In general, the coefficients to the Padé approximants to algebraic functions increase explosively in height with the degree of the approximating polynomials. This is a bad thing for the purposes of diophantine approximation, but it makes it all the more interesting nonetheless to be able to extract arithmetic information from the continued fraction expansion of a quadratic irrational function defined over, say, Q.

For example, the sequence defined by $A_{h-2} A_{h+2}=A_{h-1} A_{h+1}+A_{h}^{2}$ and $A_{-1}=$ $A_{0}=A_{1}=A_{2}=1$ arises from the curve $V^{2}-V=U^{3}+3 U^{2}+2 U$ by reporting the denominators of the points $M+h S$, with $M=(-1,1)$ and $S=(0,0)$. The recursion $B_{h-3} B_{h+3}=B_{h-2} B_{h+2}+B_{h}^{2}$ and $B_{-2}=B_{-1}=B_{0}=B_{1}=$ $B_{2}=B_{3}=1$ arises from adding multiples of the divisor at infinity on the Jacobian of the curve $Y^{2}=\left(X^{3}-4 X+1\right)^{2}+4(X-2)$ of genus 2 to the divisor given by $[(\varphi, 0),(\bar{\varphi}, 0)]$; here it will please adherents to the cult of Fibonacci to learn that φ is the golden ratio.

