# Interval preserving map approximation of 3x + 1 problem

#### Yukihiro HASHIMOTO

Aichi University of Education

RIMS/December 21, 2011

#### What is 3x + 1 problem?

Consider a function  $f : \mathbf{N} \to \mathbf{N}$ ;

$$f(x) = \begin{cases} 3x + 1, & \text{if } x \text{ is odd,} \\ x/2, & \text{if } x \text{ is even.} \end{cases}$$

#### Conjecture 1

For any natural number n, the sequence

$$f(n), f^2(n), f^3(n), \ldots$$

eventually reaches to 1.

(Posed by L. Collatz in 1930's)

(日) (同) (三) (三)

#### Still attracting me for a quarter of a century...

# Ultimate challenges

A million of people (mathematicians, computer scientists or math-lovers) has been attacking this problem.

#### Surveys

G. J. Wirsching,

"The dynamical system generated by the 3n + 1 function", Springer, 1998.

J. C. Lagarias,

"The Ultimate Challenge: The 3x + 1 Problem", AMS, 2011.

#### Verification by computer

Verified up to

 $20\cdot 2^{58} = 5764607523034234880 > 5.764\cdot 10^{18}.$ 

(by Oliveira e Silva, Jan. 2009.)

Erdös commented: "Mathematics is not yet ready for such problems."

## As a Dynamics in $\mathbf{Z}_2$

The dyadic integers  $\mathbf{Z}_2$ :

$$\mathbf{Z}_2 = \{ x = (\dots x_2 x_1 x_0)_2 \mid x = \sum_{k=0}^{\infty} x_k \cdot 2^k, \ x_k = 0, 1 \}$$

equipped with a distance  $d_2(x,y)$ ; for  $x,y \in {f Z}_2$ ,

$$d_2(x,y) = 2^{-\ell}, \quad \text{where } \ell = \min_k \{ x_k \neq y_k \},$$

and carries  $c_k(x,y)$ ; the addition x + y is given by

$$(x+y)_k = x_k + y_k + c_{k-1}(x,y) \mod 2$$
  
 $c_k(x,y) = \left[\frac{x_k + y_k + c_{k-1}(x,y)}{2}\right].$ 

Natural numbers are identified with finite sequences in dyadic numbers:

$$\mathbf{N} = \{ x \in \mathbf{Z}_2 \mid \exists \ell \ x_k = 0 \text{ for any } k \ge \ell \} \subset \mathbf{Z}_2.$$

# As a Dynamics in $\mathbf{Z}_2$ (a natural idea)

The process 3x + 1 can be interpreted as ( for odd x )

|    | x  |   | $x_3$ | $x_2$ | $x_1$ | 1 |                        |
|----|----|---|-------|-------|-------|---|------------------------|
|    | 2x |   | $x_2$ | $x_1$ | 1     | 0 | shift to upper digits, |
| +  |    |   |       |       |       |   | odometer.              |
| 3x | +1 | * | *     | *     | $x_1$ | 0 |                        |

The process x/2 can be interpreted as ( for even x )

| x   | ••• | $x_3$ | $x_2$ | $x_1$ | 0     |                        |
|-----|-----|-------|-------|-------|-------|------------------------|
| x/2 |     | $x_4$ | $x_3$ | $x_2$ | $x_1$ | shift to lower digits. |

This kind of approaches often has been done. (cf. Lagarias's book)

...but I'd like to visualize these processes...

# As a Dynamics in $\mathbf{Z}_2$ (a natural idea)

The process 3x + 1 can be interpreted as ( for odd x )

|    | x  |   | $x_3$ | $x_2$ | $x_1$ | 1 |                        |
|----|----|---|-------|-------|-------|---|------------------------|
|    | 2x |   | $x_2$ | $x_1$ | 1     | 0 | shift to upper digits, |
| +  | 1  |   | 0     | 0     | 0     | 1 | odometer.              |
| 3x | +1 | * | *     | *     | $x_1$ | 0 |                        |

The process x/2 can be interpreted as ( for even x )

| x   | •••   | $x_3$ | $x_2$ | $x_1$ | 0     |                        |
|-----|-------|-------|-------|-------|-------|------------------------|
| x/2 | • • • | $x_4$ | $x_3$ | $x_2$ | $x_1$ | shift to lower digits. |

This kind of approaches often has been done. (cf. Lagarias's book)

...but I'd like to visualize these processes...

