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§1. Introduction

Let f be the holomorphic modular form of weight 2k, which is a normalized
common eigenform with respect to Hecke operators. Then it is well known that the
Fourier coefficient τ(n) of f satisfies the equation

τ(np)− τ(n)τ(p) + p2k−1τ(n/p) = 0, (1)

for any prime p and any positive integer n. Here τ(n/p) is defined to be zero when
n/p is not an integer. In [2] and [3], Atkin made a similar conjecture for a modular
function:

Conjecture (Atkin).
Let j(z) be the modular invariant:

j(z) =
∑
n≥−1

c(n)xn
3 = x−1

3 + 744 + 196884x3 + · · · · ·· ,

where x3 = exp(2π
√−1z). Let p ≤ 23 be a fixed prime and l be a prime other than p.

For any positive integer α, put aα(n) = c(npα)/c(pα). Then the following congruences
hold

aα(nl)− aα(n)aα(l) + l−1aα(n/l) ≡ 0 (mod pα), (2)

aα(np)− aα(n)aα(p) ≡ 0 (mod pα). (3)

Remark 1.
Atkin asserted in [2] that aα(n) are in Q ∩ Zp. The author knows the proof of

this fact only for the case p = 2, 3 and 13. Atkin also announced in [2], that he had
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proved the conjecture for p = 2, 3, 5, 7 and 13. But we cannot find his proofs in the
literature. In [4], Atkin and O’Brien showed the congruence (3) for p = 13. Koike
showed the congruence (2) for p = 13 in [8] and completed the proof for p = 13.
Koike’s work suggests us that, at least, Atkin had been in the right direction to the
proof for p = 13. There seems no published proof for other primes.

Remark 2.
This conjecture is a p-adic version of (1). Thus the conjecture gives us the starting

point of the vast theory of p-adic modular forms and p-adic Hecke operators (see Katz
[7], Dwork [5], Serre [11]).

In this article, we will prove the Atkin conjecture for p = 2 in more precise form:

Theorem 1.
Let α be a positive integer and aα(n) = c(2αn)/c(2α). Then we have, for any odd

prime l ,
aα(nl)− aα(n)aα(l) + l−1aα(n/l) ≡ 0 (mod 24α+4), (4)

aα(2n)− aα(n)aα(2) ≡ 0 (mod 24α+7). (5)

Remark 3.
Atkin already noticed in [2], that when p ≤ 5, the exponent of the prime p of the

congruence (2) and (3) is not best possible. As for this exponent of (4) and (5), see
the last part of §4 and Remark 7 in §5.

The original purpose of the study is to prove the 2n divisibility property of Hecke’s
absolute invariant such as the conjecture (A) in §2. Fortunately, the author found
that his argument was very close to the Atkin conjecture for p = 2. First, we will
introduce Hecke’s absolute invariants.

§2. Hecke’s absolute invariants.

Let Gq be the Hecke group, which is a discontinuous subgroup of PSL2(R) gen-
erated by (

0 1
−1 0

)
and

(
1 λq

0 1

)
,

where λq = 2 cos(π/q) and q = 3, 4, · · · · ·,∞. The standard fundamental domain of
Gq, as a transformation group of a complex upper half plane H, is given by

Fq = {z ∈ H : |z| ≥ 1, |Re(z)| ≤ λq/2}.
Let Jq be the bijective conformal mapping from ” the half of Fq”, that is,

{z ∈ H : |z| ≥ 1, −λq/2 ≤ Re(z) ≤ 0} ∪ {√−1∞},
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to H. This mapping is uniquely determined by the conditions:

Jq(− exp(−π
√−1/q)) = 0, Jq(

√−1) = 1, Jq(
√−1∞) = ∞.

Using reflection principle repeatedly, we can define the value of Jq on H and consider
Jq as a mapping from H to C. From this construction we see that

Jq(γz) = Jq(z)

for any γ ∈ Gq. The automorphic function field of Gq is nothing but a rational
function field generated by Jq over C. This function Jq is called Hecke’s absolute
invariant with respect to Gq. Since Jq is invariant under the transformation z → z+λq,
we have the Fourier expansion of Jq at

√−1∞:

Jq(z) =
∑
n≥−1

Aq(n)xn
q ,

where xq = exp(2π
√−1z/λq). J. Raleigh [10] showed

Aq(n) = rn
q Bq(n),

where rq ∈ R, Bq(n) ∈ Q. The value rq is determined up to rational multiples, so we
put r−1

q = Aq(−1) and Bq(−1) = 1. The actual value is

rq = exp

(
2
Γ′(1)

