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A tile is a compact set which is the closure of its interior.

Consider a finite set of tiles A as an alphabet. A tiling T
of Rd is a collection of tiles which covers Rd without interior

intersections, and each tile is congruent to an element of A
under rigid motion of Rd. A tiling T has a period p ∈ Rd

when the tiling exactly matches with its translation by p ∈ Rd.

A tiling T is non periodic if the only period of T is 0. A set

of tiles A is called aperiodic if A generates a tiling, but all

tilings generated by A are non periodic. A well known example

of aperiodic tiles is due to Penrose which consists of two kinds

of tiles: kites and darts with matching rules as in Figure 1:
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Figure 1: Penrose Tile

that the circular markings must match at the boundary like:
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Figure 2: Penrose tiling
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To show that Penrose tiles are aperiodic, we have to show

two things.

• They admit a tiling.

• Each tiling generated by kite and dart has no period.

Both are shown through self-similarity. First we show that

there is a substitution rule which make a tile larger and then

substitute to a larger patch. Second we prove the unique
composition property. However both of them are quite non-

trivial.
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(a) Kite (b) Dart

Figure 3: Substitution rule

Fix a point on the kite. Then the points on the kite of

the same orientation forms a Delone set, the distance to

the nearest point is bounded from below, and there is no
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big hole without a point. de Bruijn [5] showed that Penrose

tiling is really a good model of quasi-crystal by showing that

such Delone set is understood by cut and projection. More

precisely this Delone set is produced by the projection of 5-dim

lattice points which lies in some irrational band. The cut and

projection from 2-dim to 1-dim is described in Figure 4.
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Figure 4: Cut and Projection

– Typeset by FoilTEX – 7



Tiling dynamical system and diffraction

Tiling dynamical system is a topological dynamics

generated by the orbit closure of translation of a single tiling.

This can be viewed as a generalization of symbolic substitution

dynamical system.

To study diffraction of such Delone sets, tiling dynamical

system is studied in detail. Under certain condition, this

dynamics becomes uniquely ergodic and admit a spectral study.

It is known that pure pointedness of dynamical spectrum is

equal to those of diffraction spectrum.
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Figure 5: Penrose Diffraction

From this diffraction, we can imagine the 5-dim structure.
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R. Ammann, an amateur mathematician working at post

office, was strongly motivated by Penrose tiling when he read

the article in Scientific American. He found other type of

aperiodic tiles (c.f. [7, 3, 11]). Here is one of them with two

different markings:
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Figure 6: Ammann Tile

The black markings must form complete ovals at the

boundary:
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Figure 7: Ammann Tiling– Typeset by FoilTEX – 12



The second striking marking by segments must be continued

to a straight line or a dashed line, now called Ammann Bars.
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Figure 8: Ammann Tile 2
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Figure 9: Ammann Bar– Typeset by FoilTEX – 14



We guess that these lines came from higher dimensional

lattice structure, which shows Ammann’s strong mathematical

talent. As far as I know, it is still a mysterious construction to

this date. The proof of aperiodicity of Ammann tiles is again

by self-similarity in the same course as Penrose tiling. None of

them is trivial.

In this talk, we propose a variant of Ammann tiles which

provides us the simplest marking, as far as I know:
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Figure 10: Similar Ammann tiles A and B

having slightly modified shapes on which Grünbaum-

Shephard [7] claimed:
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‘However it does not seem possible to devise a simple

matching condition for these tiles involving markings which

are such that the similarity between the tiles extends to

markings as well.’

and proposed a pretty complicated matching rules on the

edges to enforce aperiodicity. Here c = 1.272 . . . is a square

root of (1 +
√
5)/2. The marking on the edges means that

edges are cut into smaller segments at those points. Our only

matching rule is edge to edge: the edges exactly match from

one end to the other in the tiling.