# Embedding $\mathbf{Z}_2$ into [0,1]

Consider  $\beta: \mathbf{Z}_2 \rightarrow [0,1]$  given by

$$\beta((\cdots x_2 x_1 x_0)_2) = (0.x_0 x_1 x_2 \cdots)_2 = \sum_{k=0}^{\infty} \frac{x_k}{2^{k+1}}.$$

• Carrying to upper digits in  $\mathbf{Z}_2$  corresponds to carrying to lower digits in [0,1]:

|   | 3 | 0 | 0 | `1 <sup>✓</sup> | 1 |        |            | $\beta(3)$ | 0. | 1 | 1 | 0 | $0\cdots$ |
|---|---|---|---|-----------------|---|--------|------------|------------|----|---|---|---|-----------|
| + | 1 | 0 | 0 | 0               | 1 | $\iff$ | $\beta(+)$ | $\beta(1)$ | 0. | 1 | 0 | 0 | $0\cdots$ |
|   | 4 | 0 | 1 | 0               | 0 |        |            | $\beta(4)$ | 0. | 0 | 0 | 1 | $0\cdots$ |

•  $\beta$  maps even numbers to [0, 1/2) and odd numbers to [1/2, 1).

•  $\{\beta(n) \mid n \in \mathbb{N}\}$  and  $\{\beta(3n+1) \mid n \in \mathbb{N}\}$  are dense in [0,1] respectively.

イロト 不得下 イヨト イヨト

# Embedding $\mathbf{Z}_2$ into [0,1]

Consider  $\beta: \mathbf{Z}_2 \to [0,1]$  given by

$$\beta((\cdots x_2 x_1 x_0)_2) = (0.x_0 x_1 x_2 \cdots)_2 = \sum_{k=0}^{\infty} \frac{x_k}{2^{k+1}}.$$

• Carrying to upper digits in  $\mathbf{Z}_2$  corresponds to carrying to lower digits in [0,1]:

|   | 3 | 0 | 0 | $1^{4}$ | 1 |        |            | $\beta(3)$ | 0. | 1 | 1 | 0 | $0\cdots$ |
|---|---|---|---|---------|---|--------|------------|------------|----|---|---|---|-----------|
| + | 1 | 0 | 0 | 0       | 1 | $\iff$ | $\beta(+)$ | $\beta(1)$ | 0. | 1 | 0 | 0 | $0\cdots$ |
|   | 4 | 0 | 1 | 0       | 0 |        |            | $\beta(4)$ | 0. | 0 | 0 | 1 | $0\cdots$ |

 $\bullet~\beta$  maps even numbers to [0,1/2) and odd numbers to [1/2,1).

•  $\{\beta(n) \mid n \in \mathbf{N}\}$  and  $\{\beta(3n+1) \mid n \in \mathbf{N}\}$  are dense in [0,1] respectively.

イロト イポト イヨト イヨト 一日

# Conjugacy of Collatz procedure

#### Definition 4.1

The conjugacy  $F:[0,1]\rightarrow [0,1]$  of the Collatz procedure f is defined by

$$F(x) = \begin{cases} 2x, & \text{for } x \in [0, 1/2), \\ \lim_{k \to \infty} \beta(3\beta^{-1}(x|_k) + 1), & \text{for } x \in [1/2, 1], \end{cases}$$

where  $x|_k$  stands for the truncation of x at k-th digit in binary expansion:

$$x|_k = (0.x_1x_2\cdots x_k)_2$$
 for  $x = (0.x_1x_2\cdots x_k\cdots)_2$ .

