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By Yoichi Motohashi

Abstract. We introduce a smoothing device into the now famous sieve procedure [2] of
D.A. Goldston, J. Pintz, and C.Y. Yıldırım combining the arguments developed in [1] and
[5]. This is to be regraded as an experimental account of the initial part of a project of ours;
accordingly, details of estimation procedures are mostly suppressed.

1. Let N be a parameter increasing monotonically to infinity. There are four other basic
parameters H, R, k, ` in our discussion. We impose the following conditions to them:

(1.1) H ¿ log N ¿ log R ≤ log N,

and

(1.2) integers k, ` > 0 are arbitrary but bounded.

All implicit constants in the sequel are possibly dependent on k, ` at most; and besides,
the symbol c stands for a positive constant with the same dependency, whose value may
differ at each occurrence. It suffices to have (1.2), since our eventual aim is to look into the
possibility to detect the bounded differences between primes with a certain sharpening of the
GPY sieve. We surmise that such a sharpening may be obtained by introducing a smoothing
device. The present article is, however, only to indicate that the GPY sieve admits indeed a
smoothing; it is yet to be seen if this particular smoothing contributes to our eventual aim.

Let

(1.3) H = {h1, h2, . . . , hk} ⊆ [−H, H] ∩ Z,

with hi 6= hj for i 6= j. Let us put, for a prime p,

(1.4) Ω(p) = {different residue classes among −h(mod p), h ∈ H}

and write n ∈ Ω(p) instead of n (mod p) ∈ Ω(p). We call H admissible if

(1.5) |Ω(p)| < p for all p,

and assume this unless otherwise stated. We extend Ω multiplicatively, so that n ∈ Ω(d)
with square-free d if and only if n ∈ Ω(p) for all p|d, which is equivalent to

(1.6) d|P (n;H), P (n;H) = (n + h1)(n + h2) · · · (n + hk).

We put, with µ the Möbius function,

(1.7) λR(d; `) =





0 if d > R,
µ(d)

(k + `)!

(
log

R

d

)k+`

if d ≤ R,

1



2

and

(1.8) ΛR(n;H, `) =
∑

n∈Ω(d)

λR(d; `).

Also, let

(1.9) E∗(y; a, q) = ϑ∗(y; a, q)− y

ϕ(q)
, ϑ∗(y; a, q) =

∑

y<n≤2y
n≡a mod q

$(n),

where ϕ is the Euler totient function; and $(n) = log n if n is a prime, and = 0 otherwise.
In all accounts [1]–[3] of the GPY sieve, it is assumed that

(1.10)
∑

q≤xθ

max
(a,q)=1

max
y≤x

|E∗(y; a, q)| ¿ x

(log x)A
,

with a certain θ ∈ (0, 1) and an arbitrary fixed A > 0.

The following asymptotic formulas are the fundamental implements in the GPY sieve:

Lemma 1. Provided (1.1), (1.2), and R ≤ N1/2/(log N)C hold with a sufficiently large
C > 0 depending only on k and `, we have

∑

N<n≤2N

ΛR(n;H, `)2(1.11)

=
S(H)

(k + 2`)!

(
2`

`

)
N(log R)k+2` + O(N(log N)k+2`−1(log log N)c),

where

(1.12) S(H) =
∏
p

(
1− |Ω(p)|

p

)(
1− 1

p

)−k

.

Lemma 2. Provided (1.1), (1.2), and (1.10), we have, for R ≤ Nθ/2/(log N)C with a
sufficiently large C > 0 depending only on k and `,

∑

N<n≤2N

$(n + h)ΛR(n;H, `)2(1.13)

=
S(H)

(k + 2` + 1)!

(
2(` + 1)
` + 1

)
N(log R)k+2`+1 + O(N(log N)k+2`(log log N)c),

whenever h ∈ H.

Note that the case h /∈ H, which is not included here, seems to be ignorable for our
purpose. It is in fact known that the combination of (1.11), (1.13), and (1.10) with a θ > 1

2
gives rise to bounded differences between primes. The aim of the present work is to prove a
smoothed version of (1.11) and (1.13) to look into the possibility of replacing (1.10) with a
θ > 1

2 by any less stringent hypothesis. With this in mind, we shall hereafter assume that

(1.14) H = H(k, `) is bounded.
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2. We begin with a smoothing of (1.11). To this end, we shall follow [5]. Thus, let us put

(2.1) R0 = exp
(

log R

(log log R)1/5

)
, R1 = exp

(
log R

(log log R)9/10

)
, τ = (log log R)1/10.

We divide the interval [R0,∞) into intervals [R0R
j−1
1 , R0R

j
1) (j = 1, 2, . . .), denoting them

by P , with or without suffix. Let D be a generic element of the commutative semi-group
generated by all P ’s. When D = P1P2 · · ·Pr, the notation d ∈ D indicates that d has
the prime decomposition d = p1p2 · · · pr with pj ∈ Pj (1 ≤ j ≤ r). Note that we use the
convention that 1 ∈ D if and only if D is the empty product. Further, we put |P | = R0R

j
1

if P = [R0R
j−1
1 , R0R

j
1); and |D| = |P1| · · · |Pr| if D = P1P2 · · ·Pr. Naturally, |D| = 1 if D is

empty. We put

(2.2) ∆(D) =
∏

P |D


∑

p∈P

|Ω(p)|
p


 ,

and

(2.3) Φ(D) =
∏

P |D


∑

p∈P

|Ω(p)|
p

(
1− |Ω(p)|

p

)



∑

p∈P

|Ω(p)|
p



−2

.

