
REMARKS ON A CONJECTURE ON CERTAIN INTEGER SEQUENCES

SHIGEKI AKIYAMA, HORST BRUNOTTE, ATTILA PETHŐ, AND WOLFGANG STEINER

Abstract. The periodicity of sequences of integers (an)n∈Z satisfying the inequalities

0 ≤ an−1 + λan + an+1 < 1 (n ∈ Z)

is studied for real λ with |λ| < 2. Periodicity is proved in case λ is the golden ratio; for other
values of λ statements on possible period lengths are given. Further interesting results on the
morphology of periods are illustrated.

The problem is connected to the investigation of shift radix systems and of Salem numbers.

1. Introduction

In this note we will analyze the following conjecture raised in ([1], Conjecture 6.1):

Conjecture 1.1. Let λ ∈ R and assume that the sequence of integers (an)n∈Z satisfies the inequal-
ities

(1.1) 0 ≤ an−1 + λan + an+1 < 1 (n ∈ Z).

If |λ| < 2 then (an)n∈Z is periodic.

The conjecture is supported by extensive computer experiments and by some theorems, which
we will collect below. It is trivially true for λ = −1, 0, 1.

The conjecture seems to be interesting by itself, but there are also connections to other areas.
Firstly, let us recall the definition of a shift radix system. To a vector r ∈ Rd we associate the
mapping τr : Zd → Zd in the following way: If a = (a1, . . . , ad) ∈ Zd then let1

τr(a) = (a2, . . . , ad,−brac),
where ra = r1a1 + · · · + rdad, i.e. the usual inner product of the vectors r and a. Then the
mapping τr : Zd −→ Zd is called a shift radix system if for every a ∈ Zd the orbit (τk

r (a))k∈N ends
up in the zero cycle. In general, it is a hard problem to decide which r ∈ Rd define shift radix
systems. Clearly, it is considerably easier to investigate the set Dd of those r ∈ Rd which yield
ultimately periodic orbits for each a ∈ Zd. But even in dimension d = 2 this easier problem is not
completely settled. It is believed [1] that the line segment

{(1, λ) ∈ R2||λ| < 2}
belongs to D2. Going back to the definitions we realize that we are exactly left with the problem
stated in Conjecture 1.1.

Secondly, there is a connection to a famous open question on Salem numbers, which are algebraic
integers where all conjugates have absolute value ≤ 1, with at least one conjugate on the unit circle.
Bertrand and K. Schmidt proved independently that the set Per(β) of all numbers with ultimately
periodic β-expansion is exactly Q(β) if β is a Pisot number (an algebraic integer with all conjugates
lying strictly inside the unit circle) and that Per(β) = Q(β) implies that β is a Pisot number or
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a Salem number, but we still do not know for any Salem number if this property is true or false.
In Hollander [4] and Rigo and Steiner [7] (in a more general context), an equivalent formulation
of this problem was given implicitly: Let β be a root of xd − b1x

d−1 − · · · − bd with bj ∈ Z,
rj = bd−j+2

β + · · ·+ bd

βj−1 (with r1 = 0) and extend the definition of τr to a = (a1, . . . , ad) ∈ Qd by

τr(a) = (a2, . . . , ad,−bra + {bda1 + · · ·+ b1ad}c+ {bda1 + · · ·+ b1ad}).
Then we have Per(β) = Q(β) if and only if (τk

r (a))k∈N is ultimately periodic for all a ∈ Qd.
Note that, for a ∈ 1

qZ
d, the iterates τk

r (a) are in 1
qZ

d as well and that a1 can be replaced by
{bda1 + · · · + b1ad}, hence we have a shift radix system in 1

q (Zq × Zd−1), which can probably be
treated similar to a shift radix system in Zd−1.

Conjecture 1.1 does not give answers to this problem because the degree of Salem numbers is
at least 4 which implies that the corresponding shift radix system has at least degree 3, but the
problems are similar: The eigenvalues of the shift radix system corresponding to a Salem number
β are the conjugates of β and lie therefore inside the unit circle (with at least one lying on it), the
eigenvalues of the shift radix system (1.1) lie on the unit circle if |λ| < 2.

