Interval preserving map approximation of $3 x+1$ problem

Yukihiro HASHIMOTO

Aichi University of Education

RIMS/December 21, 2011

What is $3 x+1$ problem?

Consider a function $f: \mathbf{N} \rightarrow \mathbf{N}$;

$$
f(x)= \begin{cases}3 x+1, & \text { if } x \text { is odd } \\ x / 2, & \text { if } x \text { is even }\end{cases}
$$

Conjecture 1

For any natural number n, the sequence

$$
f(n), f^{2}(n), f^{3}(n), \ldots
$$

eventually reaches to 1 .
(Posed by L. Collatz in 1930's)
Still attracting me for a quarter of a century...

Ultimate challenges

A million of people (mathematicians, computer scientists or math-lovers) has been attacking this problem.

Surveys
G. J. Wirsching,
"The dynamical system generated by the $3 n+1$ function",
Springer, 1998.
J. C. Lagarias,
"The Ultimate Challenge: The $3 x+1$ Problem", AMS, 2011.
Verification by computer
Verified up to

$$
20 \cdot 2^{58}=5764607523034234880>5.764 \cdot 10^{18}
$$

(by Oliveira e Silva, Jan. 2009.)
Erdös commented: "Mathematics is not yet ready for such problems."

As a Dynamics in \mathbf{Z}_{2}

The dyadic integers \mathbf{Z}_{2} :

$$
\mathbf{Z}_{2}=\left\{x=\left(\cdots x_{2} x_{1} x_{0}\right)_{2} \mid x=\sum_{k=0}^{\infty} x_{k} \cdot 2^{k}, x_{k}=0,1\right\}
$$

equipped with a distance $d_{2}(x, y) ; \quad$ for $x, y \in \mathbf{Z}_{2}$,

$$
d_{2}(x, y)=2^{-\ell}, \quad \text { where } \ell=\min _{k}\left\{x_{k} \neq y_{k}\right\}
$$

and carries $c_{k}(x, y)$; the addition $x+y$ is given by

$$
\begin{aligned}
(x+y)_{k} & =x_{k}+y_{k}+c_{k-1}(x, y) \quad \bmod 2 \\
c_{k}(x, y) & =\left[\frac{x_{k}+y_{k}+c_{k-1}(x, y)}{2}\right]
\end{aligned}
$$

Natural numbers are identified with finite sequences in dyadic numbers:

$$
\mathbf{N}=\left\{x \in \mathbf{Z}_{2} \mid \exists \ell x_{k}=0 \text { for any } k \geq \ell\right\} \subset \mathbf{Z}_{2}
$$

As a Dynamics in \mathbf{Z}_{2} (a natural idea)

The process $3 x+1$ can be interpreted as (for odd x)

x	\cdots	x_{3}	x_{2}	x_{1}	1	
	$2 x$	\cdots	x_{2}	x_{1}	1	0
shift to upper digits,						
+	1	\cdots	0	0	0	1
odometer.						
$3 x+1$	$*$	$*$	$*$	x_{1}	0	

The process $x / 2$ can be interpreted as (for even x)

x	\cdots	x_{3}	x_{2}	x_{1}	0	
$x / 2$	\cdots	x_{4}	x_{3}	x_{2}	x_{1}	shift to lower digits.

This kind of approaches often has been done. (cf. Lagarias's book)

As a Dynamics in \mathbf{Z}_{2} (a natural idea)

The process $3 x+1$ can be interpreted as (for odd x)

x	\cdots	x_{3}	x_{2}	x_{1}	1	
	$2 x$	\cdots	x_{2}	x_{1}	1	0
shift to upper digits,						
+	1	\cdots	0	0	0	1
odometer.						
$3 x+1$	$*$	$*$	$*$	x_{1}	0	

The process $x / 2$ can be interpreted as (for even x)

x	\cdots	x_{3}	x_{2}	x_{1}	0	
$x / 2$	\cdots	x_{4}	x_{3}	x_{2}	x_{1}	shift to lower digits.

This kind of approaches often has been done. (cf. Lagarias's book)
...but l'd like to visualize these processes...