Then we have the following commutative diagram.

$$\begin{array}{ccc} \mathbf{N} & \stackrel{f}{\longrightarrow} & \mathbf{N} \\ \beta & & & \downarrow \beta \\ [0,1] & \stackrel{F}{\longrightarrow} & [0,1] \end{array}$$

# Conjugacy of Collatz procedure

Proposition 4.2

For any odd number n and  $k \in \mathbf{N}$ , F gives a right continuous bijection

 $F: [\beta(n))_k \to [\beta(3n+1))_k.$ 

Here  $[x]_k$  stands for an interval  $[x]_k, x]_k + 2^{-k}$  (called *k*-th segment).

• F is not left continuous: e.g.,

 $\lim_{\substack{w \to (0.11)_2 \\ w < (0.11)_2}} F(w) = (0.001)_2 \neq (0.0101)_2 = F((0.11)_2).$ 

• This Proposition means that F behaves like an 'interval exchange map' on [1/2, 1).

#### $\rightarrow$ a graph of F

- 31

<ロ> (日) (日) (日) (日) (日)

# Conjugacy of Collatz procedure

Proposition 4.2

For any odd number n and  $k \in \mathbf{N}$ , F gives a right continuous bijection

 $F: [\beta(n))_k \to [\beta(3n+1))_k.$ 

Here  $[x]_k$  stands for an interval  $[x]_k, x]_k + 2^{-k}$  (called *k*-th segment).

• F is not left continuous: e.g.,

$$\lim_{\substack{w \to (0.11)_2 \\ w < (0.11)_2}} F(w) = (0.001)_2 \neq (0.0101)_2 = F((0.11)_2).$$

• This Proposition means that F behaves like an 'interval exchange map' on  $\left[1/2,1\right).$ 

 $\rightarrow$  a graph of F

イロト 不得下 イヨト イヨト

# Graph of the conjugacy ${\cal F}$



Y. Hashimoto (AUE)

RIMS/December 21, 2011 9 / 1

- 2

#### Collatz set $\mathfrak{C}$ – closure of graph F on [1/2, 1]



Y. Hashimoto (AUE)

RIMS/December 21, 2011

## Collatz set $\mathfrak{C}$ – geometry

#### Theorem 5.1 (Y.H. 1998, 2007.)

 $\mathfrak{C}$  is a Cantor space (perfect, compact, totally disconnected and metrizable), isometric to a self-similar set generated by the following iterated functional system on  $[0, 1]^2$ ,

$$g_1(x,y) = \frac{1}{2}(x+1,y+1), \quad \text{fixes } (1,1),$$
  

$$g_2(x,y) = \frac{1}{4}(x+1,y), \quad \text{fixes } (1/3,0),$$
  

$$g_3(x,y) = \frac{1}{4}(1-x,2-y), \quad \text{fixes } (1/5,2/5),$$

which has the Hausdorff dimension 1.

It seems to be difficult to analyze the dynamics on  $\mathfrak{C}_{\cdots}$ 

くほと くほと くほと

## Piecewise linear approximation of F

As F gives a right continuous bijection (Proposition 4.2),

$$F: \left[ \begin{array}{c} \beta(n) \end{array} \right)_k \to \left[ \begin{array}{c} \beta(3n+1) \end{array} \right)_k,$$

we consider a piecewise liner approximant of F:

#### Definition 6.1 For each $k \in \mathbf{N}$ , we define the k-th approximant $F_k$ as

$$\begin{split} F_k(x) &= \begin{cases} 2x, & \text{for } x \in [0, 1/2), \\ x - x|_k + F(x|_k)|_k, & \text{for } x \in [1/2, 1], \end{cases} \\ &= \begin{cases} 2x, & \text{for } x \in [0, 1/2), \\ x - x|_k + \beta(3\beta^{-1}(x|_k) + 1)|_k, & \text{for } x \in [1/2, 1]. \end{cases} \end{split}$$

$$F(x) = \lim_{k \to \infty} \beta(3\beta^{-1}(x|_k) + 1),$$
 for  $x \in [1/2, 1].$ 