Γ(1)
− Γ′(1/4 + 1/2q)

Γ(1/4 + 1/2q)
− Γ′(1/4− 1/2q)

Γ(1/4− 1/2q)
− 1

cos(π/q)

)
,

where Γ(s) is the gamma function. Further, J. Wolfart [12] showed that rq is algebraic
if and only if q = 3, 4, 6,∞. So we treat only the case q = 3, 4, 6,∞ in the following.
Let jq(z) = rqJq(z) then jq(z) is contained in Z[xq, x

−1
q ]. Put

jq(z) =
∑
n≥−1

cq(n)xn
q ,

where cq(n) ∈ Z and cq(−1) = 1. Consider the case q = 3. Then G3 = PSL(2,Z) and
j3(z) coincides with the modular invariant j(z) appeared in the introduction. From
now on, write c(n) instead of c3(n). The first few values of cq(n) are found in Table
1.

The author proposed conjectures concerning cq(n) as a rational function of q in
[1]. As a special case, we see:

Conjecture.
For all integer n, we have

ord2(c(n)) = ord2(c4(n)) = ord2(c∞(n)),
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ord3(c(n)) = ord3(c6(n)).

For the later convenience, we call the statement

ord2(c(n)) = ord2(c∞(n))

to be conjecture (A). In the next section, we will take a close look at this conjecture
(A).

§3. O.Kolberg’s results and the conjecture (A).

Note that G∞ is a subgroup of index 3 of G3, this is the reason why we first treat
the conjecture (A) among others. ( The group G∞ is called theta group.) Thus there
exist an algebraic relation between j and j∞:

j(z) = (j∞(z)− 24)3/j∞(z).

Considering x2
∞ = x3, we easily see that

c(n) ≡ c∞(n) (mod 2), (6)

which is our first knowledge about the conjecture (A). Using the famous λ-invariant,
which is a generator of the automorphic function field with respect to principal con-
gruence subgroup of level two, we can express j∞ as

j∞(z) = − 16

λ(z)(λ(z)− 1)
.

Moreover, employing the expression of λ(z) by theta null series, we have

j∞(z) = x−1
∞

∏
n≥1

(1 + x2n−1
∞ )24.

From this infinite product representation, we see

j∞

(
z − 1

2

)
j∞

(
z + 1

2

)
= j∞(z). (7)

And we also have

j∞

(
z − 1

2

)
+ j∞

(
z + 1

2

)
= 48− 212

j∞(z)
. (8)

Note that the left hand side of (8) is the result of the action of the double coset

G∞( 1 1
0 2 )G∞ as a Hecke operator on j∞.

These two relations (7) and (8) seem to be fundamental. Define the action V by
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f(z)|V = f

(
z − 1

2

)
+ f

(
z + 1

2

)
.

Remark that j(2z) + j(z/2) is invariant under G∞ and

j(z)|T (2) = j(2z) + j(z/2) + j

(
z + 1

2

)
.

Here T (n) is the Hecke operator of degree n with respect to G3. This shows that
j
(

z+1
2

)
is contained in C(j∞). A precise calculation shows

j

(
z + 1

2

)
= −j∞(z)−2(j∞(z)− 28)3 (9)

= −j∞(z) + 25 · 3 · 7 + j∞|V 2. (10)

Here the symbol j∞|V 2 means (j∞|V )|V . The last formula (10) is verified by the
repeated use of (7) and (8). Comparing coefficients of (10), we have, for n ≥ 1,

c(n) = (−1)n−1c∞(n) + 4c∞(4n). (11)

This formula, together with the product ( or theta ) representation of j∞, gives us an
easy alternative way of calculating c(n). The author does not know that someone had
mentioned this formula (11) before. Using (11) , by the aid of computer calculations,
our conjecture (A) is reduced to the following:

Conjecture (B).
For any positive integer n, we have ord2(c∞(2n)) ≥ 3 + ord2(c∞(n)).

Conjecture (B’)
For any positive integer n, we have ord2(c(2n)) ≥ 3 + ord2(c(n)).

