BASIC PROPERTIES OF SHIFT RADIX SYSTEMS

Shigeki Akiyama¹

Department of Mathematics, Faculty of Science, Niigata University, Ikarashi 2-8050, Niigata 950-2181, JAPAN

akiyama@math.sc.niigata-u.ac.jp

Tibor Borbély

National Instruments Europe Kft, H - 4031 Debrecen, Hatar u. 1/A, HUNGARY tibor.borbely@ni.com

Horst Brunotte

Haus-Endt-Straße 88, D-40593 Düsseldorf, GERMANY brunoth@web.de

Attila Pethő²

Department of Computer Science, University of Debrecen, P.O. Box 12, H-4010 Debrecen, HUNGARY pethoe@inf.unideb.hu

Jörg M. Thuswaldner³

Chair of Mathematics and Statistics, Leoben University, Franz-Josef-Straße 18, A-8700 Leoben, AUSTRIA

joerg.thuswaldner@unileoben.ac.at

Abstract

Certain dynamical systems on the set of integer vectors \mathbb{Z}^d are introduced and their basic properties are described. Applications to β -expansions and canonical number systems reveal unexpected relations between different radix representation concepts.

2000 Mathematics Subject Classification: 11A63

Key words: beta expansion, canonical number system, dynamical system, Pisot number, radix representation.

¹The first author was supported by the Japan Society for the Promotion of Science, Grants in Aid for fundamental research 14540015, 2002–2005.

 $^{^2{\}rm The}$ fourth author was supported partially by the Hungarian National Foundation for Scientific Research Grant Nos. T42985 and T38225.

³The fifth author was supported by project S8310 of the Austrian Science Foundation.

1. Introduction

Let $\mathbf{r} = (r_1, \ldots, r_d) \in \mathbb{R}^d \ (d \ge 1)$. We are interested in the mapping $\tau_{\mathbf{r}} : \mathbb{Z}^d \to \mathbb{Z}^d$ defined by⁴

$$\tau_{\mathbf{r}}(\mathbf{a}) = (a_2, \dots, a_d, -\lfloor r_1 a_1 + \dots + r_d a_d \rfloor)$$

for $\mathbf{a} = (a_1, \ldots, a_d) \in \mathbb{Z}^d$. The mapping $\tau_{\mathbf{r}}$ is called a *shift radix system* (*SRS* for short) if for all $\mathbf{a} \in \mathbb{Z}^d$ we can find some $n \in \mathbb{N}$ with $\tau_{\mathbf{r}}^n(\mathbf{a}) = (0, \ldots, 0)$. In this note we give a short summary of basic properties and applications of SRS and mention some open problems. For more detailed background information and proofs the reader is referred to the original papers [1, 2].

Throughout we shall use the following sets which are closely connected to the orbits of $\tau_{\mathbf{r}}$:

$$\begin{aligned} \mathcal{D}_d^0 &:= & \left\{ \mathbf{r} \in \mathbb{R}^d \,|\, \tau_{\mathbf{r}} \text{ is a SRS} \right\} \quad \text{and} \\ \mathcal{D}_d &:= & \left\{ \mathbf{r} \in \mathbb{R}^d \,|\, \text{for all } \mathbf{a} \in \mathbb{Z}^d \text{ the sequence } (\tau_{\mathbf{r}}^n(\mathbf{a}))_{n \in \mathbb{N}} \text{ is ultimately periodic} \right\}. \end{aligned}$$

Some subsets of these sets will be given later (see Sections 2 and 3), here we restrict to a few preliminary examples.

