イヨト イヨト 三日

Use a special type of tile.

Where should it be put?

▲ロト ▲圖ト ▲温ト ▲温ト

æ

Use a special type of tile.

Where should it be put?

The place with the most tilings?

・ロト ・ 雪 ト ・ ヨ ト

э

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

16 tilings

16 tilings

16 tilings

16 tilings

8 tilings

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ◆ ● ◆

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

ヘロト ヘ週ト ヘヨト ヘヨト

æ

▲□▶ ▲□▶ ▲注▶ ▲注▶ ……注: のへ(?).

▲ロト ▲掃ト ▲ヨト ▲ヨト ニヨー のへ(で)

・ロト ・聞ト ・ヨト ・ヨト

æ

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Enumerations of domino tilings with fixed impurities

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - の々ぐ

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

• absorbing states

• absorbing states

• identified

- absorbing states
- starting vertex

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

- absorbing states
- starting vertex

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

absorbing states

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

starting vertex

	<u>99562363</u> 1214591040	828541 5190560	55394 421733	
H =	<u>3345817</u> 75911940	$\frac{17097}{162205}$	<u>55512</u> 421733	
	$1790413 \\ 50607960$	<u>28529</u> 324410	<u>52981</u> 421733	

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Combinatorial Laplacian

$$L = (I_{ij}), \quad I_{ij} = \begin{cases} \deg(i) & i = j \\ - \# \text{edges between } i \text{ and } j & i \neq j, \end{cases}$$

where i's and j's are non-absorbing states.

det $H \times \det L = 0.000451431 \cdots \times 77733826560 = 35091456 \in \mathbb{Z}$

Proof Sketch

(日) (個) (目) (日) (日) (の)

Proof Sketch

▶ Modification of Temperley bijection (中野理論)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Proof Sketch

Modification of Temperley bijection (中野理論)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

S. Fomin's results on LERW.