Embedding \mathbf{Z}_{2} into $[0,1]$

Consider $\beta: \mathbf{Z}_{2} \rightarrow[0,1]$ given by

$$
\beta\left(\left(\cdots x_{2} x_{1} x_{0}\right)_{2}\right)=\left(0 . x_{0} x_{1} x_{2} \cdots\right)_{2}=\sum_{k=0}^{\infty} \frac{x_{k}}{2^{k+1}} .
$$

- Carrying to upper digits in \mathbf{Z}_{2} corresponds to carrying to lower digits in $[0,1]$:
$\left.\begin{array}{l|llll|ll}3 & \cdots 0 & 0^{\curvearrowleft} & 1 & 1 \\ +\quad 1 & \cdots 0 & 0 & 0 & 1 \\ \hline 4 & \cdots 0 & 1 & 0 & 0\end{array} \Longleftrightarrow \begin{array}{llllll} & \beta(3) & 0 . & 1^{\curvearrowright} & 1 & 1^{\curvearrowright} \\ 0 & 0 & 0 \\ \beta(1) & 0 . & 1 & 0 & 0 & 0\end{array}\right]$
- β maps even numbers to $[0,1 / 2)$ and odd numbers to $[1 / 2,1)$.
- $\{\beta(n) \mid n \in \mathbf{N}\}$ and $\{\beta(3 n+1) \mid n \in \mathbf{N}\}$ are dense in $[0,1]$ respectively.

Embedding \mathbf{Z}_{2} into $[0,1]$

Consider $\beta: \mathbf{Z}_{2} \rightarrow[0,1]$ given by

$$
\beta\left(\left(\cdots x_{2} x_{1} x_{0}\right)_{2}\right)=\left(0 . x_{0} x_{1} x_{2} \cdots\right)_{2}=\sum_{k=0}^{\infty} \frac{x_{k}}{2^{k+1}}
$$

- Carrying to upper digits in \mathbf{Z}_{2} corresponds to carrying to lower digits in $[0,1]$:

- β maps even numbers to $[0,1 / 2)$ and odd numbers to $[1 / 2,1)$.
- $\{\beta(n) \mid n \in \mathbf{N}\}$ and $\{\beta(3 n+1) \mid n \in \mathbf{N}\}$ are dense in $[0,1]$ respectively.

Conjugacy of Collatz procedure

Definition 4.1

The conjugacy $F:[0,1] \rightarrow[0,1]$ of the Collatz procedure f is defined by

$$
F(x)= \begin{cases}2 x, & \text { for } x \in[0,1 / 2) \\ \lim _{k \rightarrow \infty} \beta\left(3 \beta^{-1}\left(\left.x\right|_{k}\right)+1\right), & \text { for } x \in[1 / 2,1]\end{cases}
$$

where $\left.x\right|_{k}$ stands for the truncation of x at k-th digit in binary expansion:

$$
\left.x\right|_{k}=\left(0 . x_{1} x_{2} \cdots x_{k}\right)_{2} \text { for } x=\left(0 . x_{1} x_{2} \cdots x_{k} \cdots\right)_{2}
$$

Then we have the following commutative diagram.

$$
\left.\begin{array}{ccc}
\mathbf{N} & \xrightarrow{f} & \mathbf{N} \\
\beta \downarrow & & \\
\downarrow \\
{[0,1]} & & \\
& & \\
\hline
\end{array}\right][0,1]
$$

Conjugacy of Collatz procedure

Proposition 4.2

For any odd number n and $k \in \mathbf{N}, F$ gives a right continuous bijection

$$
F:[\beta(n))_{k} \rightarrow[\beta(3 n+1))_{k} .
$$

Here $[x)_{k}$ stands for an interval $\left[\left.x\right|_{k},\left.x\right|_{k}+2^{-k}\right)$ (called k-th segment).

- F is not left continuous: e.g.,

- This Proposition means that F behaves like an 'interval exchange map' on $[1 / 2,1)$

Conjugacy of Collatz procedure

Proposition 4.2

For any odd number n and $k \in \mathbf{N}, F$ gives a right continuous bijection

$$
F:[\beta(n))_{k} \rightarrow[\beta(3 n+1))_{k} .
$$

Here $[x)_{k}$ stands for an interval $\left[\left.x\right|_{k},\left.x\right|_{k}+2^{-k}\right)$ (called k-th segment).

- F is not left continuous: e.g.,

$$
\lim _{\substack{w \rightarrow(0.11)_{2} \\ w<(0.11)_{2}}} F(w)=(0.001)_{2} \neq(0.0101)_{2}=F\left((0.11)_{2}\right)
$$

- This Proposition means that F behaves like an 'interval exchange map' on $[1 / 2,1)$.