Boyd [2] provided some heuristics predicting that Per(β) = Q(β) holds for Salem numbers of
degree 4 and 6, but not for Salem numbers of higher degree. Since Salem numbers are reciprocal,
1/β is a conjugate of β and all other conjugates lie on the unit circle. Therefore we have one
contracting direction of the shift radix system and a (d−2)-dimensional hyperplane corresponding
to the other eigenvalues. Therefore ||τk

r (a)|| = O (
kδ

)
for some δ < 1/(d − 2) implies that

(τk
r (a))k∈N is ultimately periodic (cf. Proposition 2.4). Boyd assumed that the τk

r (a) are randomly
distributed and used the birthday paradox to show that δ < 2/(d−2) is sufficient if this assumption
holds. By a random walk argument, he gave a justification for δ = 1/2.

2. General results

We start with a property satisfied for all λ. A sequence of integers (an)n∈Z is called an orbit
belonging to λ (or λ-orbit for short), if (1.1) holds for all n ∈ Z. To study orbits it is more
convenient to consider their consecutive terms because any two of them generate the whole orbit.
We say that (x, y) ∈ Z2 lies on an orbit if x and y are consecutive terms of the orbit. Fix λ and call
(a1, a2), (b1, b2) ∈ Z2 equivalent if they lie on the same orbit. It is clear that this is an equivalence
relation on Z2. Hence any pair (a1, a2) ∈ Z2 belongs to an orbit and two different orbits belonging
to λ have no common consecutive elements.

Lemma 2.1. Let (an)n∈Z be a λ-orbit , assume ak = ak+1 for some k ∈ Z and ak+`+1 = ak+`+2

for some ` ∈ N. Then (an)n∈Z is periodic with period length 2` + 2.

Proof. Without loss of generality we may assume k = 1. By induction on |n| we show an+2 = a1−n

for all n ∈ Z. Therefore, if ak+`+1 = ak+`+2 then (a−`, a−`+1) = (a2+`, a3+`). ¤
Theorem 2.2. There exist infinitely many orbits belonging to λ.

Proof. Consider an orbit with equal starting values, i.e. assume a1 = a2. Now if there exists
an i ≥ 0 such that a2+i = a3+i then by Lemma 2.1 (an)n∈Z becomes periodic. Hence (an)n∈Z
can include at most two diagonal pairs. As there exist infinitely many diagonal pairs the proof is
done. ¤

The following examples shed some light on the growth of possible period lengths of orbits.

Example 2.3. Let 0 < λ < 1 and q be a positive integer.
(i) The λ-orbit with initial values 0, q where q < 1

1−λ has minimal period length 6q + 1 (see
[1]).

(ii) For λ < 1
q the λ-orbit with initial values 0, q has minimal period length 4q+3. This can eas-

ily be seen by calculating the first eight elements of the orbit, i.e. 0, q, 0,−q, 1, q,−1,−q+1,
and then deducing

a4k+1 = k, a4k+2 = q − k + 1, a4k+3 = −k, a4k+4 = −q + k (1 ≤ k ≤ q)

by induction. We conclude a4q+4 = 0, a4q+5 = q.
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In the sequel we assume |λ| < 2. Then there exists a unique α ∈ [0, π) such that λ = 2 cos α.
Setting ω = cos α + i sin α we get λ = ω + ω̄, where i =

√−1 and ω̄ denotes the conjugate of the
complex number ω.

To a λ-orbit (an)n∈Z we associate some other sequences which make our investigation more
tractable. First set bn−1 = an−1 + λan + an+1 for n ∈ Z. Then (1.1) implies 0 ≤ bn < 1, and by
the definition of ω we have

bn−1 = an−1 + ω̄an + ω(an + ω̄an+1) (n ∈ Z).

Hence it is convenient to introduce the companion sequence cn = an + ω̄an+1 (n ∈ Z). Rewriting
this relation we obtain

(2.1) bn−1 = cn−1 + ωcn.

For the sequence of real numbers defined by αn+1 = −αn−1−λαn, the points (αn, αn+1) lie on
the ellipse

r2 = α2
n + λαnαn+1 + α2

n+1 = (2 + λ)
(

αn + αn+1

2

)2

+ (2− λ)
(

αn − αn+1

2

)2

.

for some r ≥ 0. For an+1 = −an−1−λan +{λan}, the situation is slightly different. If we consider
the companion sequence

r2
n = a2

n + λanan+1 + a2
n+1 = (2 + λ)

(
an + an+1

2

)2

+ (2− λ)
(

an − an+1

2

)2

,

we obtain

r2
n = a2

n + λanan−1 + a2
n−1 + {λan}(−2an−1 − λan + {λan})

= r2
n−1 − {λan}(2an−1 + bλanc)

= r2
n−1 − {2an−1 + λan}b2an−1 + λanc.

