BASIC PROPERTIES OF SHIFT RADIX SYSTEMS

Shigeki Akiyama ${ }^{1}$
Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, Niigata 950-2181, JAPAN
akiyama@math.sc.niigata-u.ac.jp
Tibor Borbély
National Instruments Europe Kft, H-4031 Debrecen, Hatar u. 1/A, HUNGARY
tibor.borbely@ni.com
Horst Brunotte
Haus-Endt-Straße 88, D-40593 Düsseldorf, GERMANY
brunoth@web.de
\section*{Attila Pethö ${ }^{2}$}
Department of Computer Science, University of Debrecen, P.O. Box 12, H-4010 Debrecen, HUNGARY pethoe@inf.unideb.hu
Jörg M. Thuswaldner ${ }^{3}$
Chair of Mathematics and Statistics, Leoben University, Franz-Josef-Straße 18, A-8700 Leoben, AUSTRIA
joerg.thuswaldner@unileoben.ac.at

Abstract

Certain dynamical systems on the set of integer vectors \mathbb{Z}^{d} are introduced and their basic properties are described. Applications to β-expansions and canonical number systems reveal unexpected relations between different radix representation concepts.

Key words: beta expansion, canonical number system, dynamical system, Pisot number, radix representation.
2000 Mathematics Subject Classification: 11A63

[^0]
1. Introduction

Let $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right) \in \mathbb{R}^{d}(d \geq 1)$. We are interested in the mapping $\tau_{\mathbf{r}}: \mathbb{Z}^{d} \rightarrow \mathbb{Z}^{d}$ defined by ${ }^{4}$

$$
\tau_{\mathbf{r}}(\mathbf{a})=\left(a_{2}, \ldots, a_{d},-\left\lfloor r_{1} a_{1}+\cdots+r_{d} a_{d}\right\rfloor\right)
$$

for $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{Z}^{d}$. The mapping $\tau_{\mathbf{r}}$ is called a shift radix system (SRS for short) if for all $\mathbf{a} \in \mathbb{Z}^{d}$ we can find some $n \in \mathbb{N}$ with $\tau_{\mathbf{r}}^{n}(\mathbf{a})=(0, \ldots, 0)$. In this note we give a short summary of basic properties and applications of SRS and mention some open problems. For more detailed background information and proofs the reader is referred to the original papers [1, 2].

Throughout we shall use the following sets which are closely connected to the orbits of τ_{r} :
$\mathcal{D}_{d}^{0}:=\left\{\mathbf{r} \in \mathbb{R}^{d} \mid \tau_{\mathbf{r}}\right.$ is a SRS $\}$ and
$\mathcal{D}_{d}:=\left\{\mathbf{r} \in \mathbb{R}^{d} \mid\right.$ for all $\mathbf{a} \in \mathbb{Z}^{d}$ the sequence $\left(\tau_{\mathbf{r}}^{n}(\mathbf{a})\right)_{n \in \mathbb{N}}$ is ultimately periodic $\}$.
Some subsets of these sets will be given later (see Sections 2 and 3), here we restrict to a few preliminary examples.

Examples

(i) $\mathcal{D}_{1}=[-1,1], \mathcal{D}_{1}^{0}=[0,1)($ see $[1])$.
(ii) $D \backslash\left\{(1, y) \in \mathbb{R}^{2}|0<|y|<1\right.$ or $1<|y|<2\} \subseteq \mathcal{D}_{2} \subseteq D$ where

$$
\begin{gathered}
D=\left\{(x, y) \in \mathbb{R}^{2}| | x|\leq 1,|y| \leq 1+x,(x, y) \neq(1,-2),(1,2)\}\right. \\
\backslash\left\{(x,-x-1) \in \mathbb{R}^{2} \mid 0<x<1\right\}(\text { see }[2]) .
\end{gathered}
$$