Graph of the conjugacy F

Collatz set \mathfrak{C} - closure of graph F on $[1 / 2,1]$

Collatz set \mathfrak{C} - geometry

Theorem 5.1 (Y.H. 1998, 2007.)

\mathfrak{C} is a Cantor space (perfect, compact, totally disconnected and metrizable), isometric to a self-similar set generated by the following iterated functional system on $[0,1]^{2}$,

$$
\begin{array}{ll}
g_{1}(x, y)=\frac{1}{2}(x+1, y+1), & \text { fixes }(1,1) \\
g_{2}(x, y)=\frac{1}{4}(x+1, y), & \text { fixes }(1 / 3,0) \\
g_{3}(x, y)=\frac{1}{4}(1-x, 2-y), & \text { fixes }(1 / 5,2 / 5)
\end{array}
$$

which has the Hausdorff dimension 1.
It seems to be difficult to analyze the dynamics on $\mathfrak{C} \ldots$

Piecewise linear approximation of F
As F gives a right continuous bijection (Proposition 4.2),

$$
F:[\beta(n))_{k} \rightarrow[\beta(3 n+1))_{k},
$$

we consider a piecewise liner approximant of F :

$$
F(x)=\lim _{k \rightarrow \infty} \beta\left(3 \beta^{-1}\left(\left.x\right|_{k}\right)+1\right)
$$

Piecewise linear approximation of F

As F gives a right continuous bijection (Proposition 4.2),

$$
F:[\beta(n))_{k} \rightarrow[\beta(3 n+1))_{k}
$$

we consider a piecewise liner approximant of F :

Definition 6.1

For each $k \in \mathbf{N}$, we define the k-th approximant F_{k} as

$$
\begin{aligned}
F_{k}(x) & = \begin{cases}2 x, & \text { for } x \in[0,1 / 2), \\
x-\left.x\right|_{k}+\left.F\left(\left.x\right|_{k}\right)\right|_{k}, & \text { for } x \in[1 / 2,1]\end{cases} \\
& = \begin{cases}2 x, & \text { for } x \in[0,1 / 2) \\
x-\left.x\right|_{k}+\left.\beta\left(3 \beta^{-1}\left(\left.x\right|_{k}\right)+1\right)\right|_{k}, & \text { for } x \in[1 / 2,1]\end{cases}
\end{aligned}
$$

cf.

$$
F(x)=\lim _{k \rightarrow \infty} \beta\left(3 \beta^{-1}\left(\left.x\right|_{k}\right)+1\right), \quad \text { for } x \in[1 / 2,1] .
$$

Piecewise linear approximation of F

Definition 6.1

For each $k \in \mathbf{N}$, we define the k-th approximant F_{k} as

$$
\begin{aligned}
F_{k}(x) & = \begin{cases}2 x, & \text { for } x \in[0,1 / 2), \\
x-\left.x\right|_{k}+\left.F\left(\left.x\right|_{k}\right)\right|_{k}, & \text { for } x \in[1 / 2,1]\end{cases} \\
& = \begin{cases}2 x, & \text { for } x \in[0,1 / 2), \\
x-\left.x\right|_{k}+\left.\beta\left(3 \beta^{-1}\left(\left.x\right|_{k}\right)+1\right)\right|_{k}, & \text { for } x \in[1 / 2,1] .\end{cases}
\end{aligned}
$$

- For $x \in[\beta(n))_{k}$, we see

$$
F_{k}(x)=x-\left.\beta(n)\right|_{k}+\left.\beta(3 n+1)\right|_{k} .
$$

- $F_{k}\left([\beta(n))_{k}\right)=[\beta(3 n+1))_{k}$ for any odd number n and $k \in \mathbf{N}$.
- Thus the sequence $F_{k}, k=1,2, \ldots$ approximates F uniformly on $[0,1]$.

