ON THE ZEROS OF THE SYMMETRIC SQUARE L-FUNCTION ASSOCIATED WITH THE RAMANUJAN DELTA-FUNCTION

Masatoshi SUZUKI
Graduate School of Mathematics, Nagoya University

Abstract

Let $\Delta(z)$ be the Ramanujan delta-function $$
\Delta(z)=e^{2 \pi i z} \prod_{n=1}^{\infty}\left(1-e^{2 \pi i n z}\right)^{24}=\sum_{n=1}^{\infty} \tau(n) e^{2 \pi i n z}
$$

For each p let α_{p} and β_{p} be the roots of the polynomial $X^{2}-\tau(p) X+p^{11}$. Then the symmetric square L-function $D_{\Delta}(s)$ attached to $\Delta(z)$ is defined by the Euler product

$$
D_{\Delta}(s)=\prod_{p}\left(\left(1-\alpha_{p}^{2} p^{-s}\right)\left(1-\alpha_{p} \beta_{p} p^{-s}\right)\left(1-\beta_{p}^{2} p^{-s}\right)\right)^{-1} .
$$

The Euler product converges only when $\operatorname{Re}(s)$ is large, but there is a holomorphic continuation to the whole complex plane. It is well known that $D_{\Delta}(z)$ has the integral expression

$$
\zeta^{*}(s) D_{\Delta}(s+11)=\frac{(4 \pi)^{s+11}}{\Gamma(s+11)} \int_{P S L_{2}(\mathbf{Z}) \backslash} y^{12}|\Delta(z)|^{2} E^{*}(z, s) \frac{d x d y}{y^{2}}
$$

where $\zeta^{*}(s)$ is the completed Riemann zeta function and $E^{*}(z, s)$ is the completed non-holomorphic Eisenstein series for $P S L_{2}(\mathbf{Z})$. By using this integral expression and a property of the holomorphic projection of $\Delta(z) E^{*}(z, s)$, we obtain the decomposition

$$
\tau(m) \zeta^{*}(s) D_{\Delta}(s+11)=\frac{(4 \pi)^{s+11}}{m^{11} \Gamma(11) \Gamma(s+11)}\left\{C_{m}(s)+R_{m}(s)\right\}
$$

for any $m \geq 1$, where

$$
C_{m}(s)=\tau(m)\left\{\frac{\Gamma(s+11)}{(4 \pi m)^{s+11}} \zeta^{*}(2 s)+\frac{\Gamma(12-s)}{(4 \pi m)^{12-s}} \zeta^{*}(2 s-1)\right\}
$$

and

$$
R_{m}(s)=\frac{\Gamma(s+11) \Gamma(12-s)}{2(4 \pi \sqrt{m})^{11}} \sum_{\substack{n=-m+1 \\ n \neq 0}}^{\infty} \frac{\tau(m+n)}{(m+n)^{11 / 2}}|n|^{s-1} \sigma_{1-2 s}(|n|) P_{s-1}^{-11}\left(\frac{2 m+n}{n}\right) .
$$

Now we denote by $R_{m}^{\mathrm{fin}}(s)$ a finite subseries of $R_{m}(s)$.
In this talk we show that all zeros of $C_{m}(s)+R_{m}^{\mathrm{fin}}(s)$ lie on the line $\operatorname{Re}(s)=1 / 2$ except for finite ones.