Proposition 2.4. If

lim sup
n→∞

r2
n

n
<

√
4− λ2

π
,

then (an)n∈Z is periodic.

Proof. The area of the ellipse a2
n + λanan+1 + a2

n+1 = r2
n is r2

nπ/
√

4− λ2. The ellipse contains
therefore r2

nπ/
√

4− λ2+O(rn) integer points. If this number grows slower than n, then two points
(aj , aj+1) and (ak, ak+1) with j 6= k are equal and the sequence is periodic. ¤

Obviousy every bounded λ-orbit is periodic. In the sequel we prove that already one-side
boundedness is enough to prove periodicity.

Proposition 2.5. If a λ-orbit is lower or upper bounded (one-side bounded) then it is periodic.

To prove this statement we need two lemmata.

Lemma 2.6. If there exists some x ∈ Z which appears infinitely often as a member of a one-side
bounded λ-orbit (an) then (an) is periodic.

Proof. Let Jx denote the (infinite) set of those indices j with aj = x. Then

−λx ≤ aj−1 + aj+1 < −λx + 1

holds by (1.1) for all j ∈ Jx. Thus

(2.2) −aj−1 − λx ≤ aj+1 < −aj−1 − λx + 1.

Assume that aj−1 is unbounded for j ∈ Jx. As (an) is one-side bounded an < K (an > −K)
holds for all n ∈ Z with a constant K. Thus there exists j ∈ Jx with aj−1 ≤ −K − λx (aj−1 ≥
K − λx + 1). Then aj+1 ≥ K (aj+1 < −K) holds by (2.2), which contradicts the assumption on
(an).



4 S. AKIYAMA, H. BRUNOTTE, A. PETHŐ, AND W. STEINER

Therefore aj−1 is bounded for all j ∈ Jx and there exists y ∈ Z and j1, j2 ∈ Jx, j1 6= j2 with
aj1−1 = aj2−1 = y. Then (aj1−1, aj1) = (aj2−1, aj2) = (y, x) and (an) is periodic. ¤

Lemma 2.7. Every unbounded λ-orbit has infinitely many positive and infinitely many negative
terms.

Proof. A collection of consecutive positive (negative) terms of (an) will be called a positive (neg-
ative) run. We prove that a run is always finite. This implies the statement immediately. We
distinguish three cases according to the size of λ.

Case I, λ ≥ 0. By (1.1) the length of a run is at most two.
Case II, −1 ≤ λ < 0. Summing up three consecutive inequalities (1.1) we obtain

0 ≤ an−2 + (1 + λ)an−1 + (2 + λ)an + (1 + λ)an+1 + an+2 < 3.

Thus the length of a run is at most four.
Case III, −2 < λ < −1. This is the most complicated case. Consider first a positive run. We

prove that it has a local maximum. Indeed, assume that the run starting with a0 is increasing.
Let ` be so large that (`− 2)(2 + λ) + 1 + λ ≥ 0. We may assume that a0 ≥ `. By Lemma 2.1 two
consecutive terms of (an) can be identical only once, thus we can achieve a0 ≥ ` by omitting from
consideration at most ` terms.

Summing up ` consecutive inequalities (1.1) and using that the run is increasing we obtain

` > a0 + (1 + λ)a1 + (2 + λ)
`−1∑

j=2

aj + (1 + λ)a` + a`+1

≥ a0 + (1 + λ)a1 + (2 + λ)(`− 2)a2

≥ a0 ≥ `,

which is a contradiction. Thus an increasing part of a run has length at most 2`+1, which proves
the claim.

Now let a0 be a local maximum of our run. Only a1 or a−1, but not both can be equal to a0,
thus we may assume a0 > a1. Assume that ak > ak+1 for some k ≥ 0. Dividing (1.1) by ak+1 we
obtain

0 ≤ ak

ak+1
+ λ +

ak+2

ak+1
<

1
ak+1

,

which implies
ak+2

ak+1
< −ak − 1

ak+1
− λ ≤ −1− λ < 1,

i.e. ak+1 > ak+2. Thus from the maximum on the run is strictly decreasing. As the definition of
(an) is symmetrical, this holds for both directions. Summing up the length of a positive run is at
most 4` + 3.