(iii) Set

$$
\begin{aligned}
E_{1} & =\left\{(x, y) \in \mathbb{R}^{2} \mid x<1, y<2 x, \frac{2 x}{3}+1 \leq y\right\}, \\
E_{2} & =\left\{(x, y) \in \mathbb{R}^{2} \mid x<1, \frac{x}{2}+1<y<2 x, y<\frac{2 x}{3}+1\right\}, \\
E_{3} & =\left\{(x, y) \in \mathbb{R}^{2} \mid x<1,-2 x+1 \leq y<-\frac{1}{2} x\right\}, \text { and } \\
L & =\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, 0 \leq x \leq \frac{5}{6}\right., y<x+1, y \geq-x\right\} .
\end{aligned}
$$

Then

$$
\mathcal{D}_{2}^{0} \cap L=L \backslash\left(E_{1} \cup E_{2} \cup E_{3}\right)(\text { see }[2])
$$

In Figure 1 the gray points sketch an approximation of \mathcal{D}_{2}^{0}; note that the coordinate system is changed to be easier comparable to Figure 2 in Section 2.2.

[^1]

Figure 1: An approximation of \mathcal{D}_{2}^{0}.

2. Applications of shift radix systems

The main applications of SRS which have been dealt with so far are related to radix representations.

2.1 Shift radix systems and β-expansions

The so-called β-expansions have first been studied by A. RÉnyi [17] and W. Parry [14] and have subsequently been intensively studied.

Let $\beta>1$ be a non-integral real number. Then each $\gamma \in[0, \infty)$ can be represented uniquely by

$$
\begin{equation*}
\gamma=a_{m} \beta^{m}+a_{m-1} \beta^{m-1}+\cdots \tag{1}
\end{equation*}
$$

with $a_{i} \in\{0,1, \ldots,\lfloor\beta\rfloor\}$ such that

$$
\begin{equation*}
0 \leq \gamma-\sum_{i=n}^{m} a_{i} \beta^{i}<\beta^{n} \tag{2}
\end{equation*}
$$

holds for all $n \leq m$. Since by condition (2) the digits a_{i} are selected as large as possible, the representation in (1) is called the greedy expansion of γ with respect to β.

Apart from the SRS notion the following theorem is basically due to M. HollanDER [6].

Theorem 1(M. Hollander) Let $d>1$ and $\beta>1$ be a real algebraic integer with minimal polynomial $X^{d}-b_{1} X^{d-1}-\cdots-b_{d-1} X-b_{d} \in \mathbb{Z}[X]$. Define $r_{2}, \ldots, r_{d} \in \mathbb{R}$ by

$$
\begin{gathered}
X^{d}-b_{1} X^{d-1}-\cdots-b_{d-1} X-b_{d}=(X-\beta)\left(X^{d-1}+r_{2} X^{d-2}+\cdots+r_{d}\right), \\
\text { hence } r_{j}=b_{j} \beta^{-1}+b_{j+1} \beta^{-2}+\cdots+b_{d} \beta^{j-d-1} \quad(2 \leq j \leq d)
\end{gathered}
$$

Then $\left(r_{d}, \ldots, r_{2}\right) \in \mathcal{D}_{d-1}^{0}$ if and only if $\mathbb{Z}\left[\frac{1}{\beta}\right] \cap[0, \infty)$ coincides with the set of positive real numbers having finite greedy expansion with respect to β.
Proof. See [1].
A. Bertrand [3] and K. Schmidt [18] proved that if β is a Pisot number then the β-expansion of every element of $\mathbb{Q}(\beta) \cap[0, \infty)$ is ultimately periodic. The above mentioned finiteness property can only hold for Pisot numbers β (see [4], Lemma 1).

We remark that the characterization of Pisot numbers with the above mentioned finiteness property is not even known for degree $d=3$.

2.2 Shift radix systems and canonical number systems

An example of a canonical number system was first studied by D. E. Knuth [10, 11]. His notion was extended by W. J. Gilbert, I. Kátai, B. Kovács and J. Szabó $([5,7,8,9])$ to quadratic number fields and by B. KovÁcs [12] to arbitrary number fields as straightforward generalizations of the well-known radix representation of ordinary integers.