Behavior of carries

-To observe the dynamics of F_{k}
For $n, k \in \mathbf{N}$, we define an integer valued function

$$
\tau_{k}(n)=\left[\frac{\left.3 n\right|^{k}+1}{2^{k}}\right] .
$$

Here, for a binary expression $n=\left(\cdots a_{k} a_{k-1} \cdots a_{0}\right)_{2},\left.n\right|^{k}$ denotes an upper cut off of n at k-th order;

$$
\left.n\right|^{k}=\left(a_{k-1} a_{k-2} \cdots a_{0}\right)_{2} \equiv n \bmod 2^{k} .
$$

The function τ_{k} describes the number of bits carried in the calculation of $3 n+1$ at k-th bit.

Behavior of carries

Proposition 6.2

Given an odd number n and take $k \in \mathbf{N}$, then we have

- $\tau_{k}(n) \in\{0,1,2\}$.

$$
\begin{aligned}
\tau_{k+1}\left(\left.n\right|^{k}\right) & = \begin{cases}0, & \text { if } \tau_{k}(n)=0,1, \\
1, & \text { if } \tau_{k}(n)=2,\end{cases} \\
\tau_{k+1}\left(\left.n\right|^{k}+2^{k}\right) & = \begin{cases}1, & \text { if } \tau_{k}(n)=0, \\
2, & \text { if } \tau_{k}(n)=1,2\end{cases}
\end{aligned}
$$

Here

$$
\tau_{k}(n)=\left[\frac{\left.3 n\right|^{k}+1}{2^{k}}\right] .
$$

Behavior of carries

- Note that

$$
\begin{aligned}
& \left.\qquad \beta\left(\left.n\right|^{k}\right)\right)_{k}=\left[\beta\left(\left.n\right|^{k}\right)\right)_{k+1} \oplus\left[\beta\left(\left.n\right|^{k}+2^{k}\right)\right)_{k+1} \text {, } \\
& \text { e.g., }\left[(0.111)_{2}\right)_{3}=\left[(0.1110)_{2}\right)_{4} \oplus\left[(0.1111)_{2}\right)_{4}
\end{aligned}
$$

If $\tau_{k}(n)=0$ or 2 ,

Behavior of carries

- Note that

$$
\begin{aligned}
& \left.\qquad \beta\left(\left.n\right|^{k}\right)\right)_{k}=\left[\beta\left(\left.n\right|^{k}\right)\right)_{k+1} \oplus\left[\beta\left(\left.n\right|^{k}+2^{k}\right)\right)_{k+1} \text {, } \\
& \text { e.g., }\left[(0.111)_{2}\right)_{3}=\left[(0.1110)_{2}\right)_{4} \oplus\left[(0.1111)_{2}\right)_{4} .
\end{aligned}
$$

Proposition 6.3

$$
\begin{aligned}
& \text { If } \tau_{k}(n)=0 \text { or } 2, \\
& \qquad \quad\left[F\left(\beta\left(\left.n\right|^{k}\right)\right)\right)_{k}=\left[F\left(\beta\left(\left.n\right|^{k}\right)\right)\right)_{k+1} \oplus\left[F\left(\beta\left(\left.n\right|^{k}+2^{k}\right)\right)\right)_{k+1} . \\
& \text { If } \tau_{k}(n)=1, \\
& \qquad\left[F\left(\beta\left(\left.n\right|^{k}\right)\right)\right)_{k}=\left[F\left(\beta\left(\left.n\right|^{k}+2^{k}\right)\right)\right)_{k+1} \oplus\left[F\left(\beta\left(\left.n\right|^{k}\right)\right)\right)_{k+1} .
\end{aligned}
$$

Substitution dynamics

For an odd number n and $k \in \mathbf{N}$, we label the segments $[\beta(n))_{k}$ as follows. \rightarrow

$\tau_{k}(n)$	Label of $[\beta(n))_{k}$
0	S
1	E
2	U

Substitution dynamics

For an odd number n and $k \in \mathbf{N}$, we label the segments $[\beta(n))_{k}$ as follows. \rightarrow

$\tau_{k}(n)$	Label of $[\beta(n))_{k}$
0	S
1	E
2	U

- From Proposition 6.2 and 6.3, to increment the approximation order k by 1 causes a division of each segment, and induces a substitution

$$
\sigma: S \rightarrow S E \quad E \rightarrow S U \quad U \rightarrow E U
$$

which are mapped by F as

$$
F(\sigma): F(S) \rightarrow F(S) F(E) \quad F(E) \rightarrow F(U) F(S) \quad F(U) \rightarrow F(E) F(U)
$$

- The original segment $[\beta(1))_{1}=[1 / 2,1)$ is labeled as U.