Examples

(i)
$$\mathcal{D}_1 = [-1, 1], \ \mathcal{D}_1^0 = [0, 1) \text{ (see [1])}.$$

(ii) $D \setminus \{(1, y) \in \mathbb{R}^2 \mid 0 < |y| < 1 \text{ or } 1 < |y| < 2\} \subseteq \mathcal{D}_2 \subseteq D \text{ where}$
 $D = \{(x, y) \in \mathbb{R}^2 \mid |x| \le 1, |y| \le 1 + x, \ (x, y) \ne (1, -2), (1, 2)\}$
 $\setminus \{(x, -x - 1) \in \mathbb{R}^2 \mid 0 < x < 1\} \text{ (see [2])}.$

(iii) Set

$$E_{1} = \left\{ (x, y) \in \mathbb{R}^{2} \mid x < 1, \ y < 2x, \ \frac{2x}{3} + 1 \le y \right\},$$

$$E_{2} = \left\{ (x, y) \in \mathbb{R}^{2} \mid x < 1, \ \frac{x}{2} + 1 < y < 2x, \ y < \frac{2x}{3} + 1 \right\},$$

$$E_{3} = \left\{ (x, y) \in \mathbb{R}^{2} \mid x < 1, -2x + 1 \le y < -\frac{1}{2}x \right\}, \text{ and}$$

$$L = \left\{ (x, y) \in \mathbb{R}^{2} \mid 0 \le x \le \frac{5}{6}, \ y < x + 1, \ y \ge -x \right\}.$$

Then

$$\mathcal{D}_2^0 \cap L = L \setminus (E_1 \cup E_2 \cup E_3) \text{ (see [2])}$$

In Figure 1 the gray points sketch an approximation of \mathcal{D}_2^0 ; note that the coordinate system is changed to be easier comparable to Figure 2 in Section 2.2.

 $^{^{4}\}lfloor \ldots \rfloor$ denotes the floor function.

Figure 1: An approximation of \mathcal{D}_2^0 .

2. Applications of shift radix systems

The main applications of SRS which have been dealt with so far are related to radix representations.

2.1 Shift radix systems and β -expansions

The so-called β -expansions have first been studied by A. RÉNYI [17] and W. PARRY [14] and have subsequently been intensively studied.

Let $\beta > 1$ be a non-integral real number. Then each $\gamma \in [0, \infty)$ can be represented uniquely by

$$\gamma = a_m \beta^m + a_{m-1} \beta^{m-1} + \cdots \tag{1}$$

with $a_i \in \{0, 1, \ldots, \lfloor \beta \rfloor\}$ such that

$$0 \le \gamma - \sum_{i=n}^{m} a_i \beta^i < \beta^n \tag{2}$$

holds for all $n \leq m$. Since by condition (2) the digits a_i are selected as large as possible, the representation in (1) is called the *greedy expansion* of γ with respect to β .

Apart from the SRS notion the following theorem is basically due to M. HOLLAN-DER [6].

Theorem 1(M. HOLLANDER) Let d > 1 and $\beta > 1$ be a real algebraic integer with minimal polynomial $X^d - b_1 X^{d-1} - \cdots - b_{d-1} X - b_d \in \mathbb{Z}[X]$. Define $r_2, \ldots, r_d \in \mathbb{R}$ by

$$X^{d} - b_{1}X^{d-1} - \dots - b_{d-1}X - b_{d} = (X - \beta)(X^{d-1} + r_{2}X^{d-2} + \dots + r_{d}),$$

hence $r_{j} = b_{j}\beta^{-1} + b_{j+1}\beta^{-2} + \dots + b_{d}\beta^{j-d-1}$ $(2 \le j \le d).$

Then $(r_d, \ldots, r_2) \in \mathcal{D}^0_{d-1}$ if and only if $\mathbb{Z}[\frac{1}{\beta}] \cap [0, \infty)$ coincides with the set of positive real numbers having finite greedy expansion with respect to β . *Proof.* See [1].

A. BERTRAND [3] and K. SCHMIDT [18] proved that if β is a Pisot number then the β -expansion of every element of $\mathbb{Q}(\beta) \cap [0, \infty)$ is ultimately periodic. The above mentioned finiteness property can only hold for Pisot numbers β (see [4], Lemma 1).