# Piecewise linear approximation of F

As F gives a right continuous bijection (Proposition 4.2),

$$F: \left[ \begin{array}{c} \beta(n) \end{array} \right]_k \to \left[ \begin{array}{c} \beta(3n+1) \end{array} \right]_k,$$

we consider a piecewise liner approximant of F:

#### Definition 6.1

For each  $k \in \mathbf{N}$ , we define the k-th approximant  $F_k$  as

$$\begin{split} F_k(x) &= \begin{cases} 2x, & \text{for } x \in [0, 1/2), \\ x - x|_k + F(x|_k)|_k, & \text{for } x \in [1/2, 1], \end{cases} \\ &= \begin{cases} 2x, & \text{for } x \in [0, 1/2), \\ x - x|_k + \beta(3\beta^{-1}(x|_k) + 1)|_k, & \text{for } x \in [1/2, 1]. \end{cases} \end{split}$$

cf.

$$F(x) = \lim_{k \to \infty} \beta(3\beta^{-1}(x|_k) + 1), \quad \text{for } x \in [1/2, 1].$$

# Piecewise linear approximation of F

#### Definition 6.1

For each  $k \in \mathbf{N}$ , we define the k-th approximant  $F_k$  as

$$\begin{split} F_k(x) &= \begin{cases} 2x, & \text{for } x \in [0, 1/2), \\ x - x|_k + F(x|_k)|_k, & \text{for } x \in [1/2, 1], \end{cases} \\ &= \begin{cases} 2x, & \text{for } x \in [0, 1/2), \\ x - x|_k + \beta(3\beta^{-1}(x|_k) + 1)|_k, & \text{for } x \in [1/2, 1]. \end{cases} \end{split}$$

• For  $x \in [\beta(n)]_{k}$ , we see

$$F_k(x) = x - \beta(n)|_k + \beta(3n+1)|_k.$$

•  $F_k([\beta(n)]_k) = [\beta(3n+1)]_k$  for any odd number n and  $k \in \mathbf{N}$ .

• Thus the sequence  $F_k$ , k = 1, 2, ... approximates F uniformly on [0,1].

- 3

#### -To observe the dynamics of ${\cal F}_k$

For  $n,k\in\mathbf{N}$ , we define an integer valued function

$$\tau_k(n) = \left[\frac{3n^{k+1}}{2^k}\right]$$

Here, for a binary expression  $n = (\cdots a_k a_{k-1} \cdots a_0)_2$ ,  $n|^k$  denotes an *upper cut off* of n at k-th order;

$$n|^k = (a_{k-1}a_{k-2}\cdots a_0)_2 \equiv n \mod 2^k.$$

The function  $\tau_k$  describes the number of bits carried in the calculation of 3n + 1 at k-th bit.

#### Proposition 6.2

#### Given an odd number n and take $k \in \mathbf{N}$ , then we have

• 
$$\tau_k(n) \in \{0, 1, 2\}.$$
  
•  $\tau_{k+1}(n|^k) = \begin{cases} 0, & \text{if } \tau_k(n) = 0, 1, \\ 1, & \text{if } \tau_k(n) = 2, \end{cases}$   
 $\tau_{k+1}(n|^k + 2^k) = \begin{cases} 1, & \text{if } \tau_k(n) = 0, \\ 2, & \text{if } \tau_k(n) = 1, 2. \end{cases}$ 

Here

$$\tau_k(n) = \left[\frac{3n^{k+1}}{2^k}\right].$$

3

Note that

$$\left[ \left. \beta(n|^k) \right. \right)_k = \left[ \left. \beta(n|^k) \right. \right)_{k+1} \oplus \left[ \left. \beta(n|^k + 2^k) \right. \right)_{k+1},$$

e.g.,  $[(0.111)_2)_3 = [(0.1110)_2)_4 \oplus [(0.1111)_2)_4$ .