Substitution dynamics

$$
\sigma: S \rightarrow S E \quad E \rightarrow S U \quad U \rightarrow E U .
$$

Transducer

The calculation

$$
f: 3=(0011)_{2} \mapsto 3 \times 3+1=(1010)_{2}
$$

is given by the transducer as follows:

$$
\text { state: } E \underset{\substack{\downarrow} \stackrel{1}{\downarrow}}{\underset{1}{\downarrow}} \underset{\substack{\downarrow}}{\stackrel{1}{\downarrow}} U \underset{\substack{\downarrow} \underset{\sim}{\downarrow}}{\stackrel{0}{\downarrow}} \underset{\substack{\downarrow} \stackrel{0}{\downarrow}}{\stackrel{\downarrow}{\downarrow}} \text {. }
$$

Approximation order $k=1$

Approximation order $k=2$

Approximation order $k=3$

Approximation order $k=4$

Property and Problem on F_{k}

F_{k} just exchanges the segments $[x)_{k}$ on $[1 / 2,1]$ and expands the segments on $[0,1 / 2)$: eg.,

$$
F_{2}: \beta(13)=(0 . \underline{1011})_{2} \xrightarrow{F_{2}}(0 . \underline{0011})_{2} \xrightarrow{2 x}(0.011)_{2} \xrightarrow{2 x}(0.11)_{2}=\beta(3) .
$$

Proposition 6.4

The k-th approximant F_{k} contracts any finitely long binaries to at most k-bit sequences. That is, for any natural number n, there exists $t \in \mathbf{N}$ such that

$$
\beta^{-1}\left(F_{k}^{t}(\beta(n))\right) \leq 2^{k}
$$

- Thus the orbit starts from any finitely long binary sequence $\beta(n)$ is attracted to the orbit of some k-bit sequence.

Property and Problem on F_{k}

- Then we just observe the orbits consist of k-bit sequences to answer the following 'Collatz-like' problem on F_{k} :

Problem $2\left(3 x+1\right.$ problem on $\left.F_{k}\right)$

Show that for any natural number n, there exists $t \in \mathbf{N}$ such that

$$
F_{k}^{t}(\beta(n))=0 \text { or } 1 / 2(=\beta(1))
$$

- But the expanding part $F_{k}(x)=2 x$ on $[0,1 / 2)$ causes some difficulties to analyze the dynamics.

Interval preserving approximation of F

We introduce a modification of F_{k}.

Definition 7.1

For each $k \in \mathbf{N}$, we define the k-th approximant G_{k} as

$$
\begin{array}{rlr}
G_{k}(x) & =x-\left.x\right|_{k}+\left.F\left(\left.x\right|_{k}\right)\right|_{k}, & \text { for } x \in[0,1), \\
& = \begin{cases}x+\left.x\right|_{k}, & \text { for } x \in[0,1 / 2), \\
x-\left.x\right|_{k}+\left.\beta\left(3 \beta^{-1}\left(\left.x\right|_{k}\right)+1\right)\right|_{k}, & \text { for } x \in[1 / 2,1),\end{cases} \\
& = \begin{cases}x+\left.\beta(n)\right|_{k}, & \text { for } x \in[\beta(n))_{k} \subset[0,1 / 2), \\
x-\left.\beta(n)\right|_{k}+\left.\beta(3 n+1)\right|_{k}, & \text { for } x \in[\beta(n))_{k} \subset[1 / 2,1) .\end{cases}
\end{array}
$$

- G_{k} is just a translation of each segment $[x)_{k}$ to another one:
- Thus the orbit of any point $x \in[0,1)$ is eventually periodic, described

Interval preserving approximation of F

We introduce a modification of F_{k}.