This concept was further generalized by the fourth author [15] by defining CNS polynomials: A monic integral polynomial $P(X)$ is called a $C N S$ polynomial if every coset of $\mathbb{Z}[X] / P(X) \mathbb{Z}[X]$ contains an element of the form

$$
a_{0}+a_{1} x+\cdots+a_{l} x^{l}
$$

with $a_{0}, \ldots, a_{l} \in\{0,1, \ldots,|P(0)|-1\}$ where x denotes the image of X under the canonical epimorphism from $\mathbb{Z}[X]$ to $\mathbb{Z}[X] / P(X) \mathbb{Z}[X]$.

Theorem 2 Let $p_{0}, \ldots, p_{d-1} \in \mathbb{Z}$ with $p_{0}>1$. Then $\left(\frac{1}{p_{0}}, \frac{p_{d-1}}{p_{0}}, \ldots, \frac{p_{1}}{p_{0}}\right) \in \mathcal{D}_{d}^{0}$ if and only if $X^{d}+p_{d-1} X^{d-1}+\cdots+p_{0}$ is a CNS polynomial.
Proof. See [1].
As an illustration the grey points in Figure 2 represent all cubic CNS polynomials with constant term equal to 474 .

The complete description of CNS polynomials of degree $d>2$ is still open.

3. Basic properties of shift radix systems

For $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right) \in \mathbb{R}^{d}$ the mapping $\tau_{\mathbf{r}}$ differs from a linear mapping by a certain additive term. Although being small this term is the reason for the difficulties in controlling

Figure 2: CNS polynomials $X^{3}+p_{2} X^{2}+p_{1} X+474$.
the iterates of $\tau_{\mathbf{r}}$: More precisely, we have for $\mathbf{a} \in \mathbb{Z}^{d}$

$$
\tau_{\mathbf{r}}^{n}(\mathbf{a})=R(\mathbf{r})^{n} \mathbf{a}+\sum_{i=1}^{n} R(\mathbf{r})^{n-i} \mathbf{v}_{i}
$$

for all $n \in \mathbb{N}$ with the matrix

$$
R(\mathbf{r}):=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & 0 & 1 \\
-r_{1} & -r_{2} & \cdots & \cdots & -r_{d}
\end{array}\right)
$$

and vectors $\mathbf{v}_{i} \in \mathbb{R}^{d}$ with $\left\|\mathbf{v}_{i}\right\|_{\infty}<1$ (see [1]).

Theorem 3

(i) The characteristic polynomial of $R(\mathbf{r})$ is given by

$$
X^{d}+r_{d} X^{d-1}+\cdots+r_{2} X+r_{1} .
$$

(ii) If $\mathbf{r} \in \mathcal{D}_{d}$ then the spectral radius of $R(\mathbf{r})$ is less than or equal to 1 .
(iii) If the spectral radius of $R(\mathbf{r})$ is less than 1 then $\mathbf{r} \in \mathcal{D}_{d}$.
(iv) Let $\mathbf{r} \in \mathbb{R}^{d}$ with spectral radius of $R(\mathbf{r})$ less than 1 . Then there exists an effectively computable constant $c_{\mathbf{r}} \in \mathbb{R}$ with the property: $\mathbf{r} \in \mathcal{D}_{d}^{0}$ if for each $\mathbf{a} \in \mathbb{Z}^{d}$ with $\|\mathbf{a}\|_{\infty} \leq c_{\mathbf{r}}$ the orbit of \mathbf{a} under the iterates of $\tau_{\mathbf{r}}$ falls into the zero cycle.

Proof. For (i), (ii), (iii) see [1] (note that the analogue of (ii) for canonical number systems is well known, see e. g. [5]). The proof of (iv) is analogous to that of Theorem 1 in [16].

By statement (iii) \mathcal{D}_{d} contains the bounded set
$\mathcal{E}_{d}=\left\{\left(r_{1}, \ldots, r_{d}\right) \in \mathbb{R}^{d} \mid\right.$ all roots of $X^{d}+r_{d} X^{d-1}+\cdots+r_{1}$ lie inside the open unit circle $\}$
which can be described by polynomial inequalities (for more information see the SchurCohn criterion (e. g. [13], Theorem 2.4.4)), and the closure of this set contains \mathcal{D}_{d} by statement (ii).