Proposition 6.3

If  $\tau_k(n) = 0$  or 2,

$$\left[ \ F(\beta(n|^k)) \ \right)_k = \left[ \ F(\beta(n|^k)) \ \right)_{k+1} \oplus \left[ \ F(\beta(n|^k+2^k)) \ \right)_{k+1}$$

If  $\tau_k(n) = 1$ ,

$$\left[ \ F(\beta(n|^k)) \ \right)_k = \left[ \ F(\beta(n|^k+2^k)) \ \right)_{k+1} \oplus \left[ \ F(\beta(n|^k)) \ \right)_{k+1}$$

- 3

Note that

$$\left[ \begin{array}{c} \beta(n|^k) \end{array} \right]_k = \left[ \begin{array}{c} \beta(n|^k) \end{array} \right]_{k+1} \oplus \left[ \begin{array}{c} \beta(n|^k + 2^k) \end{array} \right]_{k+1}, \\ \text{e.g., } \left[ \begin{array}{c} (0.111)_2 \end{array} \right]_3 = \left[ \begin{array}{c} (0.1110)_2 \end{array} \right]_4 \oplus \left[ \begin{array}{c} (0.1111)_2 \end{array} \right]_4. \end{array} \right]$$

Proposition 6.3

If  $\tau_k(n) = 0$  or 2,  $\left[ F(\beta(n|^k)) \right]_k = \left[ F(\beta(n|^k)) \right]_{k+1} \oplus \left[ F(\beta(n|^k + 2^k)) \right]_{k+1}.$ If  $\tau_k(n) = 1$ ,

$$\left[ \ F(\beta(n|^k)) \ \right)_k = \left[ \ F(\beta(n|^k+2^k)) \ \right)_{k+1} \oplus \left[ \ F(\beta(n|^k)) \ \right)_{k+1}$$

イロト イポト イヨト イヨト

.

- 34

# Substitution dynamics

For an odd number n and  $k\in {\bf N},$  we label the segments [  $\beta(n)$  )\_k as follows.  $\rightarrow$ 



• From Proposition 6.2 and 6.3, to increment the approximation order k by 1 causes a division of each segment, and induces a substitution

$$\sigma: S \to SE \qquad E \to SU \qquad U \to EU,$$

which are mapped by F as

 $F(\sigma): F(S) \to F(S)F(E) \quad F(E) \to F(U)F(S) \quad F(U) \to F(E)F(U).$ 

• The original segment [  $\beta(1)$  )<sub>1</sub> = [ 1/2, 1 ) is labeled as U.

picture of  $\sigma$ 

くほと くほと くほと

# Substitution dynamics

For an odd number n and  $k\in {\bf N},$  we label the segments  $[\;\beta(n)\;)_k$  as follows.  $\to$ 

$$\begin{array}{c|c|c} \tau_k(n) & \mathsf{Label of} \left[ \begin{array}{c|c} \beta(n) \end{array} \right]_k \\ \hline 0 & S \\ 1 & E \\ 2 & U \end{array}$$

• From Proposition 6.2 and 6.3, to increment the approximation order k by 1 causes a division of each segment, and induces a substitution

$$\sigma: S \to SE \qquad E \to SU \qquad U \to EU,$$

which are mapped by F as

 $F(\sigma): F(S) \to F(S)F(E) \quad F(E) \to F(U)F(S) \quad F(U) \to F(E)F(U).$ 

• The original segment [  $\beta(1)$  )\_1 = [ 1/2,1 ) is labeled as U.

picture of  $\sigma$ 

## Substitution dynamics

 $\sigma: S \to SE \qquad E \to SU \qquad U \to EU.$ 



< □ > < □ > < □ > < ≡ > < ≡ >
 RIMS/December 21, 2011

3

## Transducer

The calculation

$$f: 3 = (0011)_2 \mapsto 3 \times 3 + 1 = (1010)_2$$

is given by the transducer as follows:

state: 
$$E \xrightarrow[]{\downarrow}{\downarrow} U \xrightarrow[]{\downarrow}{\downarrow} U \xrightarrow[]{\downarrow}{\downarrow} U \xrightarrow[]{\downarrow}{\downarrow} E \xrightarrow[]{\downarrow}{\downarrow} S.$$