We remark that the characterization of Pisot numbers with the above mentioned finiteness property is not even known for degree d = 3.

2.2 Shift radix systems and canonical number systems

An example of a canonical number system was first studied by D. E. KNUTH [10, 11]. His notion was extended by W. J. GILBERT, I. KÁTAI, B. KOVÁCS and J. SZABÓ ([5, 7, 8, 9]) to quadratic number fields and by B. KOVÁCS [12] to arbitrary number fields as straightforward generalizations of the well-known radix representation of ordinary integers.

This concept was further generalized by the fourth author [15] by defining CNS polynomials: A monic integral polynomial P(X) is called a *CNS polynomial* if every coset of $\mathbb{Z}[X]/P(X)\mathbb{Z}[X]$ contains an element of the form

$$a_0 + a_1 x + \dots + a_l x^l$$

with $a_0, ..., a_l \in \{0, 1, ..., |P(0)| - 1\}$ where x denotes the image of X under the canonical epimorphism from $\mathbb{Z}[X]$ to $\mathbb{Z}[X]/P(X)\mathbb{Z}[X]$.

Theorem 2 Let $p_0, \ldots, p_{d-1} \in \mathbb{Z}$ with $p_0 > 1$. Then $\left(\frac{1}{p_0}, \frac{p_{d-1}}{p_0}, \ldots, \frac{p_1}{p_0}\right) \in \mathcal{D}_d^0$ if and only if $X^d + p_{d-1}X^{d-1} + \cdots + p_0$ is a CNS polynomial. *Proof.* See [1].

As an illustration the grey points in Figure 2 represent all cubic CNS polynomials with constant term equal to 474.

The complete description of CNS polynomials of degree d > 2 is still open.

3. Basic properties of shift radix systems

For $\mathbf{r} = (r_1, \ldots, r_d) \in \mathbb{R}^d$ the mapping $\tau_{\mathbf{r}}$ differs from a linear mapping by a certain additive term. Although being small this term is the reason for the difficulties in controlling

Figure 2: CNS polynomials $X^3 + p_2 X^2 + p_1 X + 474$.

the iterates of $\tau_{\mathbf{r}}$: More precisely, we have for $\mathbf{a} \in \mathbb{Z}^d$

$$\tau_{\mathbf{r}}^{n}(\mathbf{a}) = R(\mathbf{r})^{n}\mathbf{a} + \sum_{i=1}^{n} R(\mathbf{r})^{n-i}\mathbf{v}_{i}$$

for all $n \in \mathbb{N}$ with the matrix

$$R(\mathbf{r}) := \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -r_1 & -r_2 & \cdots & \cdots & -r_d \end{pmatrix}$$

and vectors $\mathbf{v}_i \in \mathbb{R}^d$ with $\| \mathbf{v}_i \|_{\infty} < 1$ (see [1]).

Theorem 3

(i) The characteristic polynomial of $R(\mathbf{r})$ is given by

$$X^d + r_d X^{d-1} + \dots + r_2 X + r_1.$$

- (ii) If $\mathbf{r} \in \mathcal{D}_d$ then the spectral radius of $R(\mathbf{r})$ is less than or equal to 1.
- (iii) If the spectral radius of $R(\mathbf{r})$ is less than 1 then $\mathbf{r} \in \mathcal{D}_d$.
- (iv) Let $\mathbf{r} \in \mathbb{R}^d$ with spectral radius of $R(\mathbf{r})$ less than 1. Then there exists an effectively computable constant $c_{\mathbf{r}} \in \mathbb{R}$ with the property: $\mathbf{r} \in \mathcal{D}_d^0$ if for each $\mathbf{a} \in \mathbb{Z}^d$ with $\| \mathbf{a} \|_{\infty} \leq c_{\mathbf{r}}$ the orbit of \mathbf{a} under the iterates of $\tau_{\mathbf{r}}$ falls into the zero cycle.

