
Complexity,

Undecidability

and Tilings

Chaim Goodman-Strauss
Univ Arkansas

strauss@uark.edu

Why are tiling puzzles difficult?

Why are tiling puzzles difficult?

(And how difficult are they anyway?)

There is nothing particularly special about tilings in this regard:

There is nothing particularly special about tilings in this regard:

Every combinatorial system, if it is rich enough, will pose
computationally complex problems, in a manner we can define
precisely.

There is nothing particularly special about tilings in this regard:

Every combinatorial system, if it is rich enough, will pose
computationally complex problems, in a manner we can define
precisely.

In essence, the question is:
Can our system emulate arbitrary computations?

There is nothing particularly special about tilings in this regard:

Every combinatorial system, if it is rich enough, will pose
computationally complex problems, in a manner we can define
precisely.

In essence, the question is:
Can our system emulate arbitrary computations?

Tilings give a nice model, and in turn, the theory of computation
illuminates some classical tiling problems.

Consider a simple question:

Consider a simple question:

Can this tile be used
to form a tiling of the
entire plane?

trivial example

Consider a simple question:

Can this tile be used
to form a tiling of the
entire plane?

How can you tell?

trivial example

Consider a simple question:

Can this tile be used
to form a tiling of the
entire plane?

How can you tell?

certainly not

Consider a simple question:

Can this tile be used
to form a tiling of the
entire plane?

How can you tell?

Myers (2003)

Consider a simple question:

Can this tile be used
to form a tiling of the
entire plane?

How can you tell?

Myers (2003)

Consider a simple question:

Can this tile be used
to form a tiling of the
entire plane?

How can you tell?

Myers (2003)

Consider a simple question:

Can this tile be used
to form a tiling of the
entire plane?

How can you tell?

Mann (2007)

Consider a simple question:

Can this tile be used
to form a tiling of the
entire plane?

How can you tell?

Mann (2007)

Consider a simple question:

Can this tile be used
to form a tiling of the
entire plane?

How can you tell?

Mann (2007)

Is there a general method to tell
whether or not a given tile admits a tiling?

Many of these examples are very badly behaved.

This example (Myers 2003) has isohedral number 10, the cur-
rent world record

Many of these examples are very badly behaved.

That is, the tile can form periodic tilings, but the tiles fall into at
least ten orbits; equivalently, the smallest possible fundamental
domain has ten tiles!

An isohedral number 10 example

Many of these examples are very badly behaved.

This example (Mann 1999) doesn’t admit a tiling, but you can
form quite large patches before things fall apart.

Many of these examples are very badly behaved.

It has Heesch number 5, the current world record– it can form
a patch with five “coronas" and no more.

Many of these examples are very badly behaved.

There is no reason to suppose these are the worst possible
examples—

Many of these examples are very badly behaved.

There is no reason to suppose these are the worst possible
examples—

We have no idea (really) how they work, or what obstructions, if
any, there are to creating increasingly terrible tiles.

Many of these examples are very badly behaved.

There is no reason to suppose these are the worst possible
examples—

We have no idea (really) how they work, or what obstructions, if
any, there are to creating increasingly terrible tiles.

Again, Is there a way to tell whether a given tile admits a tiling
of the entire plane?

The obvious algorithm to try is
See how far you can get!

The obvious algorithm to try is
See how far you can get!

More precisely, we might enumerate all possible configurations
by the tile, trying to cover larger and larger regions.

The obvious algorithm to try is
See how far you can get!

More precisely, we might enumerate all possible configurations
by the tile, trying to cover larger and larger regions.

• If the tile does not admit a tiling, then there will be some largest
region that we can cover.

Thm: If we can cover arbitrarily large regions, we can cover the entire
plane.

The obvious algorithm to try is
See how far you can get!

More precisely, we might enumerate all possible configurations
by the tile, trying to cover larger and larger regions.

• If the tile does not admit a tiling, then there will be some largest
region that we can cover.

But this algorithm will never halt if the tile does admit a tiling.

The obvious algorithm to try is
See how far you can get!

More precisely, we might enumerate all possible configurations
by the tile, trying to cover larger and larger regions.

• If the tile does not admit a tiling, then there will be some largest
region that we can cover.