In fact, this work is motivated by our former work [2] to find
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a self-similar dissection of a give sets. The shapes seem to be

independently found in his similar dissection puzzle of Scherer

[10]. He called it ‘Golden Bee’, which is a polygon composed

of two similar copies of itself (see Figure 15).
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Tiling property

We show that two tiles in Figure 10 admit a tiling. First we

discard the marking and consider only shapes. Our substitution

rule makes c-times larger A and B. Then A is divided into

A and B as in Figure 15 and B becomes A. The results are

depicted in Figure 11.
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Figure 11: Super-tiles cA and cB: broken lines indicate 4 ghost

markings and the former boundary

Starting from the tile A, we successively obtain a larger

patch by this substitution rule like Figure 12.
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Figure 12: Inflation subdivision

This gives a tiling of the plane by A and B, which is called

a fixed point of the substitution rule:

– Typeset by FoilTEX – 21



Figure 13: A patch of tiling by A and B– Typeset by FoilTEX – 22



We may view this fixed point as a super-tiling by c3A and

c3B without markings. Then c3A is the composition of three

A’s and two B’s, and c3B is a composition of two A’s and one

B. Boundaries of A and B give natural markings of super-tiles

c3A and c3B as black points in Figure 14. Confirm that they

are exactly located at the c3 scaled markings of A and B.
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Figure 14: Markings from c3A and c3B

As the tiling by c3A and c3B surely exists, we know that

there exists a tiling by A and B with the markings scaled down

by ratio 1/c3.
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Aperiodicity

Now we show the aperiodicity of two tiles in Figure 10

by proving unique composition property, that is, there is a

unique super-tiling structure. Firstly, it is plain to see that

there are no way to tile R2 only by A and the dent of B can

be filled only by A as in Figure 15.
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Figure 15: Filling the dent of B

As we already see that this composition of A and B is the

inflated image of A by ratio c. We call this super-tile A′. The

remaining A which does not fill the dent of B is seen as a

super-tile B′, the inflated image of B by ratio c. We have to

show that additional marking can be removed. In other word,
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if we could show that the tiles in Figure 11 can be identified

with cA and cB including markings, we are done.

Now we meet the main difficulty. We have to remove the red

dashed markings indicated in Figure 11. However, the effect

of removal is involved. So we treat them as Ghost markings,
meaning that we can think that they exist or not exist as we

wish.

So a ghost marking can be used to cut the edge but we can

also neglect it. Under this treatise, the set of tilings by two

tiles in Figure 11 is surely larger than those without such ghost

markings. Then we show that ghost markings do no harm by
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showing that the patches which essentially use ghost markings,

do not grow into a tiling. We have 20 cases to check out.
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Figure 16: Illegal patches of the 1-st kind
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Figure 17: Illegal patches of the 2nd kind
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Diffraction property

Similar to Penrose tiling, D. Frettlöh [6] showed that the

Delone set of Ammann tiling is given by cut and projection.

Thus Ammann tiling gives a pure diffractive point set.
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Figure 18: Diffraction pattern of Ammann tiling
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Questions

• Is there an aperiodic mono-tile ? Solved: Socolar-Taylor

[12].

Figure 19: Socolar-Taylor’s aperiodic monotile
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• Is there an edge to edge aperiodic mono-tile ? Our

construction suggests some possibility using rep-tile, that

is, a tile consisting of same-sized similar copies of itself.

Figure 20: Rep-tiles

• Related question: Must all rep-tile be a fundamental region
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of a crystallographic group ?

• Tiling Question Substitution rule of tiles {T1, . . . , Tm} is

written as:

QTj =
∪
i

Ti +Dij

where Q is an expanding matrix and Dij are finite sets

of translations. By Lagarias-Wang’s duality, the associated

Delone set satisfies

Λi =
∪
j

QΛj +Dij.

Given expanding Q, which digit set Dij gives rise to a tiling
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?

• For which Q and Dij, the associated Delone set dynamics

contains pure parts ? We know a lot.: E.Bombieri-

J.E.Taylor [4], B. Solomyak, J.-Y. Lee [13, 9]

• Characterize pure diffractive substitution tilings. Difficult:
Overlap coincidence by Solomyak [13], Algorithm by

Akiyama-Lee [1]

• Pure diffractive substitution tiling is given by cut and

projection ? Mostly solved: Lee [8]
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