Proof. For (i), (ii), (iii) see [1] (note that the analogue of (ii) for canonical number systems is well known, see e. g. [5]). The proof of (iv) is analogous to that of Theorem 1 in [16]. \Box

By statement (iii) \mathcal{D}_d contains the bounded set

$$\mathcal{E}_d = \left\{ (r_1, \dots, r_d) \in \mathbb{R}^d \,|\, \text{all roots of } X^d + r_d X^{d-1} + \dots + r_1 \text{ lie inside the open unit circle} \right\}$$

which can be described by polynomial inequalities (for more information see the Schur-Cohn criterion (e. g. [13], Theorem 2.4.4)), and the closure of this set contains \mathcal{D}_d by statement (ii).

Statement (iv) shows in particular that one can algorithmically decide whether or not a given **r** belongs to \mathcal{D}_d^0 (for a different algorithm and computational issues see [1]).

The next theorem exhibits a large subset of \mathcal{D}^0_d .

Theorem 4 If $0 \le r_1 \le r_2 \le \cdots \le r_d < 1$ then $\mathbf{r} \in \mathcal{D}_d^0$. *Proof.* See [2].

Theorem 5 For each $d \in \mathbb{N}$ the sets \mathcal{D}_d and \mathcal{D}_d^0 are Lebesgue measurable. Further $\lambda(\mathcal{D}_d) = \lambda(\mathcal{E}_d)$ where λ denotes the *d*-dimensional Lebesgue measure. *Proof.* See [1].

The geometrical structure of \mathcal{D}_d^0 is quite complicated. For each $\mathbf{r} \in \mathcal{D}_d \setminus \mathcal{D}_d^0$ one can pick a point in \mathbb{Z}^d which gives rise to a periodic orbit under the iterates of $\tau_{\mathbf{r}}$. On the other hand, given a point $\mathbf{a} \in \mathbb{Z}^d$ one may consider the collection of all $\mathbf{r} \in \mathbb{R}^d$ such that the sequences $(\tau_{\mathbf{r}}^n(\mathbf{a}))_{n \in \mathbb{N}}$ are periodic: More precisely, let

$$(a_{1+j}, \dots, a_{d+j})$$
 $(0 \le j \le L - 1)$

with $a_{L+1} = a_1, \ldots, a_{L+d} = a_d$ be vectors of \mathbb{Z}^d . We ask for which $\mathbf{r} = (r_1, \ldots, r_d) \in \mathbb{R}^d$ we have $\tau_{\mathbf{r}}^L(\mathbf{a}) = \mathbf{a}$. By the definition of $\tau_{\mathbf{r}}$ this is the case if and only if the inequalities

$$0 \le r_1 a_{1+j} + \dots + r_d a_{d+j} + a_{d+j+1} < 1 \quad (0 \le j \le L - 1)$$

hold simultaneously. Hence, these points **r** form a (possibly degenerate) polyhedron in \mathbb{R}^d . As we saw in Example (i) we get \mathcal{D}_1^0 by simply taking away a single point and a line segment from \mathcal{D}_1 . However, it turns out that for d > 1 infinitely many polyhedra have to be removed from \mathcal{D}_d in order to arrive at \mathcal{D}_d^0 .

Theorem 6 Let $d \geq 2$. Then \mathcal{D}_d^0 emerges from \mathcal{D}_d by cutting out countably many polyhedra. *Proof.* See [1].

3. Some open problems

By what has been said above, the investigation of SRS leaves several questions open (see [1] and [2]). Here we only mention three problems.

Figure 3: The behavior of $N^0(3, M)/M^2$ for $2 \le M \le 464$.

1. We conjecture that \mathcal{D}_2 coincides with the set D defined in Example (ii). The truth of this conjecture would imply that \mathcal{D}_2 is convex. We thank W. STEINER [19] for the information that the point $(1, \frac{1+\sqrt{5}}{2})$ belongs to \mathcal{D}_2 .