But this algorithm will never halt if the tile does admit a tiling.
So we make a modification.

The obvious algorithm to try is
See how far you can get!

More precisely, we might enumerate all possible configurations
by the tile, trying to cover larger and larger regions.

• If the tile does not admit a tiling, then there will be some largest
region that we can cover.

• As we proceed, we check to see if any of our configurations
could be a fundamental domain. If the tile admits a periodic
tiling, we can discover this too.

The obvious algorithm to try is
See how far you can get!

More precisely, we might enumerate all possible configurations
by the tile, trying to cover larger and larger regions.

• If the tile does not admit a tiling, then there will be some largest
region that we can cover.

• As we proceed, we check to see if any of our configurations
could be a fundamental domain. If the tile admits a periodic
tiling, we can discover this too.

This works fine— the algorithm will halt with a yes or no answer,
so long as nothing falls through the gaps— so long as every tile
either doesn’t admit a tiling or admits a periodic tiling.

Surely this is the case! ?

Surely this is the case! ?

Surely it is impossible for there to exist an aperiodic tile, that is,
a tile that does admit a tiling of the plane, but never a periodic
tiling.

Surely this is the case! ?

Surely it is impossible for there to exist an aperiodic tile, that is,
a tile that does admit a tiling of the plane, but never a periodic
tiling.

Such a tile would have to force some sort of bad behavior at all
scales.

Surely this is the case! ?

Surely it is impossible for there to exist an aperiodic tile, that is,
a tile that does admit a tiling of the plane, but never a periodic
tiling.

Such a tile would have to force some sort of bad behavior at all
scales.

And surely there is a general procedure (or theorem, or theory,
or algorithm) that can determine whether a given monotile
admits a tiling of the plane.

Surely this is the case! ?

Surely it is impossible for there to exist an aperiodic tile, that is,
a tile that does admit a tiling of the plane, but never a periodic
tiling.

Such a tile would have to force some sort of bad behavior at all
scales.

And surely there is a general procedure (or theorem, or theory,
or algorithm) that can determine whether a given monotile
admits a tiling of the plane.

How hard can this be?

Surely this is the case! ?

Surely it is impossible for there to exist an aperiodic tile, that is,
a tile that does admit a tiling of the plane, but never a periodic
tiling.

Such a tile would have to force some sort of bad behavior at all
scales.

And surely there is a general procedure (or theorem, or theory,
or algorithm) that can determine whether a given monotile
admits a tiling of the plane.

How hard can this be?

The examples we see here should make us cautious.

The algorithm we outlined (enumerate all configurations,
covering larger and larger disks, until we either crash, or find a
fundamental domain) succeeds if there is no aperiodic tile.

If there is no aperiodic tile, then this algorithm solves both the
Domino Problem and the Period Problem for any given
monotile:

The Domino Problem for Monotiles:
Given a tile, does it fail to admit a tiling?

The Period Problem for Monotiles:
Given a tile, does it admit a periodic tiling?

That is:

There is no

aperiodic

monotile
The Domino

Problem is

decidable

for monotiles

The Period

Problem is

decidable

for monotiles

That is:

There is an

aperiodic

monotile
The Domino

Problem is

undecidable

for monotiles

The Period

Problem is

undecidable

for monotiles

Moreover, suppose there is a bound H on Heesch number; i.e.,
suppose every tile that does not admit a tiling has Heesch
number less than H.

Moreover, suppose there is a bound H on Heesch number; i.e.,
suppose every tile that does not admit a tiling has Heesch
number less than H.

Then we would have an algorithm for checking whether a given
tile does not admit a tiling:

Moreover, suppose there is a bound H on Heesch number; i.e.,
suppose every tile that does not admit a tiling has Heesch
number less than H.

Then we would have an algorithm for checking whether a given
tile does not admit a tiling:

Simply enumerate larger and larger configurations, increasing
the number of coronas (shells). If we find a configuration with
more than H coronas, we know the tile admits a tiling.

Similarly, suppose there is a bound I on isohedral number; i.e.
suppose that every tile that admits a periodic tiling has
isohedral number less than I.

Similarly, suppose there is a bound I on isohedral number; i.e.
suppose that every tile that admits a periodic tiling has
isohedral number less than I.

