On multiple zeta values and Bernoulli numbers

Yasuo Ohno
Department of Mathematics, Kinki University

Multiple zeta values $\zeta(\boldsymbol{k})$ and $\zeta^{*}(\boldsymbol{k})$, which are two of various natural generalizations of Riemann zeta values, are defined as follows. For any multiple index $\boldsymbol{k}=\left(k_{1}, k_{2}, \ldots, k_{n}\right)\left(k_{i} \in \mathbf{Z}, k_{i}>0\right)$, the weight and height of \boldsymbol{k} are by definition the integers $k=k_{1}+k_{2}+\cdots+k_{n}$ and $s=\#\left\{i \mid k_{i}>1\right\}$, respectively. Index $\boldsymbol{k}=\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ is said to be admissible if its first entry satisfies the extra requirement $k_{1} \geq 2$. For each admissible multiple index \boldsymbol{k}, we define two kinds of multiple zeta values by

$$
\zeta(\boldsymbol{k})=\zeta\left(k_{1}, k_{2}, \ldots, k_{n}\right)=\sum_{m_{1}>m_{2}>\cdots>m_{n}>0} \frac{1}{m_{1}^{k_{1}} m_{2}^{k_{2}} \cdots m_{n}^{k_{n}}}
$$

and

$$
\zeta^{*}(\boldsymbol{k})=\zeta^{*}\left(k_{1}, k_{2}, \ldots, k_{n}\right)=\sum_{m_{1} \geq m_{2} \geq \cdots \geq m_{n} \geq 1} \frac{1}{m_{1}^{k_{1}} m_{2}^{k_{2}} \cdots m_{n}^{k_{n}}}
$$

Multiple zeta values normally mean $\zeta(\boldsymbol{k})$ in literatures, and Euler was interested in $\zeta^{*}(\boldsymbol{k})$. In this talk, three families of relations between sums of multiple zeta values ζ^{*} and Riemann zeta values are planning to be given. One of them is as follows.

Theorem (with Takashi Aoki) Let k and s be integers such that $k / 2 \geq s \geq 1$. Let $I_{0}(k, s)$ denote the set of all admissible multiple indices of weight k and height s. Then we have

$$
\sum_{\boldsymbol{k} \in I_{0}(k, s)} \zeta^{*}(\boldsymbol{k})=2\binom{k-1}{2 s-1}\left(1-2^{1-k}\right) \zeta(k)
$$

Farthermore, a proof of certain kind of formula of Bernoulli numbers is given as a consequence of their theorems.

