We prove the transcendence results for the infinite product $\prod_{k=0}^{\infty} \frac{E_{k}\left(r^{r^{k}}\right)}{F_{k}\left(\alpha^{r^{k}}\right)}$, where $r \geq 2$ is an integer, $E_{k}(x)$ and $F_{k}(x)$ are polynomials for every $k \geq 0$, and α is an algebraic number. As applications, we give necessary and sufficient conditions for transcendence of $\prod_{k=0}^{\infty}\left(1+\frac{a_{k}}{F_{r^{k}}}\right)$ and $\prod_{k=0}^{\infty}\left(1+\frac{a_{k}}{L_{r^{k}}}\right)$, where F_{n} and L_{n} are the n-th Fibonacci number and the n-th Lucas number respectively, and $\left\{a_{k}\right\}_{k \geq 0}$ is a sequence of algebraic numbers with $\log \left\|a_{k}\right\|=o\left(r^{k}\right)$.