Then we would have an algorithm for checking whether a given
tile admits a periodic tiling:

Similarly, suppose there is a bound I on isohedral number; i.e.
suppose that every tile that admits a periodic tiling has
isohedral number less than I.

Then we would have an algorithm for checking whether a given
tile admits a periodic tiling:

Simply enumerate all configurations with up to I tiles; if we fail
to find a fundamental domain, then the tile does not admit a
periodic tiling.

And so we have

There is an

aperiodic

monotile
The Domino

Problem is

undecidable

for monotiles

The Period

Problem is

undecidable

for monotiles

Isohedral

number is

unbounded

for monotiles

Heesch

number is

unbounded

for monotiles

And so we have

There is an

aperiodic

monotile
The Domino

Problem is

undecidable

for monotiles

The Period

Problem is

undecidable

for monotiles

Isohedral

number is

unbounded

for monotiles

Heesch

number is

unbounded

for monotiles

?

?

?
?

?
These are all open questions.

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

0 0 0 0 0 00
A

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

0 1 0 0 0 00
B

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

0 1 1 0 0 00
B

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

0 0 1 0 0 00
C

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

0 0 1 0 0 00
A

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

0 1 1 0 0 00
B

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

0 1 1 0 0 00
C

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

0 1 0 1 0 00
C

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

0 1 1 1 0 00
C

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

0 1 1 1 0 00
A

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

1 1 1 1 0 00
B

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

1 0 1 1 0 00
C

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

1 0 1 1 0 00
A

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

1 1 1 1 0 00
B

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

1 1 0 1 0 00
C

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

1 1 0 1 0 00
A

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

1 1 1 1 0 00
B

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

1 1 1 0 0 00
C

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

1 1 1 0 1 00
C

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

1 1 1 1 1 00
C

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

1 1 1 1 1 00
A

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

1 1 1 1 1 00
H

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

1 1 1 1 1 00
H

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

1 1 1 1 1 00
H

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

1 1 1 1 1 00
H

As mysterious as this little example is, it is not too difficult to
see how they capture anything we might reasonably mean by
“computation";

Computation and Complexity

The wellspring of all discussions of computational complexity is
Alan Turing’s 1935 construction of a simple, universal model of
computation:

φ A B C
0 1RB 1LB 1LC
1 1RH 0RC 0LA

1 1 1 1 1 00
H

As mysterious as this little example is, it is not too difficult to
see how they capture anything we might reasonably mean by
“computation"; this is the essence of the famous Church-Turing
thesis.

And of course the most important undecidable problem is the
Halting Problem: Does machine M eventually halt?

A simple diagonalization trick shows no machine can take as
input M and always halt with the correct answer– the problem is
not decidable.

(It’s not hard to discover if a machine halts– just run it until it
does– the impossibility is discovering that any given machine
will not halt.)

We can mechanically enumerate machines; let Mn be the nth
machine in any fixed, mechanical enumeration. Then take the
following function:

H(n) =

{

time for Mn to halt if Mn does halt
0 if Mn does not halt

We can mechanically enumerate machines; let Mn be the nth
machine in any fixed, mechanical enumeration. Then take the
following function:

H(n) =

{

time for Mn to halt if Mn does halt
0 if Mn does not halt

Then no computable function can bound H(n).

For suppose some computable f (n) > H(n) for all n; then we
can calculate whether or not Mn halts by calculating f (n) and
running Mn for up to f (n) steps; if Mn hasn’t halted by that point,
we can be sure it never will. Hence no such f exists.

This all has some interesting consequences.

In particular we can now sketch a proof of Gödel’s theorem,
that there are true but unprovable theorems:

In particular we can now sketch a proof of Gödel’s theorem,
that there are true but unprovable theorems:

1) Fix a (presumably consistent) formal logical system that
captures arithmetic.

In particular we can now sketch a proof of Gödel’s theorem,
that there are true but unprovable theorems:

1) Fix a (presumably consistent) formal logical system that
captures arithmetic.

Now 2) We can mechanically enumerate all proofs, and hence,
all theorems.

In particular we can now sketch a proof of Gödel’s theorem,
that there are true but unprovable theorems:

1) Fix a (presumably consistent) formal logical system that
captures arithmetic.

