Minkowski’s second theorem over a Severi-Brauer variety

Takao Watanabe
Graduate School of Science, Osaka University
Toyonaka, Osaka, 560-0043 Japan
e-mail:watanabe@math.wani.osaka-u.ac.jp

Let q be a positive definite quadratic form on \mathbb{R}^n of discriminant $\text{disc}(q)$ and $\lambda_i(q)$, $i = 1, 2, \ldots, n$, the successive minima of q, i.e.,

$$\lambda_i(q) = \min\{\lambda > 0 : \{x \in \mathbb{Z}^n : q(x) \leq \lambda^2\} \text{ contains } i \text{ linearly independent vectors}\}.$$

Then Minkowski’s second theorem asserts that the inequality

$$\lambda_1(q)\lambda_2(q)\cdots\lambda_n(q) \leq \gamma_n^{n/2}\text{disc}(q)^{1/2}$$

holds, where γ_n denotes Hermite’s constant.

Some generalizations of Minkowski’s second theorem were studied by Weyl, Mahler, Macfeat, Bombieri, Vaaler and Thunder, etc. Vaaler recently extended (1) to a twisted height on a vector space over an algebraic number field. To state Vaaler’s result, let k denote an algebraic number field and A the adele ring of k. For every n by n invertible matrix $g \in GL_n(A)$ with entries in A, the twisted height H_g is defined on the n-dimensional vector space k^n. The successive minima $\lambda_i(g)$, $i = 1, 2, \ldots, n$, of g are defined by

$$\lambda_i(g) = \min\{\lambda > 0 : \{x \in k^n : H_g(x) \leq \lambda\} \text{ contains } i \text{ linearly independent vectors}\}.$$

Then, Vaaler proved the inequality

$$\lambda_1(g)\lambda_2(g)\cdots\lambda_n(g) \leq \gamma_n(k)^{n/2}|\det g|_A^{1/[k:Q]}.$$

Here the constant $\gamma_n(k)$ is the generalized Hermite constant of k defined by Icaza and Thunder. The inequality (2) coincides with (1) when $k = \mathbb{Q}$, $g = g_\infty$ (i.e., the finite adele part of g is the identity) and the symmetric matrix corresponding to q is equal to $g_\infty g_\infty$.

In my talk, I will show that Minkowski’s second theorem is extended to a free module over the matrix algebra $\mathfrak{A} = M_m(D)$, where D is a central simple division algebra over a global field. We give a definition of the twisted heights on \mathfrak{A}^n and introduce the generalized Hermite constant $\gamma_n(\mathfrak{A})$ of \mathfrak{A}. Then we obtain Minkowski’s second theorem for the successive minima of a given twisted height. Our theorem recovers (2) when $m = 1$ and $D = k$. Since the twisted height H_g for $g \in GL_n(\mathfrak{A})$ is indeed a height on the projective space $\mathbb{P}^{n-1}(k)$, the inequality (2) is regarded as a statement on $\mathbb{P}^{n-1}(k)$. In this point of view, our result may be considered as enlargement of a base space from a projective space to a Severi-Brauer variety.