2. We conjecture that if $\mathbf{r} \in \mathcal{D}_d^0$ then the spectral radius of $R(\mathbf{r})$ is less than 1. This is clear for d = 1 (see Example (i) in Section 1), and for d = 2 it is proved in [2].

3. The following conjecture seems to be even more challenging: Let ${\cal M}$ be a positive integer and

$$N^{0}(d, M) = |\{(p_{1}, \dots, p_{d-1}) \in \mathbb{Z}^{d-1} \mid M + p_{1}X + \dots + p_{d-1}X^{d-1} + X^{d} \text{ is a CNS polynomial}\}|.$$

Then

$$\lim_{M \to \infty} \frac{N^0(d+1, M)}{M^d}$$

exists and is equal to the Lebesgue measure of \mathcal{D}_d^0 . On Figure 3. we displayed $N^0(3, M)/M^2$ for $2 \leq M \leq 464$. It seems that the quotient stabilizes after the first few values, which support the truth of the conjecture. An analogous conjecture has been formulated for the set \mathcal{D}_d as well.

References

[1] S. Akiyama, T. Borbély, H. Brunotte, A. Pethő and J. M. Thuswald-

NER, Generalized radix representations and dynamical systems I, to appear in Acta Math. Hungar., **108 (3)** (2005), 207 – 238.

- [2] S. AKIYAMA, H. BRUNOTTE, A. PETHŐ AND J. M. THUSWALDNER, Generalized radix representations and dynamical systems II, to appear in Periodica Math. Hungar.
- [3] A. BERTRAND, Développement en base de Pisot et répartition modulo 1, C. R. Acad. Sci. Paris Sér. A-B, 285 (1977), 419 – 421.
- [4] C. FROUGNY AND B. SOLOMYAK, *Finite beta-expansions*, Ergod. Th. and Dynam. Sys. **12** (1992), 713 – 723.
- [5] W. J. GILBERT, Radix representations of quadratic fields, J. Math. Anal. Appl., 83 (1981), 264 – 274.
- [6] M. HOLLANDER, Linear Numeration Systems, Finite Beta Expansions, and Discrete Spectrum of Substitution Dynamical Systems, PhD thesis, Washington University, Seattle (1996).
- [7] I. KÁTAI AND B. KOVÁCS, Kanonische Zahlensysteme in der Theorie der quadratischen algebraischen Zahlen, Acta Sci. Math. (Szeged), 42 (1980), 99 – 107.
- [8] I. KÁTAI AND B. KOVÁCS, Canonical number systems in imaginary quadratic fields, Acta Math. Acad. Sci. Hungar., 37 (1981), 159 – 164.
- [9] I. KÁTAI AND J. SZABÓ, Canonical number systems for complex integers, Acta Sci. Math. (Szeged), 37 (1975), 255 – 260.
- [10] D. E. KNUTH, An imaginary number system, Comm. ACM, **3** (1960), 245 247.
- [11] D. E. KNUTH, The Art of Computer Programming, Vol. 2 Semi-numerical Algorithms, Addison Wesley (1998) London 3rd edition.
- B. KOVÁCS, Canonical number systems in algebraic number fields, Acta Math. Acad. Sci. Hungar., 37 (1981), 405 – 407.
- [13] M. MIGNOTTE, D. ŞTEFĂNESCU, *Polynomials*, Springer, Berlin Heidelberg New York (1999)
- [14] W. PARRY, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401 – 416.
- [15] A. PETHŐ, On a polynomial transformation and its application to the construction of a public key cryptosystem, Computational Number Theory, Proc., Walter de Gruyter Publ. Comp. Eds.: A. Pethő, M. Pohst, H. G. Zimmer and H. C. Williams, 1991, pp 31 – 43.
- [16] A. PETHŐ, Notes on CNS polynomials and integral interpolation, to appear.

- [17] A. RÉNYI, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477 – 493.
- [18] K. SCHMIDT, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc., 12 (1980), 269 – 278.
- [19] W. STEINER, private communication (28/09/2004).