Also, modifying [1, (1.21)] and [5, (6)], we put

(2.4) λ̃R(D; `) =
S(H)

`!W (R0)
µ(D)
∆(D)

∑

|K|<R
D|K

µ(K)2

Φ(K)

(
log

R

|K|
)`

,

where

(2.5) W (z) =
∏

d<z

(
1− |Ω(p)|

p

)
,

and the empty sum is to vanish; that is, λ̃R(D; `) = 0 for |D| ≥ R. Note that in (2.2) and
(2.3) we have p ≥ R0, and thus |Ω(p)| = k always. We shall, however, keep the notation
|Ω(p)|, because of a future purpose.

As to the interval [1, R0), which is excluded in the above, we appeal to the Fundamental
Lemma in the sieve method (see e.g., [6, Sections 3.2–3.5]). Thus, there exits a set of sieve
weights %(d) such that |%(d)| ≤ 1 for any d ≥ 1, and %(d) = 0 either if d ≥ Rτ

0 with τ as
above or if d has a prime factor greater than or equal to R0, and that

(2.6) γ(n;H) =
∑

n∈Ω(d)

%(d) ≥ 0 for any n ≥ 1

as well as

(2.7)
∑

d

%(d)
d
|Ω(d)| = W (R0)

{
1 + O

(
e−τ

)}
,
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with the implied constant being absolute.

With this, our smoothed counterpart of (1.8) is defined to be

(2.8) Λ̃R(n;H, `) =
∑

D

λ̃R(D; `)
∑

d∈D
n∈Ω(d)

1.

Then our first task is to evaluate asymptotically the sum

(2.9)
∑

N<n≤2N

γ(n;H)Λ̃R(n;H, `)2.

Expanding out the square and incorporating (2.6)–(2.7), we have

NT
∑

d

%(d)
d
|Ω(d)|(2.10)

+ O


 ∑

D1,D2

|λ̃R(D1; `)||λ̃R(D2; `)|
∑

d1∈D1,d2∈D2

∑

d≤Rτ
0

|Ω(d[d1, d2])|



=NW (R0)T
(
1 + O(e−τ )

)
+ O

(
Rτ

0R2(log N)c
)

with

(2.11) T =
∑

D1,D2

λ̃R(D1; `)λ̃R(D2; `)
∑

d1∈D1, d2∈D2

|Ω([d1, d2])
[d1, d2]

.

The reasoning in [5, pp. 1056 – 1057] can be applied to T , and we get

T =
∑

|D|<R

Φ(D)


∑

D|K
∆(K)λ̃R(K; `)




2

(2.12)

=
(

S(H)
`!W (R0)

)2 ∑

|D|<R

µ(D)2

Φ(D)

(
log

R

|D|
)2`

;

the second line is due to the definition (2.4). By [5, pp. 1057–1061], we have, for y ≤ R,

(2.13)
∑

|D|<y

µ(D)2

Φ(D)
=

W (R0)
k!S(H)

(log y)k
(
1 + O((log log R)−1/5)

)
.

Summing by parts in the second line of (2.12), we get readily

Lemma 3. Under (1.14) and the same assumption as in Lemma 1, we have

∑

N<n≤2N

γ(n;H)Λ̃R(n;H, `)2(2.14)

=
S(H)

(k + 2`)!

(
2`

`

)
N(log R)k+2`

(
1 + O((log log N)−1/5)

)
.
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3. Next, we shall consider a twist of (2.14) with primes:
∑

N<n≤2N

$(n + h)γ(n;H)Λ̃R(n;H, `)2(3.1)

=
∑

N<n≤2N

$(n + h)γ(n;H\{h})Λ̃R(n;H\{h}, `)2,

provided it holds that H 3 h, R < N . We may suppose that

(3.2) H 3 0, h = 0;

otherwise one may sift the sum appropriately with a negligible error. Thus we shall consider
instead

(3.3)
∑

N<n≤2N

$(n)γ(n;H−)Λ̃R(n;H−, `)2,

with H− = H\{0}.
Expanding out the square, we have

(3.4) NT ∗
∑

d

%(d)
ϕ(d)

|Ω∗(d)|+ E ,

where

T ∗ =
∑

D1,D2

λ̃R(D1; `)λ̃R(D2; `)
∑

d1∈D1, d2∈D2

|Ω∗([d1, d2])|
ϕ([d1, d2])

,(3.5)

E =
∑

D1,D2

λ̃R(D1; `)λ̃R(D2; `)
∑

d1∈D1, d2∈D2

∑

d

%(d)
∑

a∈Ω∗(d[d1,d2])

E∗(N ; a, d[d1, d2]).(3.6)

Here Ω∗ is defined by the relation Ω∗(p) = Ω(p)\{0} for all p; thus |Ω∗(p)| = |Ω(p)| − 1.

