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Abstract

This paper introduces explicit conditions for some natural family
of polynomials to define Pisot or Salem numbers, and reviews related
topics as well as their references.
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1 Introduction

A Pisot (resp. Salem) number is an algebraic integer θ > 1 whose Galois
conjugates other than θ have moduli less than 1. (resp. less than or equal to
1 and at least one conjugate lies on the unit circle.) These algebraic numbers
unexpectedly or exceptionally appeared in number of quite different branches
of mathematics. A comprehensive survey is found in the book [11]. However,
related areas are still steadily expanding. To give convenient pointers to the
reader, we only mention some of such areas with surveys/recent papers :

• Number theory (Uniform distribution [24], β-expansion [8, 1], Lehmer’s
problem [12, 45]),

• Harmonic analysis (Salem-Zygmund Theorem, Bernoulli convolution
[41, 47, 19], Wavelet, Meyer set [28, 29, 32]),

∗The first author is supported by the Japanese Ministry of Education, Culture, Sports,
Science and Technology, Grand-in Aid for fundamental research 18540022, 2006–2008.
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• Discrete dynamical systems (Symbolic dynamics [42], Pisot conjecture
[6, 7], Tiling [30, 46, 3], Jacobi-Perron algorithm [18, 39] ),

• Mathematical physics (Quasi-crystals, Aperiodic structures [34, 4, 5]).

This list is not intended to be exhaustive. You find many important refer-
ences therein. An essential reason why such algebraic numbers have some
importance may come from the fact that Pisot numbers behave like rational
integers in many situations.

In this paper we give a new easy construction of Pisot and Salem numbers.
Here the word ‘easy’ means that it is given by a simple arrangement of
coefficients of a defining polynomial, not necessarily minimal in degree. To
give the reader an easy access to the related references, we review in §2 and
§3, related known constructions of them as well. Our target is to examine
polynomials of the form,

f(x) = xd − ad−1x
d−1 − ad−2x

d−2 − · · · − a1x + 1 ∈ Z[x],

where the word ad−1ad−2 · · · a1 is a palindrome, i.e., ai = ad−i for all i =
1, 2, . . . , d − 1. First, we derive some sufficient conditions on the coefficients
for the polynomial f to give a Salem number. More precisely, we show
that under this condition, f is the minimal polynomial of a Salem number
(possibly) times a cyclotomic polynomial (not necessarily irreducible).

Next, we observe the slightly modified polynomial,

g(x) := (f(x) − 1)/x = xd−1 − ad−1x
d−2 − ad−2x

d−3 − · · · − a2x − a1.

This kind of polynomial was in fact considered before in [26] to study some
algebraic integers arising from β-expansions. In the present paper, we get a
sufficient condition for the polynomial g to be the minimal polynomial of a
Pisot number.

Two conditions above for f and g are similar in spirit to each other. In
detail, a word bd−1 := bb · · · b︸ ︷︷ ︸

d − 1 times

for some b ∈ Z is perturbed to get the word

ad−1ad−2 · · · a1, but still maintaining the palindromicity of ad−1ad−2 · · · a1.
We will show that if the perturbation is small enough then f gives a Salem
number and g a Pisot number. For example, as a consequence of Theorem
3.2 in §3, we prove

Theorem 1.1. Let b ≥ 2 be an integer. If ad−i = ai and ai ∈ {b, b − 1}
for every i = 1, 2, . . . , d − 1 with b ≥ b(d − 1)/2c then, xd−1 − ad−1x

d−2 −
ad−2x

d−3 − · · · − a2x − a1 gives a Pisot number.
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which settles affirmatively Question 1 in [27] and justifies the term “flat
palindromes” in the title.

2 Construction of Salem numbers.

Given a polynomial f(x) = adx
d + ad−1x

d−1 + · · · + a1x + a0 ∈ R[x] with
ad 6= 0, another polynomial f ∗ is defined by

f ∗(x) := xdf(1/x) = a0x
d + a1x

d−1 + · · · + ad−1x + ad.

If f = f∗, then f is said to be a reciprocal polynomial. A Salem number
β > 1 is a zero of a reciprocal polynomial of even degree greater than two
(see [43]). In this paper, the defining polynomial of β could be reducible and
we do not restrict ourselves to even d. Suppose that f(x) = adx

d+ad−1x
d−1+

· · · + a1x + a0 ∈ R[x] is reciprocal with ad 6= 0. Then we may write

f(x) = xd/2g(x).

One notes that g(x) ∈ R[x+x−1] if d is even, and that g(x) ∈ R[x1/2 +x−1/2]
otherwise. If d is odd, then we take coherently their principal values for the
complex exponents. Therefore, we have, whether d is even or not, g(x) =
g(x−1) and thus

g(eθ
√
−1) ∈ R for any θ ∈ R.