Negative runs can be treated similarly. ¤

Proof of Proposition 2.5. If the λ-orbit (an) is bounded then we have nothing to do. Assume
that it is one-side bounded, but unbounded. Then by Lemma 2.7 it has infinitely many positive
and infinitely many negative terms. As (an) is one-side bounded there exists an integer which
appears infinitely often in (an). By Lemma 2.6 (an) is bounded, hence periodic. ¤

3. General results on the periods

Although the following lemma is a simple consequence of the definitions it plays an important
role in the analysis of periods.

Lemma 3.1. Let m ≥ 1 be an integer, then

(3.1)
m∑

j=1

bj−1(−ω)j−1 = c0 − (−ω)mcm.
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Proof. Relation (3.1) is true for m = 1. Assume that it holds for m. Then using (3.1) and (2.1)
we get

m+1∑

j=1

bj−1(−ω)j−1 = c0 − (−ω)mcm + bm(−ω)m

= c0 − (−ω)mcm + (−ω)mcm + (−ω)mωcm+1

= c0 − (−ω)m+1cm+1,

and the lemma is proved. ¤
The meaning of the next theorem is that the minimal period length of a periodic orbit grows

generally with the initial terms. More precisely we prove:

Theorem 3.2. Assume that the orbit (an)n∈Z belongs to λ = 2<ω and that (an)n∈Z is periodic
with minimal period length p. If

(i) ω is not a root of unity or
(ii) if k is the smallest positive integer with ωk = −1 and k does not divide p or
(iii) if k is the smallest positive integer with ωk = −1, k divides p, k is even and p/k is odd

then |a0|+ |a1| is bounded by a constant which depends only on p and on the argument of ω.

Proof. As p is a period length of (an)n∈Z we have cp = ap + ω̄ap+1 = a0 + ω̄a1 = c0. Using this
and (3.1) we get

(3.2)
p∑

j=1

bj−1(−ω)j−1 = c0(1− (−ω)p).

The absolute value of the sum on the left hand side is at most p. It remains to prove that under
one of the conditions (i)-(iii) |1− (−ω)p| is bounded below by a constant depending only on p and
on the argument of ω. Note that by an elementary argument the boundedness of |c0| implies that
|a0|+ |a1| is bounded.

The statement is obviously true when ω is not a root of unity.
In the cases (ii) and (iii) write p = kt + r, with 0 ≤ r < k. Then

1− (−ω)p = 1 + (−1)p+t+1ωr.

If k does not divide p, then r 6= 0, i.e. 1 + (−1)p+t+1ωr 6= 0. Similarly, if k divides p, but k is
even, then p is even and as p/k = t is odd then p + t + 1 is even, i.e. 1 + (−1)p+t+1ωr = 2. ¤

The next corollary is an immediate consequence of Theorem 3.2.

Corollary 3.3. Let ω ∈ C be not a root of unity and assume that Conjecture 1.1 holds for λ = 2<ω.
Then there exist periodic orbits belonging to λ with arbitrary long minimal period lengths.

4. Morphology of the periods

According to our computation experience the graph of an orbit can have three different shapes.
Typical examples are displayed in Figures 1-3. In Case I the corresponding ω is not a root of unity
and the graph resembles an ellipse. In the other cases ω is an eighth root of unity. The difference
is in the length of period. In Case II this number is not divisible by eight. The graph has only
one component. Finally, in Case III the period length is divisible by eight and the graph consists
of eight “connected” components. We show that this happens always.

Assume first that ω is a root of unity, i.e. its argument α is a rational multiple of π. Then we
can associate a fourth, bounded sequence to (an)n∈Z .

Lemma 4.1. Assume that ω 6= −1, but ωk = −1 for some integer k > 1 and put

dn =

{
an − an+k , if k is odd,

an + an+k , if k is even.

Then |dn| is bounded by a constant depending only on k.
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Figure 1. Case I. λ = 1.1, a1 = 25, a2 = 462, period length 7555
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Figure 2. Case II. λ =
√

2, a1 = 169, a2 = −169, period length 1461
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Figure 3. Case III. λ = −√2, a1 = 58, a2 = 58, period length 392

Proof. As we can start the orbit by any of its members it is enough to prove the lemma for n = 1.
By (3.1) we get

k∑

j=1

bj−1(−ω)j−1 = c0 − (−ω)kck

= c0 + (−1)k+2ck

= a0 + (−1)kak + ω̄(a1 + (−1)kak+1)
= d0 + ω̄d1.

We have ω = cos `π
k + i sin `π

k for some odd ` 6= k, 0 < ` < 2k. Comparing the imaginary parts of
the relation we get

k∑

j=1

bj−1(−1)j sin
(j − 1)`π

k
= d1 sin

`π

k
.

