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Arctic circle phenomenon
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Aztec rectangle (Propp’s problem)
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Aztec rectangle (Propp’s problem)

5 X 7 rectangle

Add diagonal edges connecting
nearest black vertices

contains |m2_"|

A matching of m x n rectangle

diagonal edges.
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Our first result: Local transformation rule
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Our first result: Local transformation rule

ﬁ

These local moves connects all tilings.
We can construct an ergodic Markov chain whose state space is

the set of all tilings.



Typical domino tiling of an Aztec rectangle
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Typical domino tiling of another rectangle
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Our result 2

Theorem

For any simply connected subgraph G of the square lattice graph
with a prescribed special vertex r called root, there exists a simply
connected area R¢ which can be tiled with dominos and one
diagonal impurity.

The probability of finding the impurity at a given position can be
explicitly represented in terms of the probability concerning the
simple random walk on G.
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Remark
Always possible
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Not always possible
R+— GR



with 1 x 2 rectangles.

Tile the 5 x 5 rectangle with a corner removed

Example



Tile the 5 x 5 rectangle with a corner removed
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Tile the 5 x 5 rectangle with a corner removed
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No tilings
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Example

No tilings

There are two more blacks.



Example

Use a special type of tile.
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Simple Random Walks and Tilings
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Simple Random Walks and Tilings
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Simple Random Walks and Tilings

@ Q@
2 1
® O/ oF
2
O 1 f\7
56 16
5

@  absorbing state

Probability of arriving at @

Combinatorial Laplacian
@) O (¢

o 4 -1 O
56 =detq -1 4 -1
o\ 0 -1 4



Enumerations of domino tilings with fixed impurities

35091456 tilings
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Random walk and hitting matrix
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Random walk and hitting matrix

< e absorbing states
e  starting vertex
1 2 3

1 /b1 hi2 i3
H= 2h1 ho hxs

3 \h31 h3x> hs3

h;j is the probability of a ran-
e dom walk starting at / reaches
the absorbing state j.




99562363 828541 55394
1214591040 5190560 421733
3345817 17097 55512
75911940 162205 421733
1790413 28529 52081
50607960 324410 421733



Combinatorial Laplacian

L=(lj), lj= {deg(i) =

—fedges between i and j i # j,
where i's and j's are non-absorbing states.

det H x det L = 0.000451431 - - - x 77733826560 = 35091456 € Z
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Proof Sketch

» Modification of Temperley bijection (0 O O 0O)
» S. Fomin's results on LERW.