Note that the conjecture (B) and the conjecture (B’) are equivalent, which is easily
seen by (11). Numerical calculations suggest that the equality holds in both (B) and
(B’) when n is even. Concerning the conjecture (B’), O. Kolberg [9] showed:

Proposition 1 (O.Kolberg).
For any positive integer α and odd integer n, we have

c(2αn) ≡ −23α+83α−1σ7(n) (mod 23α+13). (12)

For any positive integer n,

c(8n + 1) ≡ 20σ7(8n + 1) (mod 27),

c(8n + 3) ≡ σ1(8n + 3)/2 (mod 23),

c(8n + 5) ≡ −12σ7(8n + 5) (mod 28),

5



where σs(n) =
∑

d|n ds. The value of c(8n + 7) becomes both even and odd infinitely
often.

This proposition implies the validity of the conjecture (B) and (A) for a certain type
of n. For example, if

n = 2βm, m ≡ 1 (mod 8), σ7(m) 6≡ 0 (mod 25), (13)

where β is any non negative integer. Then

ord2(c(2n)) ≥ 3 + ord2(c(n))

holds. Using (11), we see that

ord2(c∞(2n)) ≥ 3 + ord2(c∞(n)).

Thus again by (11),

ord2(c(n)) = ord2(c∞(n))

holds for every n of type (13). To prove Proposition 1, O. Kolberg explicitly calculated
j−n
∞ |V k for each positive integer n and k. And this calculation is crucial in proving

the Atkin conjecture for p = 2 in §4.

Remark 4.
Define the operator U(2) by

∑
a(n)xn

3 |U(2) =
∑

a(2n)xn
3 .

By using the results of Koike [8], there exists a unique modular cusp form F of weight
2t−1 such that

j(z)|U(2)m − 744 ≡ F (z) (mod 2t). (14)

It is well known that the space of modular cusp forms is decomposed into common
eigenspaces with respect to Hecke operators. Thus

F (z) =
∑

i

Fi(z),

and each Fi is a common eigenfunction of eigenvalue λi. If t ≥ 3 then the action of
Hecke operator of degree two and of weight 2t−1 coincides with that of U(2) modulo
2t. K. Hatada showed in [6],

λi ≡ 0 (mod 8).

Thus we have
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j(z)|U(2)m+1 − 744 ≡
∑

λiFi(z) (mod 2t). (15)

Comparing (14) and (15), we see that the conjecture (B’) seems to be reasonable.

§4. Proof of the Atkin conjecture for p = 2.

In this section, we prove Theorem 1 cited in the introduction in a slightly stronger
form. Our discussion is almost the same as in the proof of Koike [8]. So the precise
description will be omitted if not necessary. We also use the idea of Atkin-O’Brien
[4] and the results of O. Kolberg [9].

Let Sk be the space of modular cusp forms of weight k and S(α, λ) be the Z sub-
module of Sλ+2α−1 whose elements have integer Fourier coefficients in the expansion
at the cusp

√−1∞. Denote by d(α, λ) the dimension of Sλ+2α−1 . Then S(α, λ) has
rank d(α, λ). Let α′ > α ≥ 3 be two positive integers. Then for each f ∈ S(α, λ),
there exists f ′ ∈ S(α′, λ) such that f ′ ≡ f (mod 2α), where the symbol ≡ means that
the corresponding Fourier coefficients are congruent modulo 2α. Thus there exists a
system of free basis {f (λ)

α,i }d(α,λ)
i=1 of S(α, λ) such that

f
(λ)
α,i ≡ f

(λ)
α′,i (mod 2α)

for any α′ > α ≥ 3. Let f̃
(λ)
i be the 2-adic limit of f

(λ)
α,i when α tends to infinity.

Define by S(λ) the set consisting of all elements
∑

aif̃
(λ)
i such that ai ∈ Q2 and there

are only finitely many ai’s for which ord2(ai) < t for any positive integer t. This

space is called 2-adic Banach space admitting orthonormal basis {f̃ (λ)
i }i over Q2. Itis

known that S(0) admits orthonormal basis {j(z)−i}∞i=1. Let l be an odd prime. The
2-adic Hecke operator Ũλ(2) and T̃λ(l) acting on S(λ) is defined by

f̃ |Ũλ(2) =
∑

A(2n)xn
3 ,

f̃ |T̃λ(l) =
∑

{A(nl) + lλ−1A(n/l)}xn
3 ,

for f̃ =
∑

A(n)xn
3 . We define A(n/l) to be zero when n is not a multiple of l .

Proposition 2.
The space S(0) admits orthonormal basis {j∞(2z + 1)−i}∞i=1.

Proof) Let j(0)(z) = j(z)− 744 and j
(0)
∞ (z) = j∞(z)− 24. Then by (11),

j(0)(z) = −j(0)
∞ (2z + 1) + 4j(0)

∞ (2z + 1)|U(2)2.