Definition 7.1

For each $k \in \mathbf{N}$, we define the k-th approximant G_{k} as

$$
\begin{array}{rlr}
G_{k}(x) & =x-\left.x\right|_{k}+\left.F\left(\left.x\right|_{k}\right)\right|_{k}, & \text { for } x \in[0,1), \\
& = \begin{cases}x+\left.x\right|_{k}, & \text { for } x \in[0,1 / 2), \\
x-\left.x\right|_{k}+\left.\beta\left(3 \beta^{-1}\left(\left.x\right|_{k}\right)+1\right)\right|_{k}, & \text { for } x \in[1 / 2,1),\end{cases} \\
& = \begin{cases}x+\left.\beta(n)\right|_{k}, & \text { for } x \in[\beta(n))_{k} \subset[0,1 / 2), \\
x-\left.\beta(n)\right|_{k}+\left.\beta(3 n+1)\right|_{k}, & \text { for } x \in[\beta(n))_{k} \subset[1 / 2,1) .\end{cases}
\end{array}
$$

- G_{k} is just a translation of each segment $[x)_{k}$ to another one:

$$
G_{k}:[x)_{k} \rightarrow\left[G_{k}(x)\right)_{k} .
$$

- Thus the orbit of any point $x \in[0,1)$ is eventually periodic, described completely by the orbit of the k-bit sequence $\left.x\right|_{k}$.

Interval preserving approximation of F

Problem $3\left(3 x+1\right.$ problem on $\left.G_{k}\right)$

Show that for any $x \in[0,1)$, there exists $t \in \mathbf{N}$ such that

$$
G_{k}^{t}(x) \in[0)_{k} \cup[\beta(1))_{k}=\left[0,1 / 2^{k}\right) \cup\left[1 / 2,1 / 2+1 / 2^{k}\right)
$$

- Problem 3 reduces Problem 2 to a finite combinatorics.
- However Problem 3 seems to be not trivial.

Consider the map $5 x+1$ (instead of $3 x+1$).
\Rightarrow Lots of periodic orbits appear as increasing the approximation order k.
\Rightarrow Problem 3 indicates the unique characteristics of the map $3 x+1$.

From G_{k} to original F

The original $3 x+1$ problem can be solved by two processes:
Problem $3\left(3 x+1\right.$ problem on $\left.G_{k}\right)$
Show that for any $x \in[0,1)$, there exists $t \in \mathbf{N}$ such that

$$
G_{k}^{t}(x) \in[0)_{k} \cup[\beta(1))_{k}=\left[0,1 / 2^{k}\right) \cup\left[1 / 2,1 / 2+1 / 2^{k}\right) .
$$

and

Problem 4

Show that for any $n \in \mathbf{N}$, there exists $k \in \mathbf{N}$ such that for any $t \in \mathbf{N}$

$$
F^{t}(\beta(n))=G_{k}^{t}(\beta(n))
$$

holds.
Maybe hard problem...

Orbit of $3=(11)_{2}$ under G_{4}

Orbit of $3=(11)_{2}$ under G_{5}

A conjecture arisen from a graph symmetric to F

Consider a right continuous map H :

$$
H(x)= \begin{cases}\lim _{k \rightarrow \infty} \beta\left(3 \beta^{-1}\left(\left.x\right|_{k}\right)+1\right), & x \in[0,1 / 2), \\ 2 x-1, & x \in[1 / 2,1) .\end{cases}
$$

- H is symmetrical about $(1 / 2,1 / 2)$ with F on $\beta(\mathbf{N})$.
- H is a 'left continuous' version of F
- H is the conjugacy of the following arithmetic procedure h :

A conjecture arisen from a graph symmetric to F

Consider a right continuous map H :

$$
H(x)= \begin{cases}\lim _{k \rightarrow \infty} \beta\left(3 \beta^{-1}\left(\left.x\right|_{k}\right)+1\right), & x \in[0,1 / 2), \\ 2 x-1, & x \in[1 / 2,1) .\end{cases}
$$

- H is symmetrical about $(1 / 2,1 / 2)$ with F on $\beta(\mathbf{N})$.
- H is a 'left continuous' version of F.
- H is the conjugacy of the following arithmetic procedure h :

$$
h(n)= \begin{cases}3 n+1, & \text { if } n \text { is even, }, \\ (n-1) / 2, & \text { if } n \text { is odd. }\end{cases}
$$

A conjecture arisen from a graph symmetric to F

A conjecture arisen from a graph symmetric to F

- H is the conjugacy of the following arithmetic procedure h :

$$
h(n)= \begin{cases}3 n+1, & \text { if } n \text { is even } \\ (n-1) / 2, & \text { if } n \text { is odd }\end{cases}
$$

By a computer verification, we pose the following conjecture.

Conjecture 5

For any natural number n, the sequence

$$
h(n), h^{2}(n), h^{3}(n), \ldots
$$

eventually reaches to 1,4 or 16 .