First we have, corresponding to (2.7),

(3.7)
∑

d

%(d)
ϕ(d)

|Ω∗(d)| = W (R0)
V (R0)

(
1 + O(e−τ )

)
, V (z) =

∏
p<z

(
1− 1

p

)
,

again by [6, Sections 3.2–3.5]. The diagonalization procedure in [5, pp. 1056–1057] can be
employed again, and we find that

(3.8) T ∗ =
∑

D

Φ∗(D)


∑

D|K
∆∗(K)λ̃R(K; `)




2

,

where

(3.9) ∆∗(D) =
∏

P |D


∑

p∈P

|Ω∗(p)|
p− 1


 ,



6

and

(3.10) Φ∗(D) =
∏

P |D


∑

p∈P

|Ω∗(p)|
p− 1

(
1− |Ω∗(p)|

p− 1

)



∑

p∈P

|Ω∗(p)|
p− 1



−2

.

Note that here |Ω∗(p)| does vanish, provided k ≥ 2, which we may of course assume.

We are about to compute T ∗ asymptotically. To this purpose, we remark that

(3.11) Φ∗(D) = ∆∗(D)−1
(
1 + O

(
R
−1/2
0

))
,

where the implied constant is absolute; (1.1) and (2.1) are relevant. Hence, we may consider
instead of (3.8) the expression

(3.12)
∑

D

1
∆∗(D)


∑

D|K
∆∗(K)λ̃R(K; `)




2

.

Further, we may approximate (2.4), in the same sense, by

(3.13)
S(H)

`!W (R0)
µ(D)
∆(D)

∑

|K|<R
D|K

µ(K)2∆(K)
(

log
R

|K|
)`

.

Then the sum over K in (3.12) is replaced by

(3.14)
S(H)

`!W (R0)
µ(D)∆∗(D)

∑

|L|<R/|D|
(D,L)=1

µ(L)2
∏

P |L


∑

p∈P

1
p− 1




(
log

R/|D|
|L|

)`

,

with an admissible error. This is to be compared with [1, (4.15)].

A simple modification of [5, pp. 1057–1061], i.e., a specialization of Φ there, yields

∑

|L|<y
(D,L)=1

µ(L)2
∏

P |L


∑

p∈P

1
p− 1


(3.15)

=
V (R0) log y

∏

P |D


1 +

∑

p∈P

1
p− 1




(
1 + O((log log R)−1/5))

)
,

where the implied constant is absolute. This with summation by parts implies that (3.14)
is equal to

(3.16)
S(H)V (R0)

(` + 1)!W (R0)
µ(D)∆∗(D)

∏

P |D


1 +

∑

p∈P

1
p− 1




(
log

R

|D|
)`+1 (

1 + O((log log R)−1/5))
)

,
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and (3.12) to
(

S(H)V (R0)
(` + 1)!W (R0)

)2

(3.17)

×
∑

|D|<R

µ(D)2∆∗(D)

∏

P |D


1 +

∑

p∈P

1
p− 1




2

(
log

R

|D|
)2(`+1) (

1 + O((log log R)−1/5))
)

.

To evaluate the last sum we employ [5, pp. 1057–1061] again with an appropriate changes,
and are led to

(3.18) T ∗ =
S(H)

(k + 2` + 1)!

(
2(` + 1)
` + 1

)
V (R0)
W (R0)

(log R)k+2`+1
(
1 + O((log log R)−1/5))

)

Collecting the above assertions, we obtain

Lemma 4. Under (1.14) and the same assumption as in Lemma 1, we have, for any h ∈ H,∑

N<n≤2N

$(n + h)γ(n;H)Λ̃R(n;H, `)2(3.19)

=
S(H)

(k + 2` + 1)!

(
2(` + 1)
` + 1

)
N(log R)k+2`+1

(
1 + O((log log N)−1/5)

)
+ E,

with

(3.20) E ¿ (log N)c sup
α,β

∣∣∣∣∣∣∣∣

∑

d1,d2<R
(d1,d2)=1

αd1βd2

∑

a∈Ω∗(d1d2)

E∗(N ; a, d1d2)

∣∣∣∣∣∣∣∣
.

Here α, β are arbitrary complex vectors such that |αd1 | ≤ 1, |βd2 | ≤ 1.

The assertion (3.20) is proved as in [5, pp. 1063–1064]. The bound (1.10) implies obviously
that E ¿ N/(log N)A/2 for any large A if R ≤ Nθ/2. We surmise that the same estimation
of E should hold with a larger R by virtue of the bilinear structure in (3.20).

Another possible way to introduce a smoothing into the GPY sieve problem is to apply
the device [4, Section 2.3] upon the Rosser sieve of dimension k + `. It could lead us to a
far more flexible error term than (3.20). However, our experiment indicates that the main
term thus obtained has a dependency on the basic parameter ` that is not so effective as
what the Selberg sieve has yielded in the above.
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