Thus j
(0)
∞ (2z + 1) is 2-adically approximated by −∑∞

i=0 22ij(0)(z)|U(2)2i. By using
Theorem 1 of Koike [8], j(0)(z)|U(2)i belongs to S(0) when i ≥ 1. From (8),

j∞(2z + 1)−1 = 2−12{48− 2j∞(2z + 1)|U(2)}.
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This shows j∞(2z+1)−1, so j∞(2z+1)−i for i ≥ 1, belongs to S(0). By the congruence
(6), we have

j−i
∞ (2z + 1) ≡ j(z)−i (mod 2).

Recalling S(0) admits an orthonormal basis {j(z)−i}∞i=1, we see the assertion.

Note that
ξ = −j∞(2z + 1)−1 = x3

∏
n≥1

(1 + xn
3 )24.

In [9], O. Kolberg showed, for any positive integer k

ξ2k−1|U(2) =
3k−2∑
j=0

28j+3 6k − 3

2j + 1

(
3k + j − 2

2j

)
ξk+j, (16)

ξ2k|U(2) =
3k∑

j=0

28j 3k

3k + j

(
3k + j

2j

)
ξk+j. (17)

He derived these formulas by the elementary argument of trigonometric function.
Koike’s proof of the Atkin conjecture for p = 13 essentially needs the same type of
calculation due to Atkin-O’Brien [4].

Let F be the Z2 submodule of S(0) consisting of all elements:
∑
r≥1

arξ
r,

where ar ∈ Z2 and ord2(ar) ≥ 8(r − 1). We define the operator U ′(2) = 2−3U(2) on
S(0). Then by (16) and (17), we see

28r−8ξr|U ′(2) =
2r∑

j≥r/2

28j−8cr,jξ
j, (18)

where cr,j are integers for which ord2(cr,j) ≥ 4r − 4 and c1,1 is odd. This shows that
U ′(2) acts on F . Moreover, also by (18), the eigenfunction of Ũ ′(2) = 2−3Ũ0(2) on F
whose eigenvalue is a unit of Z2 exists uniquely up to Q×2 multiples. For abbreviation,
we call an eigenfunction with a unit eigenvalue to be a unit eigenfunction.

Remark 5.
For the case p = 13, the action of Ũ0(13) and the uniqueness of the unit eigenfunc-

tion were considered on the whole space. But in our case, we must restrict the action
to F and consider Ũ ′(2) instead of Ũ(2) to separate a unique unit eigenfunction.

Let M be the Z2 module generated by { f |U ′(2)n: f ∈ Z2[j(z)], n ≥ 0 }. Then
we have

Proposition 3.

8



For any f ∈M, there exist a unique h ∈ Z2[j(z)] and g ∈ F such that f = h+28g.

Proof) By the Theorem 1 of Koike [8], there exist a unique h ∈ Z2[j(z)] and g ∈ S(0)
such that f = h + g. Thus we have to show g ∈ 28F . As the operator U ′(2) acts on
F , it suffices to show the assertion on j(z)k|U ′(2) for k ≥ 1. From (9), we have

j(z) = −j∞(2z + 1) + 3 · 28 − 3 · 216j∞(2z + 1)−1 + 224j∞(2z + 1)−2.

By the repeated use of this formula, it is sufficient to show that j∞(2z + 1)k|U ′(2)
can be decomposed into h1 ∈ Z2[j∞(2z + 1)] and g1 ∈ 28F . We proceed this proof by
induction. By (8), we see

j∞(2z + 1)|U ′(2)− 3 = −28j∞(2z + 1)−1 ∈ 28F .

So it is true for k = 1. Note that by (7),

j∞(2z + 1)k+1|U ′(2) =

24
(
j∞(2z + 1)k|U ′(2)

)
(j∞(2z + 1)|U ′(2))− j∞(2z + 1)

(
j∞(2z + 1)k−1|U ′(2)

)
.

We easily complete the proof from this formula.

Proposition 4.
Let 28f ∈ M such that f =

∑
n≥1 a(n)xn

3 with a(1) 6≡ 0 (mod 2). Then there

exists a constant kα ∈ Z×2 such that

f |Ũ ′(2)α+1 ≡ kαf |Ũ ′(2)α (mod 24α+8),

for each non negative integer α.