Statement (iv) shows in particular that one can algorithmically decide whether or not a given \mathbf{r} belongs to \mathcal{D}_{d}^{0} (for a different algorithm and computational issues see [1]).

The next theorem exhibits a large subset of \mathcal{D}_{d}^{0}.
Theorem 4 If $0 \leq r_{1} \leq r_{2} \leq \cdots \leq r_{d}<1$ then $\mathbf{r} \in \mathcal{D}_{d}^{0}$.
Proof. See [2].
Theorem 5 For each $d \in \mathbb{N}$ the sets \mathcal{D}_{d} and \mathcal{D}_{d}^{0} are Lebesgue measurable. Further $\lambda\left(\mathcal{D}_{d}\right)=\lambda\left(\mathcal{E}_{d}\right)$ where λ denotes the d-dimensional Lebesgue measure.
Proof. See [1].
The geometrical structure of \mathcal{D}_{d}^{0} is quite complicated. For each $\mathbf{r} \in \mathcal{D}_{d} \backslash \mathcal{D}_{d}^{0}$ one can pick a point in \mathbb{Z}^{d} which gives rise to a periodic orbit under the iterates of $\tau_{\mathbf{r}}$. On the other hand, given a point $\mathbf{a} \in \mathbb{Z}^{d}$ one may consider the collection of all $\mathbf{r} \in \mathbb{R}^{d}$ such that the sequences $\left(\tau_{\mathbf{r}}^{n}(\mathbf{a})\right)_{n \in \mathbb{N}}$ are periodic: More precisely, let

$$
\left(a_{1+j}, \ldots, a_{d+j}\right) \quad(0 \leq j \leq L-1)
$$

with $a_{L+1}=a_{1}, \ldots, a_{L+d}=a_{d}$ be vectors of \mathbb{Z}^{d}. We ask for which $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right) \in \mathbb{R}^{d}$ we have $\tau_{\mathbf{r}}^{L}(\mathbf{a})=\mathbf{a}$. By the definition of $\tau_{\mathbf{r}}$ this is the case if and only if the inequalities

$$
0 \leq r_{1} a_{1+j}+\cdots+r_{d} a_{d+j}+a_{d+j+1}<1 \quad(0 \leq j \leq L-1)
$$

hold simultaneously. Hence, these points \mathbf{r} form a (possibly degenerate) polyhedron in \mathbb{R}^{d}. As we saw in Example (i) we get \mathcal{D}_{1}^{0} by simply taking away a single point and a line segment from \mathcal{D}_{1}. However, it turns out that for $d>1$ infinitely many polyhedra have to be removed from \mathcal{D}_{d} in order to arrive at \mathcal{D}_{d}^{0}.

Theorem 6 Let $d \geq 2$. Then \mathcal{D}_{d}^{0} emerges from \mathcal{D}_{d} by cutting out countably many polyhedra.
Proof. See [1].

3. Some open problems

By what has been said above, the investigation of SRS leaves several questions open (see [1] and [2]). Here we only mention three problems.

Figure 3: The behavior of $N^{0}(3, M) / M^{2}$ for $2 \leq M \leq 464$.

1. We conjecture that \mathcal{D}_{2} coincides with the set D defined in Example (ii). The truth of this conjecture would imply that \mathcal{D}_{2} is convex. We thank W. Steiner [19] for the information that the point $\left(1, \frac{1+\sqrt{5}}{2}\right)$ belongs to \mathcal{D}_{2}.
2. We conjecture that if $\mathbf{r} \in \mathcal{D}_{d}^{0}$ then the spectral radius of $R(\mathbf{r})$ is less than 1 . This is clear for $d=1$ (see Example (i) in Section 1), and for $d=2$ it is proved in [2].
3. The following conjecture seems to be even more challenging: Let M be a positive integer and
$N^{0}(d, M)=\mid\left\{\left(p_{1}, \ldots, p_{d-1}\right) \in \mathbb{Z}^{d-1} \mid M+p_{1} X+\cdots+p_{d-1} X^{d-1}+X^{d}\right.$ is a CNS polynomial $\} \mid$.
Then