Now 2) We can mechanically enumerate all proofs, and hence,
all theorems.

3) For every program M, one or the other of “M halts" or “M
does not halt" is true.

In particular we can now sketch a proof of Gödel’s theorem,
that there are true but unprovable theorems:

1) Fix a (presumably consistent) formal logical system that
captures arithmetic.

Now 2) We can mechanically enumerate all proofs, and hence,
all theorems.

3) For every program M, one or the other of “M halts" or “M
does not halt" is true.

4) These are statements in our logical system (since running a
program, in memory with data, is just arithmetic on giant binary
numbers)

In particular we can now sketch a proof of Gödel’s theorem,
that there are true but unprovable theorems:

1) Fix a (presumably consistent) formal logical system that
captures arithmetic.

Now 2) We can mechanically enumerate all proofs, and hence,
all theorems.

3) For every program M, one or the other of “M halts" or “M
does not halt" is true.

4) These are statements in our logical system (since running a
program, in memory with data, is just arithmetic on giant binary
numbers)

But then if every true statement were provable, we’d have a
procedure for settling the halting problem: run through all
proofs, until you reach one for either “M halts" or “M does not
halt".

In particular we can now sketch a proof of Gödel’s theorem,
that there are true but unprovable theorems:

1) Fix a (presumably consistent) formal logical system that
captures arithmetic.

Now 2) We can mechanically enumerate all proofs, and hence,
all theorems.

3) For every program M, one or the other of “M halts" or “M
does not halt" is true.

4) These are statements in our logical system (since running a
program, in memory with data, is just arithmetic on giant binary
numbers)

But then if every true statement were provable, we’d have a
procedure for settling the halting problem: run through all
proofs, until you reach one for either “M halts" or “M does not
halt". QED

In fact, if M does halt, then the theorem “M halts" can be
proven: just run the program! But the complexity of these
theorems cannot be bounded by any computable function!

In fact, if M does halt, then the theorem “M halts" can be
proven: just run the program! But the complexity of these
theorems cannot be bounded by any computable function!

For suppose that the proof of the nth theorem of this kind takes
no more than some computable f (n) steps. Then again, the
Halting Problem would be decidable: given n, calculate f (n) and
enumerate all proofs up to length f (n). If we find a proof of the
theorem, we know Mn halts. On the other hand, if we don’t find
a proof, we know there’ll never be one and Mn does not halt!

With this in hand, we can ask, is our [[whatever]] powerful
enough to capture Turing machines?

With this in hand, we can ask, is our [[whatever]] powerful
enough to capture Turing machines?

The generic answer is Yes!

Conway’s Presumption If enough is going on, your setting is
computationally universal.

With this in hand, we can ask, is our [[whatever]] powerful
enough to capture Turing machines?

The generic answer is Yes!

Conway’s Presumption If enough is going on, your setting is
computationally universal.

And if if your problem is universal, then one will have

• true but unprovable theorems,

• short theorems with astoundingly lengthy proofs,

• and generally inscrutable behavior.

In 1961, Hao Wang gave a simple undecidable tiling problem:

The Completion Problem: Given a set of tiles and a start
configuration, can the configuration be completed to a tiling of
the entire plane.

(Wang was carrying out a larger program of settling the
decididability of the remaining cases of Hilbert’s “satisfiability"
problem: is there an algorithm to decide whether any given first
order formula can be satisfied?)

To show the Completion Problem is
undecidable, Wang constructed, for
any Turing machine, a set of tiles T
so that a certain “seed” configura-
tion could be completed to a tiling
if and only if the machine fails to
halt. Since the Halting Problem is
undecidable, so too is the Comple-
tion Problem.

φ A B C
0 0RB 1LA 1RB
1 1RB 0RC 0LH

11

1

1

1

00 0

000 0

00000

0000

0000

00000

00000

A

A

A

B

B

B

C

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

To show the Completion Problem is
undecidable, Wang constructed, for
any Turing machine, a set of tiles T
so that a certain “seed” configura-
tion could be completed to a tiling
if and only if the machine fails to
halt. Since the Halting Problem is
undecidable, so too is the Comple-
tion Problem.