3



Y. Hashimoto (AUE)

RIMS/December 21, 2011



Y. Hashimoto (AUE)



Y. Hashimoto (AUE)

RIMS/December 21, 2011



Y. Hashimoto (AUE)

RIMS/December 21, 2011

# Property and Problem on $F_k$

 $F_k$  just exchanges the segments  $\left[ \; x \; \right)_k$  on [1/2,1] and expands the segments on [0,1/2): eg.,

$$F_2: \beta(13) = (0.\underline{10}11)_2 \xrightarrow{F_2} (0.\underline{00}11)_2 \xrightarrow{2x} (0.011)_2 \xrightarrow{2x} (0.11)_2 = \beta(3).$$

#### Proposition 6.4

The k-th approximant  $F_k$  contracts any finitely long binaries to at most k-bit sequences. That is, for any natural number n, there exists  $t \in \mathbf{N}$  such that

$$\beta^{-1}(F_k^t(\beta(n))) \le 2^k.$$

• Thus the orbit starts from any finitely long binary sequence  $\beta(n)$  is attracted to the orbit of some k-bit sequence.

## Property and Problem on $F_k$

• Then we just observe the orbits consist of k-bit sequences to answer the following 'Collatz-like' problem on  $F_k$ :

Problem 2  $(3x + 1 \text{ problem on } F_k)$ 

Show that for any natural number n, there exists  $t \in \mathbf{N}$  such that

 $F_k^t(\beta(n)) = 0 \text{ or } 1/2(=\beta(1)).$ 

• But the expanding part  $F_k(x) = 2x$  on [0, 1/2) causes some difficulties to analyze the dynamics.

## Interval preserving approximation of F

We introduce a modification of  $F_k$ .

#### Definition 7.1

For each  $k \in \mathbf{N}$ , we define the k-th approximant  $G_k$  as

$$\begin{split} G_k(x) &= x - x|_k + F(x|_k)|_k, & \text{for } x \in [0, 1), \\ &= \begin{cases} x + x|_k, & \text{for } x \in [0, 1/2), \\ x - x|_k + \beta(3\beta^{-1}(x|_k) + 1)|_k, & \text{for } x \in [1/2, 1), \end{cases} \\ &= \begin{cases} x + \beta(n)|_k, & \text{for } x \in [\beta(n)|_k \subset [0, 1/2), \\ x - \beta(n)|_k + \beta(3n + 1)|_k, & \text{for } x \in [\beta(n)|_k \subset [1/2, 1). \end{cases} \end{split}$$

•  $G_k$  is just a translation of each segment  $[x]_k$  to another one:

$$G_k: [x]_k \to [G_k(x)]_k.$$

 Thus the orbit of any point x ∈ [0,1) is eventually periodic, described completely by the orbit of the k-bit sequence x|k.

## Interval preserving approximation of F

We introduce a modification of  $F_k$ .

#### Definition 7.1

For each  $k \in \mathbf{N}$ , we define the k-th approximant  $G_k$  as

$$\begin{split} G_k(x) &= x - x|_k + F(x|_k)|_k, & \text{for } x \in [0, 1), \\ &= \begin{cases} x + x|_k, & \text{for } x \in [0, 1/2), \\ x - x|_k + \beta(3\beta^{-1}(x|_k) + 1)|_k, & \text{for } x \in [1/2, 1), \end{cases} \\ &= \begin{cases} x + \beta(n)|_k, & \text{for } x \in [\beta(n)|_k \subset [0, 1/2), \\ x - \beta(n)|_k + \beta(3n + 1)|_k, & \text{for } x \in [\beta(n)|_k \subset [1/2, 1). \end{cases} \end{split}$$

•  $G_k$  is just a translation of each segment  $[x]_k$  to another one:

$$G_k: [x]_k \to [G_k(x)]_k.$$

• Thus the orbit of any point  $x \in [0,1)$  is eventually periodic, described completely by the orbit of the k-bit sequence  $x|_k$ .