$$
\lim _{M \rightarrow \infty} \frac{N^{0}(d+1, M)}{M^{d}}
$$

exists and is equal to the Lebesgue measure of \mathcal{D}_{d}^{0}. On Figure 3. we displayed $N^{0}(3, M) / M^{2}$ for $2 \leq M \leq 464$. It seems that the quotient stabilizes after the first few values, which support the truth of the conjecture. An analogous conjecture has been formulated for the set \mathcal{D}_{d} as well.

References

[1] S. Akiyama, T. Borbély, H. Brunotte, A. Pethő and J. M. Thuswald-

NER, Generalized radix representations and dynamical systems I, to appear in Acta Math. Hungar., 108 (3) (2005), 207 - 238.
[2] S. Akiyama, H. Brunotte, A. Pethő and J. M. Thuswaldner, Generalized radix representations and dynamical systems II, to appear in Periodica Math. Hungar.
[3] A. Bertrand, Développement en base de Pisot et répartition modulo 1, C. R. Acad. Sci. Paris Sér. A-B, 285 (1977), 419 - 421.
[4] C. Frougny and B. Solomyak, Finite beta-expansions, Ergod. Th. and Dynam. Sys. 12 (1992), 713 - 723.
[5] W. J. Gilbert, Radix representations of quadratic fields, J. Math. Anal. Appl., 83 (1981), 264 - 274.
[6] M. Hollander, Linear Numeration Systems, Finite Beta Expansions, and Discrete Spectrum of Substitution Dynamical Systems, PhD thesis, Washington University, Seattle (1996).
[7] I. Kátai and B. Kovács, Kanonische Zahlensysteme in der Theorie der quadratischen algebraischen Zahlen, Acta Sci. Math. (Szeged), 42 (1980), 99 - 107.
[8] I. KÁtai and B. Kovács, Canonical number systems in imaginary quadratic fields, Acta Math. Acad. Sci. Hungar., 37 (1981), 159 - 164.
[9] I. KÁtai and J. Szabó, Canonical number systems for complex integers, Acta Sci. Math. (Szeged), 37 (1975), 255 - 260.
[10] D. E. Knuth, An imaginary number system, Comm. ACM, 3 (1960), $245-247$.
[11] D. E. Knuth, The Art of Computer Programming, Vol. 2 Semi-numerical Algorithms, Addison Wesley (1998) London 3rd edition.
[12] B. KovÁcs, Canonical number systems in algebraic number fields, Acta Math. Acad. Sci. Hungar., 37 (1981), $405-407$.
[13] M. Mignotte, D. Ştefănescu, Polynomials, Springer, Berlin Heidelberg New York (1999)
[14] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401 - 416.
[15] A. Реthő, On a polynomial transformation and its application to the construction of a public key cryptosystem, Computational Number Theory, Proc., Walter de Gruyter Publ. Comp. Eds.: A. Pethő, M. Pohst, H. G. Zimmer and H. C. Williams, 1991, pp $31-43$.
[16] A. Pethő, Notes on CNS polynomials and integral interpolation, to appear.
[17] A. RÉnyi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), $477-493$.
[18] K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc., 12 (1980), 269 - 278.
[19] W. Steiner, private communication (28/09/2004).

[^0]: ${ }^{1}$ The first author was supported by the Japan Society for the Promotion of Science, Grants in Aid for fundamental research 14540015, 2002-2005.
 ${ }^{2}$ The fourth author was supported partially by the Hungarian National Foundation for Scientific Research Grant Nos. T42985 and T38225.
 ${ }^{3}$ The fifth author was supported by project S 8310 of the Austrian Science Foundation.

[^1]: ${ }^{4}\lfloor\ldots\rfloor$ denotes the floor function.