As the absolute value of the left hand side is less than k and | sin `π
k | ≥ | sin π

k |, which depends
only on k, the lemma is proved. ¤
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To analyze the shape of (periodic) orbits it is more convenient to deal with the difference rather
than the sum of members of (an)n∈Z . If k is even then

|an − an+2k| ≤ |an + an+k|+ |an+k + an+2k| ≤ dn + dn+k,

hence |an − an+2k| is bounded, too. Thus for λ = 2<ω with ωk = −1 the following constant is
well defined:

dλ(k) =

{
max{|an − an+k| | (an)n∈Z λ-orbit} , if k is odd,

2max{|an − an+2k| | (an)n∈Z λ-orbit} , if k is even.

Let d ∈ N. A subset S ⊆ Z2 is called d-connected if |S| = 1 or if for any a ∈ S there exists
b ∈ S, a 6= b with ‖ a− b ‖∞≤ d.

Theorem 4.2. Let ωk = −1, λ = 2<ω and d = dλ(k) be defined as above. Let p be the minimal
period length of the λ-orbit (an)n∈Z , and set S = {(an, an+1) |n ∈ Z}.

(i) If gcd(k, p) = 1, then S is d-connected.
(ii) If k is odd and divides p or if k is even and 2k divides p then S is the union of k or 2k

d-connected subsets S0, . . . , St−1, t = k or t = 2k. Moreover, if max{|an| |n ∈ Z} is large
enough then ‖ xu − xv ‖∞> d for all xu ∈ Su, xv ∈ Sv, u 6= v.

Proof. Notice that S = {(an, an+1) | 0 ≤ n < p}. Assume first gcd(k, p) = 1. Then the set
{k` | 0 ≤ ` < p} is a complete residue system modulo p, hence

S = {(ak`, ak`+1) | 0 ≤ ` < p}.
We also have

‖ (ak`, ak`+1)− (ak(`+1), ak(`+1)+1) ‖∞≤ d

by the definition of d. Thus S is indeed d-connected.
Now we turn to the proof of the second statement. Set t = k, if k is odd and divides p and

t = 2k, if k is even and 2k divides p. Let

Sj = {(an, an+1) |n ∈ Z, n ≡ j (mod t)} (j = 0, . . . , t− 1).

We obviously have ∪t−1
j=0 = S and claim Su ∩ Sv = ∅ whenever u 6= v. Indeed, if there would exist

(x, y) ∈ Su ∩ Sv then (x, y) = (au+t`, au+t`+1) = (av+th, au+th+1) would hold with some `, h ∈ Z
such that 0 ≤ u+ t`, v + th < p. This implies u+ t` = v + th because two consecutive terms define
(an)n∈Z uniquely. Hence t divides |u− v|, which implies u = v.

By the definition of d it is clear that the sets Sj , j = 0, . . . t − 1 are d-connected. It remains
only to prove that the distance of Su and Sv is large, provided that the largest term of (an)n∈Z
is large enough. Let K = max{|an| | 0 ≤ n < p}. We may assume without loss of generality that
K = |a0|. Let m denote an index such that |amt| = min{|ajt| | 0 ≤ j < p/t}. If j ≤ bp/(2t)cthen

|a0 − ajt| = |a0 − at + at − a2t + · · · − a(j−1)t + a(j−1)t − ajt| ≤ jd ≤ pd

2t
,

which implies

|ajt| ≥ K − pd

2t
.

Otherwise, if j > bp/(2t)c then using ap = a0 we get

|a0 − ajt| = |ap − ap−t + ap−t − ap−2t + · · · − a(j+1)t + a(j+1)t − ajt| ≤
(p

t
− (j + 1)

)
d ≤ pd

2t
.