Interval preserving approximation of F

Problem 3  $(3x + 1 \text{ problem on } G_k)$ 

Show that for any  $x \in [0, 1)$ , there exists  $t \in \mathbf{N}$  such that

$$G_k^t(x) \in [0]_k \cup [\beta(1)]_k = [0, 1/2^k] \cup [1/2, 1/2 + 1/2^k]$$

• Problem 3 reduces Problem 2 to a finite combinatorics.

However Problem 3 seems to be not trivial.
 Consider the map 5x + 1 (instead of 3x + 1).
 ⇒ Lots of periodic orbits appear as increasing the approximation order k.

 $\Rightarrow$  Problem 3 indicates the unique characteristics of the map 3x + 1.

## From $G_k$ to original F

The original 3x + 1 problem can be solved by two processes:

Problem 3  $(3x + 1 \text{ problem on } G_k)$ 

Show that for any  $x \in [0,1)$ , there exists  $t \in \mathbf{N}$  such that

$$G_k^t(x) \in [0]_k \cup [\beta(1)]_k = [0, 1/2^k] \cup [1/2, 1/2 + 1/2^k].$$

and

#### Problem 4

Show that for any  $n \in \mathbf{N}$ , there exists  $k \in \mathbf{N}$  such that for any  $t \in \mathbf{N}$ 

$$F^t(\beta(n)) = G^t_k(\beta(n))$$

#### holds.

Maybe hard problem...

イロト イポト イヨト イヨト

Orbit of  $3 = (11)_2$  under  $G_4$ 



Y. Hashimoto (AUE)

RIMS/December 21, 2011

Orbit of  $3 = (11)_2$  under  $G_5$ 



Y. Hashimoto (AUE)

RIMS/December 21, 2011

### A conjecture arisen from a graph symmetric to F

Consider a right continuous map H:

$$H(x) = \begin{cases} \lim_{k \to \infty} \beta(3\beta^{-1}(x|_k) + 1), & x \in [0, 1/2), \\ 2x - 1, & x \in [1/2, 1). \end{cases}$$

- H is symmetrical about (1/2, 1/2) with F on  $\beta(\mathbf{N})$ .
- H is a 'left continuous' version of F.
- H is the conjugacy of the following arithmetic procedure h:

$$h(n) = \begin{cases} 3n+1, & \text{if } n \text{ is even,} \\ (n-1)/2, & \text{if } n \text{ is odd.} \end{cases}$$

#### $\rightarrow$ graph of H

くほと くほと くほと

A conjecture arisen from a graph symmetric to F

Consider a right continuous map H:

$$H(x) = \begin{cases} \lim_{k \to \infty} \beta(3\beta^{-1}(x|_k) + 1), & x \in [0, 1/2), \\ 2x - 1, & x \in [1/2, 1). \end{cases}$$

- H is symmetrical about (1/2, 1/2) with F on  $\beta(\mathbf{N})$ .
- H is a 'left continuous' version of F.
- *H* is the conjugacy of the following arithmetic procedure *h*:

$$h(n) = \begin{cases} 3n+1, & \text{ if } n \text{ is even}, \\ (n-1)/2, & \text{ if } n \text{ is odd}. \end{cases}$$

 $\rightarrow$  graph of H

A conjecture arisen from a graph symmetric to  ${\cal F}$ 



Y. Hashimoto (AUE)

RIMS/December 21, 2011

## A conjecture arisen from a graph symmetric to F

• *H* is the conjugacy of the following arithmetic procedure *h*:

$$h(n) = \begin{cases} 3n+1, & \text{ if } n \text{ is even}, \\ (n-1)/2, & \text{ if } n \text{ is odd}. \end{cases}$$

By a computer verification, we pose the following conjecture.

Conjecture 5

For any natural number n, the sequence

$$h(n), h^2(n), h^3(n), \ldots$$

eventually reaches to 1, 4 or 16.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ ≥ 
RIMS/December 21, 2011