φ A B C
0 0RB 1LA 1RB
1 1RB 0RC 0LH

1

1

1

0

0

0

0

0

0000

00 0

000 0

0000

000

0000

A

A

B

B

B

C

φ(A0)

φ(A0)

φ(B0)

φ(C0)

φ(B1)

The real point is that Turing ma-
chines act in a purely local man-
ner. These tiles perfectly emulate
this machine, in tilings containing
the seed tile.

φ A B C
0 0RB 1LA 1RB
1 1RB 0RC 0LH

B0 B1

A0

A1

A1

B0

A0

C0

B1

B0

#

C0

#

A1

#

B1

C1

A0

H

C1

A0 1

1

1

1

1
1

1

1

1
0 0

0

0

0

0

0

0

0

0

0
φ(A0) φ(A0)φ(A0)

φ(B0) φ(B0)φ(B0)

φ(A1) φ(A1)φ(A1)

φ(B1)φ(B1) φ(B1)

Wang noted that if the Domino Problem were undecidable (for
sets of tiles) then there would exist aperiodic sets of tiles; he
conjectured no such sets exist. In a few years, his student R.
Berger proved his conjecture incorrect, and gave the first
aperiodic sets of tiles.

Wang noted that if the Domino Problem were undecidable (for
sets of tiles) then there would exist aperiodic sets of tiles; he
conjectured no such sets exist. In a few years, his student R.
Berger proved his conjecture incorrect, and gave the first
aperiodic sets of tiles.

We can define the Heesch number of a non-tiling set of tiles to
be the maximum radius disk it can cover; just as with the
halting times of machine, as we enumerate tile sets, there can
be no computable bound on Heesch number.

Wang noted that if the Domino Problem were undecidable (for
sets of tiles) then there would exist aperiodic sets of tiles; he
conjectured no such sets exist. In a few years, his student R.
Berger proved his conjecture incorrect, and gave the first
aperiodic sets of tiles.

We can define the Heesch number of a non-tiling set of tiles to
be the maximum radius disk it can cover; just as with the
halting times of machine, as we enumerate tile sets, there can
be no computable bound on Heesch number.

We can define the isohedral number of a periodically tiling set
of tiles to be the minimum sized fundamental domain; as we
enumerate tile sets, this too can not be bounded by any
computable function.

Wang noted that if the Domino Problem were undecidable (for
sets of tiles) then there would exist aperiodic sets of tiles; he
conjectured no such sets exist. In a few years, his student R.
Berger proved his conjecture incorrect, and gave the first
aperiodic sets of tiles.

We can define the Heesch number of a non-tiling set of tiles to
be the maximum radius disk it can cover; just as with the
halting times of machine, as we enumerate tile sets, there can
be no computable bound on Heesch number.

We can define the isohedral number of a periodically tiling set
of tiles to be the minimum sized fundamental domain; as we
enumerate tile sets, this too can not be bounded by any
computable function.

Similarly, the minimum length proof that a given set of tiles
admits a periodic tiling, or no tiling, cannot be bounded by any
computable bound.

Finally, these are asymptotic results, What can one say about
the marginal cases? This brings up back to the complexity of
our original puzzles. What can you do with a single tile?

Finally, these are asymptotic results, What can one say about
the marginal cases? This brings up back to the complexity of
our original puzzles. What can you do with a single tile?

Is tiling by a single tile computationally universal?

Finally, these are asymptotic results, What can one say about
the marginal cases? This brings up back to the complexity of
our original puzzles. What can you do with a single tile?

Is tiling by a single tile computationally universal?

Are Heesch numbers and isohedral numbers unbounded, and if
so, do they have computable bounds?

But again, there is nothing intrinsically special about tilings, or
Turing machines— Complexity and undecidability are
ubiquitous in combinatorial settings (i.e. in all mathematics)!

We see this already in simple recreational puzzles!

But again, there is nothing intrinsically special about tilings, or
Turing machines— Complexity and undecidability are
ubiquitous in combinatorial settings (i.e. in all mathematics)!

We see this already in simple recreational puzzles!

You may keep the toys...

A quick advertisement

The Symmetries of Things
with John H. Conway & Heidi Burgiel

The Symmetries of Things
with John H. Conway & Heidi Burgiel

mathbun.com

The Math Factor mathfactor.uark.edu