Thus we have

(4.1) |ajt| ≥ K/2 (0 ≤ j < p/t),

provided K is large enough.
For j ∈ Z set cj = aj + ω̄aj+1. By Lemma 3.1 the set Sj is close to the set (−ω)−jS0. In the

sequel we intend to quantify this fact.
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First we prove that if K is large enough then the lengths of the elements of S0 are large, too.
Write ω = cos α + i sin α. Let 0 ≤ j < p/t. Then

|cjt|2 = |ajt + ω̄ajt+1|2 = |ajt +ajt+1 cosα|2 + |ajt+1 sin α|2 ≥ ||ajt|− |ajt+1 cos α||2 + |ajt+1 sin α|2.
If ||ajt| − |ajt+1 cosα|| ≥ K/4, then we immediately get |cjt| ≥ K/4. In the opposite case
|ajt+1 cosα| > |ajt −K/4| ≥ K/4 by (4.1). Hence, as sin α 6= 0 we find

|cjt| ≥ |ajt+1 sin α| ≥ | tan α|K/4 > k1K

with a constant k1, which depends only on k.
Let 0 ≤ u < t, then using Lemma 3.1 we get

|cjt − (−ω)ucjt+u| = |
u∑

`=1

(−ω)`−1bjt+`−1| ≤ u,

hence
||cjt| − |cjt+u|| ≤ u ≤ t.

Let finally 0 ≤ u < v < t. Then using the former inequalities we obtain

|cjt+u − cjt+v| = |cjt+u − (−ω)ucjt + (−ω)ucjt − (−ω)vcjt + (−ω)vcjt − cjt+v|
≥ |(−ω)u − (−ω)v||cjt| − |cjt+u − (−ω)ucjt| − |(−ω)vcjt − cjt+v|
≥ |(−ω)u − (−ω)v|K1 − 2t

≥ k2K,

with a constant k2, which depends only on k.
On the other hand

|cjt+u − cjt+v|2 ≤ |ajt+u − ajt+v + (ajt+u+1 − ajt+v+1) cos α|2 + |(ajt+u+1 − ajt+v+1) sin α|2.
If the second summand is larger than d2, then we are done. Otherwise

|ajt+u+1 − ajt+v+1| ≤ d/| sin α|,
hence

|ajt+u+1 − ajt+v+1| ≥ k2K − d| cot α|,
which is larger than d if K is large enough. ¤

Now we show that the second statement is not empty for a wide class of the parameter λ. More
precisely we prove:

Theorem 4.3. Let k be a positive integer such that 2k + 1 is a prime. Put λ = 2 cos π
2k+1 . Then

there exist infinitely many a ∈ Z such that the λ-orbit with starting values a0 = a1 = a has length
2k + 1. Moreover the structure of these orbits is a1a2 . . . akak+1ak . . . a1.

To prove this theorem we need some lemma.

Lemma 4.4. Let p0(x) = −1, p1(x) = 1 and pn+2(x) = xpn+1(x)− pn(x) for n ≥ 1. Then

pn(x) =
(1 + X2)Xn

1 − (1 + X1)Xn
2

X1 −X2
,

where X1 = (x +
√

x2 − 4)/2, X2 = (x−√x2 − 4)/2.

This is a well known relation in the theory of second order recurrences. The next lemma is
crucial for the proof of Theorem 4.3.

Lemma 4.5. Let k ≥ 1 and λ = 2 cos π
2k+1 . Then

(i) 2pk(λ)− λpk+1(λ) = 0 and
(ii) pk+1(λ) = 2

∑k−1
j=0 (−1)jpk−j(λ).
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Proof. Let ω = cos π
2k+1 + i sin π

2k+1 . Then we have λ = ω + ω̄, ωω̄ = 1 and ω2k+1 = −1.
Specializing x = λ in Lemma 4.4 we get X1 = ω, X2 = ω̄. After these preparation we are in the
position to prove the statements.
(i) Using the above relations we have:

2pk(λ)− λpk+1(λ) = 2
(1 + ω̄)ωk − (1 + ω)ω̄k

ω − ω̄
− (ω + ω̄)

(1 + ω̄)ωk+1 − (1 + ω)ω̄k+1

ω − ω̄

=
1

ω − ω̄

(
(1 + ω̄)ωk(2− (ω + ω̄)ω)− (1 + ω)ω̄k(2− (ω + ω̄)ω̄)

)

=
(ω + 1)(ω̄ + 1)

ω − ω̄

(
ω̄k(ω̄ − 1)− ωk(ω − 1)

)

=
(ω + 1)(ω̄ + 1)
ωk+1(ω − ω̄)

(
(1− ω)− ω2k+1(ω − 1)

)
= 0.

Now we turn to prove (ii).

2
k−1∑

j=0

(−1)jpk−j(λ) = 2
k−1∑

j=0

(−1)j (1 + ω̄)ωk−j − (1 + ω)ω̄k−j

ω − ω̄

= 2
(ω̄ + 1)ωk

ω − ω̄

k−1∑

j=0

(−ω)−j − 2
(ω + 1)ω̄k

ω − ω̄

k−1∑

j=0

(−ω̄)−j

= 2
ωk − ω̄k

ω − ω̄
= pk+1(λ).