Proof) The idea of the proof is due to Atkin-O’Brien [4]. So precise calculations will
be omitted. By Proposition 3, we see f |Ũ ′(2)α ∈ F . Thus f |Ũ ′(2)α is written in the
form ∑

j≥1

28(j−1)dj(α)ξj, (19)

where dj(α) ∈ Z2. Then by (18),

dj(α + 1) =

2j∑

r≥j/2

dr(α)cr,j,

and ord2(cr,j) ≥ 4r − 4. Put

γij(α) = dj(α + 1)di(α)− dj(α)di(α + 1).

The key of the proof is the relation;

γij(α + 1) =
∑

k,l

γkl(α)ck,icl ,j,
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where integers k, l are taken over i/2 ≤ k ≤ 2i and j/2 ≤ l ≤ 2j. By induction, we
have

ord2(γij(α)) ≥ 4α + 4 max{0, [(i + j − 5)/2]},
where [x] stands for the greatest integer not exceeding x. Especially we see

dj(α + 1)d1(α) ≡ dj(α)d1(α + 1) (mod 24α).

Our assumption implies d1(α) 6≡ 0 (mod 2). So we put kα = d1(α + 1)/d1(α). Thus

dj(α + 1) ≡ kαdj(α) (mod 24α).

Substitute this congruence into (19), we get

f |Ũ ′(2)α+1 =
∑
j≥1

28j−8dj(α + 1)ξj

≡ kα

∑
j≥1

28j−8dj(α)ξj = kαf |Ũ ′(2)α (mod 24α+8).

Here we use the fact d1(α + 1) = kαd1(α) to make bigger the exponent of 2 of the
congruence. This completes the proof.

Remark 6.
Put a(n) = 2−11c(2n), then f =

∑
n≥1 a(n)xn

3 satisfies the assumption of Proposi-
tion 4. So we have

2−3α−11c(2α+1n) ≡ kα−12
−3α−8c(2αn) (mod 24(α−1)+8),

for any positive integer n and α. Using this, we have

c(2α+1n)c(2α) ≡ c(2αn)c(2α+1) (mod 210α+23).

This implies the congruence (5) in Theorem 1, because

ord2(c(2
α)) = 3α + 8,

which is seen by (12).

Now we state our main theorem.

Theorem 2.
Let l be an odd prime. Let 28f be an element ofM expanded as f =

∑
n≥1 a(n)xn

3

with a(1) 6≡ 0 (mod 2). Then we have, for any positive integer n,

bα(nl)− bα(n)bα(l) + l−1bα(n/l) ≡ 0 (mod 24α+8),
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where bα(n) = a(2αn)/a(2α) and α is any non negative integer.

Proof) By Proposition 4, we have

f |Ũ ′(2)α = 2−3α
∑
n≥1

a(2αn)xn
3 ≡ kα−1kα−2 · · · · · k0f (mod 28).

Especially, this shows ord2(a(2αn)) ≥ 3α and equality holds when n = 1. Thus
bα(n) ∈ Z2. Put fα =

∑
bα(n)xn

3 then, by Proposition 4,

fα+1 ≡ fα (mod 24α+8).

Let f ′ be the 2-adic limit of {fα}. Then, by definition

f |Ũ ′(2) = κf,

where κ ∈ Z×2 . Recalling that Ũ ′(2) and T̃0(l) are commutative, f ′|T̃0(l) is also an
eigenfunction of Ũ ′(2). By the uniqueness of the unit eigenfunction of Ũ ′(2), we see
f ′|T̃0(l) = b(l)f ′ for some b(l). Considering this equality modulo 24α+8, we get the
result.

From this theorem, we can show Theorem 1 as a corollary. To see this we have to
specialize a(n) = 2−11c(2n), as in Remark 6.

The exponent 4α + 8 of Theorem 2 can be replaced by 4α + 9. So we can also
show that (4) holds modulo 24α+5. This little improvement follows from the fact that
b(l) ≡ 0 (mod 2) in the above proof, which is shown by the precise argument similar
to the proof of (12). We expect that the exponent of Theorem 2 will be improved to
4α + 15, as in Remark 7.

§5. Further conjectures.

By the aid of computer calculations, we will propose a more precise conjecture.
To describe this, define

Ξ(n, α, p) =

(
ord2(aα(np)− aα(n)aα(p) + p−1aα(n/p)), for odd prime p,
ord2(aα(2n)− aα(2)aα(n)), for p = 2,

for any positive integer α and n ≥ 2. Recall that aα(n) = c(2αn)/c(2α). Then we
have

Conjecture (C).
There exists non negative integer valued function γ from the set of integers greater

than 1 such that
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Ξ(n, α, p) = 4α + 7 + γ(p) + γ(n).

