Minkowski's second theorem over a Severi-Brauer variety

Takao Watanabe Graduate School of Science, Osaka University Toyonaka, Osaka, 560-0043 Japan e-mail:watanabe@math.wani.osaka-u.ac.jp

Let \boldsymbol{q} be a positive definite quadratic form on \mathbf{R}^n of discriminant disc (\boldsymbol{q}) and $\lambda_i(\boldsymbol{q})$, $i = 1, 2, \dots, n$, the successive minima of \boldsymbol{q} , i.e.,

 $\lambda_i(\boldsymbol{q}) = \min\{\lambda > 0 : \{x \in \mathbf{Z}^n : \boldsymbol{q}(x) \le \lambda^2\} \text{ contains } i \text{ linearly independent vectors}\}.$

Then Minkowski's second theorem asserts that the inequality

$$\lambda_1(\boldsymbol{q})\lambda_2(\boldsymbol{q})\cdots\lambda_n(\boldsymbol{q}) \le \gamma_n^{n/2} \text{disc}(\boldsymbol{q})^{1/2} \tag{1}$$

holds, where γ_n denotes Hermite's constant.

Some generalizations of Minkowski's second theorem were studied by Weyl, Mahler, Macfeat, Bombieri, Vaaler and Thunder,... etc. Vaaler recently extended (1) to a twisted height on a vector space over an algebraic number field. To state Vaaler's result, let kdenote an algebraic number field and **A** the adele ring of k. For every n by n invertible matrix $g \in GL_n(\mathbf{A})$ with entries in **A**, the twisted height H_g is defined on the n-dimensional vector space k^n . The successive minima $\lambda_i(g)$, $i = 1, 2, \dots, n$, of g are defined by

 $\lambda_i(g) = \min\{\lambda > 0 : \{x \in k^n : H_g(x) \le \lambda\} \text{ contains } i \text{ linearly independent vectors}\}.$

Then, Vaaler proved the inequality

$$\lambda_1(g)\lambda_2(g)\cdots\lambda_n(g) \le \gamma_n(k)^{n/2} |\det g|_{\mathbf{A}}^{1/[k:\mathbf{Q}]}.$$
(2)

Here the constant $\gamma_n(k)$ is the generalized Hermite constant of k defined by Icaza and Thunder. The inequality (2) coincides with (1) when $k = \mathbf{Q}$, $g = g_{\infty}$ (i.e., the finite adele part of g is the identity) and the symmetric matrix corresponding to \mathbf{q} is equal to ${}^tg_{\infty}g_{\infty}$.

In my talk, I will show that Minkowski's second theorem is extended to a free module over the matrix algebra $\mathfrak{A} = M_m(D)$, where D is a central simple division algebra over a global field. We give a definition of the twisted heights on \mathfrak{A}^n and introduce the generalized Hermite constant $\gamma_n(\mathfrak{A})$ of \mathfrak{A} . Then we obtain Minkowski's second theorem for the successive minima of a given twisted height. Our theorem recovers (2) when m = 1 and D = k. Since the twisted height H_g for $g \in GL_n(\mathbf{A})$ is indeed a height on the projective space $\mathbf{P}^{n-1}(k)$, the inequality (2) is regarded as a statement on $\mathbf{P}^{n-1}(k)$. In this point of view, our result may be considered as enlargement of a base space from a projective space to a Severi-Brauer variety.