¤

By the elementary theory of cyclotomic fields λ is an algebraic number of degree ϕ(2k+1)/2 = k,
where ϕ(.) denotes Euler’s totient function (see e.g. [6]).

Corollary 4.6. If 2k + 1 is a prime and λ = 2 cos π
2k+1 then the real numbers p2(λ), . . . , pk+1(λ)

are linearly independent over Q.

Proof. As pj(λ) is a rational expression of λ of degree j − 1, the real numbers p1(λ), . . . , pk(λ)
are linearly independent over Q. By Lemma 4.5 (ii) we may replace p1(λ) = 1 by pk+1(λ) getting
again a linearly independent system. ¤

Lemma 4.7. Let a ∈ Z and

(4.2) aj = (−1)j−1bapj(λ)c, j = 1, . . . , k + 1.

Assume that

0 ≤ (−1)j−1 ({apj−1(λ)} − λ{apj(λ)}+ {apj+1(λ)}) < 1, j = 2, . . . , k,(4.3)

0 ≤ (−1)k (2{apk(λ)} − λ{apk+1(λ)}) < 1.(4.4)

Then a1a2 . . . akak+1ak . . . a1 is a λ-orbit.

Proof. It is clear that a1 = a. As

a1(λ + 1) + a2 = a(λ + 1)− ba(λ + 1)c
lies in the interval [0, 1) the integers a1, a1, a2 satisfy (1.1). Let 2 ≤ j ≤ k. Then

aj−1 + λaj + aj+1 = (−1)j−2bapj−1(λ)c+ λ(−1)j−1bapj(λ)c+ (−1)jbapj+1(λ)c
= (−1)ja (pj−1(λ)− λpj(λ) + pj+1(λ))

+ (−1)j−1 ({apj−1(λ)} − λ{apj(λ)}+ {apj+1(λ)}) .

The first summand is zero by the definition of the polynomials pj(x) and the second summand lies
in the interval [0, 1) by the assumption, hence the integers aj−1, aj , aj+1 satisfy (1.1). Hence, as
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a1a2 . . . akak+1ak . . . a1 is symmetrical to ak+1, to prove that it is a λ-orbit we have to show that
ak, ak+1, ak satisfy (1.1) too. We have

2ak + λak+1 = 2(−1)k−1bapk(λ)c+ λ(−1)kbapk+1(λ)c
= (−1)k−1a (2pk(λ)− λpk+1(λ)) + (−1)k (2{apk(λ)} − λ{apk+1(λ)}) .

Here the first summand is zero by Lemma 4.5 (i) and the second is lying in the interval [0, 1) by
the assumption. The lemma is proved. ¤

Proof of Theorem 4.3. Consider the system of inequalities (I)

0 ≤ (−1)j−1(xj−1 − λxj + xj+1) < 1, j = 2, . . . , k

0 ≤ (−1)k(2xk − λxk+1) < 1,

where x1 = 0. Put

S = {(x2, . . . , xk+1) ∈ Rk, (x2, . . . , xk+1) satisfies (I)} ∩ [0, 1)k.

A ball B with small enough positive radius around the point p = (p2, . . . , pk+1) with p2j =
1/2, j = 1, . . . , b(k + 1)/2c and p2j+1 = 1/4, j = 1, . . . , b(k + 1)/2c is contained in the set S,
because 1 < λ < 2.
The real numbers p2(λ), . . . , pk+1(λ) are by Corollary 4.6 linearly independent over Q. Hence the
set

{({ap2(λ)}, . . . , {apk+1(λ)})|a ∈ Z}

is everywhere dense in [0, 1)k (see e.g. [3], Theorem 1, §3.). Thus its intersection with S is an
infinite set, moreover these points satisfy the inequalities (4.3) and (4.4). Notice that {ap1(λ)} = 0.
By Lemma 4.7 there exist infinitely many a ∈ Z such that the λ-orbits with starting values a, a
are periodic of length 2k + 1. ¤

Remark 4.8. With some effort one could prove similar results for 4k+2-th primitive roots of unity
which do not lie in the first quadrant, and for 2k +1-th roots of unity. The minimal period length
is usually 2k + 1 or 4k + 2. The following question seems to be more challenging: do there exist
infinitely many 2<ω-orbits with arbitrary large minimal period length p?