For odd n, we have

γ(n) ≥ (1 + (2/n))/2 + (1 + (−1/n)) + 4,

where (·/n) is the Jacobi symbol. Equality holds when (2/n) = −1 and n is an odd
prime. For even integers, we have

γ(2βm) = 3(β − 1) + ord2(σ1(m)),

for any odd integer m and positive integer β.

Remark 7.
In special cases, the above conjecture (C) says that the exponent 4α + 7 of (5) is

best possible and that of (4) can be replaced by 4α + 11, which is best possible. To
see this, consider the case p = 2 or p ≡ 3 (mod 8) and n = 2m2 with an odd integer
m.

The conjecture (C) gives us an impression that something interesting remain un-
recognized in the Atkin conjecture for p = 2. We give first 100 values of γ(n) in Table
2.
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Table 1.

n q = 3
0 23 · 3 · 31
1 22 · 33 · 1823
2 211 · 5 · 2099
3 2 · 35 · 5 · 355679
4 214 · 33 · 45767
5 23 · 52 · 2143 · 777421
6 213 · 36 · 11 · 132 · 383
7 33 · 5 · 7 · 271 · 174376673
8 217 · 3 · 53 · 199 · 41047
9 22 · 37 · 5 · 4723 · 15376021
10 212 · 35 · 52 · 132 · 5366467
11 2 · 3 · 11 · 133 · 1008344102147
12 216 · 35 · 5 · 10980221089
13 23 · 33 · 5 · 23 · 112291 · 1746673133
14 214 · 7 · 281 · 96457 · 8202479
15 36 · 52 · 7 · 1483 · 666739430527

n q = 4 q = 6 q = ∞
0 23 · 13 2 · 3 · 7 23 · 3
1 22 · 1093 33 · 29 22 · 3 · 23
2 211 · 47 25 · 271 211

3 2 · 33 · 22963 35 · 269 2 · 3 · 1867
4 214 · 653 26 · 33 · 5 · 43 214 · 3
5 23 · 5 · 13 · 41 · 3491 5 · 163 · 2137 23 · 23003
6 213 · 33 · 1951 25 · 36 · 307 213 · 3 · 52

7 34 · 7 · 1801 · 2161 2 · 33 · 53 · 9283 3 · 337 · 1861
8 217 · 77191 27 · 3 · 192 · 653 217 · 41
9 22 · 35 · 59 · 743129 37 · 157 · 839 22 · 3 · 5 · 241303
10 212 · 5 · 7 · 1063 · 1093 26 · 35 · 5 · 72 · 227 212 · 32 · 19 · 53
11 2 · 23 · 281 · 523 · 90499 2 · 3 · 17 · 97 · 103 · 2423 2 · 52 · 53 · 173 · 199
12 216 · 33 · 172 · 4157 26 · 35 · 433931 216 · 3 · 7 · 157
13 23 · 5 · 491 · 953 · 376153 33 · 613 · 1072231 23 · 3 · 11 · 1875943
14 214 · 33 · 7 · 7210349 210 · 5 · 37 · 238001 214 · 3 · 11 · 2039
15 34 · 5 · 7 · 24033246929 36 · 5 · 31 · 43 · 22859 32 · 15913 · 16691
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Table 2.

n γ(n) n γ(n) n γ(n) n γ(n) n γ(n)
1 21 8 41 8 61 6 81 7
2 0 22 2 42 5 62 5 82 1
3 4 23 5 43 4 63 5 83 4
4 3 24 8 44 5 64 15 84 8
5 6 25 8 45 6 65 8 85 7
6 2 26 1 46 3 66 4 86 2
7 5 27 5 47 6 67 4 87 5
8 6 28 6 48 11 68 4 88 8
9 7 29 6 49 9 69 8 89 7

10 1 30 3 50 0 70 4 90 1
11 4 31 7 51 5 71 5 91 6
12 5 32 12 52 4 72 6 92 6
13 6 33 7 53 6 73 7 93 10
14 3 34 1 54 3 74 1 94 4
15 5 35 6 55 5 75 4 95 5
16 9 36 3 56 9 76 5 96 14
17 7 37 6 57 7 77 8 97 7
18 0 38 2 58 1 78 3 98 0
19 4 39 5 59 4 79 6 99 4
20 4 40 7 60 6 80 10 100 3
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