Minkowski's second theorem over a Severi-Brauer variety

Takao Watanabe
Graduate School of Science, Osaka University
Toyonaka, Osaka, 560-0043 Japan
e-mail:watanabe@math.wani.osaka-u.ac.jp

Let \boldsymbol{q} be a positive definite quadratic form on \mathbf{R}^{n} of discriminant $\operatorname{disc}(\boldsymbol{q})$ and $\lambda_{i}(\boldsymbol{q})$, $i=1,2, \cdots, n$, the successive minima of \boldsymbol{q}, i.e.,

$$
\lambda_{i}(\boldsymbol{q})=\min \left\{\lambda>0:\left\{x \in \mathbf{Z}^{n}: \boldsymbol{q}(x) \leq \lambda^{2}\right\} \text { contains } i \text { linearly independent vectors }\right\} .
$$

Then Minkowski's second theorem asserts that the inequality

$$
\begin{equation*}
\lambda_{1}(\boldsymbol{q}) \lambda_{2}(\boldsymbol{q}) \cdots \lambda_{n}(\boldsymbol{q}) \leq \gamma_{n}^{n / 2} \operatorname{disc}(\boldsymbol{q})^{1 / 2} \tag{1}
\end{equation*}
$$

holds, where γ_{n} denotes Hermite's constant.
Some generalizations of Minkowski's second theorem were studied by Weyl, Mahler, Macfeat, Bombieri, Vaaler and Thunder,... etc. Vaaler recently extended (1) to a twisted height on a vector space over an algebraic number field. To state Vaaler's result, let k denote an algebraic number field and \mathbf{A} the adele ring of k. For every n by n invertible matrix $g \in G L_{n}(\mathbf{A})$ with entries in \mathbf{A}, the twisted height H_{g} is defined on the n-dimensional vector space k^{n}. The successive minima $\lambda_{i}(g), i=1,2, \cdots, n$, of g are defined by

$$
\lambda_{i}(g)=\min \left\{\lambda>0:\left\{x \in k^{n}: H_{g}(x) \leq \lambda\right\} \text { contains } i \text { linearly independent vectors }\right\} .
$$

Then, Vaaler proved the inequality

$$
\begin{equation*}
\lambda_{1}(g) \lambda_{2}(g) \cdots \lambda_{n}(g) \leq \gamma_{n}(k)^{n / 2}|\operatorname{det} g|_{\mathbf{A}}^{1 /[k: \mathbf{Q}]} \tag{2}
\end{equation*}
$$

Here the constant $\gamma_{n}(k)$ is the generalized Hermite constant of k defined by Icaza and Thunder. The inequality (2) coincides with (1) when $k=\mathbf{Q}, g=g_{\infty}$ (i.e., the finite adele part of g is the identity) and the symmetric matrix corresponding to \boldsymbol{q} is equal to ${ }^{t} g_{\infty} g_{\infty}$.
In my talk, I will show that Minkowski's second theorem is extended to a free module over the matrix algebra $\mathfrak{A}=M_{m}(D)$, where D is a central simple division algebra over a global field. We give a definition of the twisted heights on \mathfrak{A}^{n} and introduce the generalized Hermite constant $\gamma_{n}(\mathfrak{A})$ of \mathfrak{A}. Then we obtain Minkowski's second theorem for the successive minima of a given twisted height. Our theorem recovers (2) when $m=1$ and $D=k$. Since the twisted height H_{g} for $g \in G L_{n}(\mathbf{A})$ is indeed a height on the projective space $\mathbf{P}^{n-1}(k)$, the inequality (2) is regarded as a statement on $\mathbf{P}^{n-1}(k)$. In this point of view, our result may be considered as enlargement of a base space from a projective space to a Severi-Brauer variety.