5. λ is the golden ratio,i.e. λ = 1+
√

5
2

The purpose of this section is prove the conjecture in some case, when ±λ is two times the real
part of a root of unity. In the following table we display twice of the real parts of roots of unity
of low order.

order 1 2 3 4 5 5
λ 2 -2 -1 0 −1+

√
5

2
−1−√5

2

Theorem 5.1. Every orbit belonging to λ = 1+
√

5
2 is periodic.

Proof. We have

an+1 = −an−1 − λan + {λan}

an + λan+1 = −λan−1 − λan + λ{λan} = −bλan−1c − {λan−1} − bλanc+
1
λ
{λan}
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hence

an+2 = λan−1 − {λan−1}+ λan − {λan}+ c with c =
{

1 if {λan−1} > 1
λ{λan}

0 if {λan−1} ≤ 1
λ{λan}

an+1 + λan+2 = λan−1 − λ{λan−1}+ an − 1
λ
{λan}+ λc

= bλan−1c − 1
λ
{λan−1}+ an − 1

λ
{λan}+ λc

an+3 = −λan−1 + {λan−1} − an + c′ with c′ =





1 if {λan−1} ≤ 1
λ{λan}

0 if {λan−1} > 1
λ{λan}, {λan−1}+ {λan} > 1

−1 if {λan−1} > 1
λ{λan}, {λan−1}+ {λan} ≤ 1

an+2 + λan+3 = −an−1 +
1
λ
{λan−1} − {λan}+ c + λc′

an+4 = an−1 + dn−1 with dn−1 =





1 if {λan−1} > 1
λ{λan}, {λan−1}+ {λan} ≤ 1

0 if 1
λ{λan} < {λan−1} < λ{λan}, {λan−1}+ {λan} > 1

or {λan−1} ≤ 1
λ{λan}, {λan} > 1

λ + 1
λ{λan−1}

−1 if {λan−1} ≤ 1
λ{λan}, {λan} ≤ 1

λ + 1
λ{λan−1}

or {λan−1} ≤ λ{λan}, {λan−1}+ {λan} > 1

The condition {λan−1} ≤ 1
λ{λan} in the third line of the expression for dn−1 is not necessary

since it is implied by {λan} > 1
λ + 1

λ{λan−1}. Finally we have

an+3 + λan+4 = {λan−1} − an + c′ + λdn−1

an+5 = an + dn with dn =





1 if {λan−1} ≥ λ{λan}, {λan−1}+ {λan} > 1
or {λan−1} ≤ 1

λ{λan}, {λan} ≤ 1
λ + 1

λ{λan−1}
0 if {λan−1} > 1

λ{λan}, {λan−1}+ {λan} ≤ 1, {λan−1} < 1
λ2

or 1
λ{λan} < {λan−1} < λ{λan}, {λan−1}+ {λan} > 1

−1 if {λan−1} > 1
λ{λan}, {λan−1}+ {λan} ≤ 1, {λan−1} ≥ 1

λ2

or {λan} > 1
λ + 1

λ{λan−1}
(In the first line, 1 < {λan−1}+ {λan} ≤ λ{λan−1} implies {λan−1} > 1

λ .)
Therefore |dn| = |an+5 − an| ≤ 1 for all n ∈ Z.
The Fibonacci numbers are given by

Fj =
1√
5
λj − 1√

5

(
− 1

λ

)j

,

λFj =
1√
5
λj+1 +

λ2

√
5

(
− 1

λ

)j+1

= Fj+1 +
λ2 + 1√

5

(
− 1

λ

)j+1

= Fj+1 +
(−1)j+1

λj

Suppose an = F2m−1 (with n ≥ 2,m ≥ 2) and aj ≤ F2m−1 for all j ∈ {0, . . . , n − 1}. Then
we have λan−1 ≥ −an−2 − an ≥ −2F2m−1, thus −F2m < an−1 ≤ F2m−1. Since the Fj are the
denominators of the best approximations of λ (see e.g. [5], Ch.10, Theorem 3.1), we have

{λan} ≤ {λan−1} ≤ 1− {λan}, hence dn = an+5 − an ∈ {−1, 0}.
If we choose m such that aj ≤ F2m−1 for all j ∈ {0, . . . , 6}, then a5, . . . , a9 ≤ F2m−1 and,
inductively, a5k, . . . , a5k+4 ≤ F2m−1 for all k ≥ 0. An application of Proposition 2.5 concludes the
proof. ¤
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