Let us recall the well known characterization of Salem numbers (see, e.g.,
[43]). As d is even, put g(x) = G(y) ∈ R[y] with y = x+1/x. Let f(x) be an
irreducible reciprocal polynomial of even degree greater than 2. Then f(x)
is the minimal polynomial of a Salem number if and only if f(1) < 0 and
G(y) has d/2−1 distinct zeros in (−2, 2). Note that the condition ‘ f(1) < 0
and G(y) has d/2 − 1 zeros in (−2, 2)’ does not imply that f is irreducible.
If it is reducible, then there is an irreducible factor which does not have any
zero outside the unit circle. Denote by ζ one of its zeros. Such a factor must
be a cyclotomic polynomial since the sequence ζn (n = 1, 2, . . . ) is bounded
for all conjugates and hence eventually periodic1. Here we summarize known
constructions of Salem numbers:

• The above characterization by G(y) gives a practical method. However,
the set of such G(y)’s is not easy to handle.

1This is due to Kronecker. Hereafter we refer to this fact as Kronecker’s Theorem.
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• The polynomial xmf(x) ± f ∗(x) is reciprocal for a monic polynomial
f(x). This can be applied to prove that every Pisot number is an
accumulation point of the set of Salem numbers (see [43]). This idea
was further developed by [9, 13, 10, 36, 37]. The essential idea of their
construction is summarized as interlacing property.

• Chinburg [16] showed that every Salem number is the exponential of
a rational multiple of the derivative at s = 0 of an Artin L-function.
This is intimately related to the Stark conjecture on units in number
fields. See also [23].

• Inspired by the growth rate study of Coxeter groups [21, 20, 40], the
construction of Salem numbers using graphs was explored [31, 38, 35,
25].

Our construction of Salem numbers falls into the second category. Espe-
cially the interlacing property plays an essential rôle in this paper. See the
paragraph after the proof of Theorem 2.1. We shortly discuss this property
at the end of this section as well.

Let h(θ) := g(eθ
√
−1). Then h : [0, 2π] → R satisfies h(θ) = h(2π − θ). If

d is odd, then f(−1) = g(−1) = h(π) = 0. Although f(z)z−d/2 is ramified
at 0 when d is odd, h is well-defined and continuous in any case, because
h(π) = 0. This is a small trick to avoid tedious notations of Riemann surface
of

√
z.

Given a reciprocal f(x) ∈ R[x], let us denote the above real function h
by

T f(θ) := g(eθ
√
−1).

Then one observes that if d is even then

f

(
exp

(
2kπ

√
−1

d

))
= (−1)k · T f

(
2kπ

d

)
for every k = 1, 2, . . . , d − 1, and that if d is odd then

f

(
exp

(
2kπ

√
−1

d

))
=

{
(−1)k · T f

(
2kπ
d

)
, k = 1, 2, . . . , d−1

2
,

(−1)k+1 · T f
(

2kπ
d

)
, k = d+1

2
, d+3

2
, . . . , d − 1.

We derive a sufficient condition for Salem numbers. We use in the next
theorem, and will use hereafter minus signs for coefficients. This setting will
be repeatedly convenient for our purpose.
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Theorem 2.1. Let f(x) = xd − ad−1x
d−1 − ad−2x

d−2 − · · · − a1x + 1 ∈ Z[x]
be a reciprocal polynomial, and assume

f

(
exp

(
2kπ

√
−1

d

))
≥ 0

for all k = 1, 2, . . . , d−1. If f is non-cyclotomic, then there is a zero β > 1 of
f such that 1/β is also a zero and all the other zeros have moduli 1, whence
β is a Salem number.

Proof. Let us start with the case f
(
exp

(
2kπ

√
−1

d

))
> 0 for all k. Assume at

first that d is even. Since (−1)k · T f(2kπ/d) > 0 for all k = 1, 2, . . . , d − 1,
the Intermediate Value Theorem yields d − 2 zeros θi (i = 1, 2, . . . , d − 2) of
T f such that

2π

d
< θ1 <

4π

d
< θ2 < · · · <

2(d − 2)π

d
< θd−2 <

2(d − 1)π

d
. (1)

Consequently, all eθi
√
−1, i = 1, 2, . . . , d − 2, are the zeros of f .

In case d is odd, we apply the Intermediate Value Theorem twice for the
real function T f — one on the interval [0, π] to get the zeros θ1 < . . . <
θ(d−3)/2, and the other on [π, 2π] to get the zeros θ(d+1)/2 < . . . < θd−1. Hence
we can arrange the zeros including θ(d−1)/2 = π as in (1).

For the general case f
(
exp

(
2kπ

√
−1

d

))
≥ 0, put fε(x) := f(x)+ ε(xd +1)

for a real ε > 0. Taking a small ε, the above argument guarantees that fε

has zeros with the arrangement (1). The same is valid for f = limε↓0 fε by
a well known fact that each zero of a polynomial is a continuous function of
its coefficients as long as its leading coefficient is nonzero [17].

Suppose f(1) > 0. Then there exists another zero θ0 ∈ (0, 2π/d) of T f
because T f(2π/d) < 0. So e±θ0

√
−1 are also the zeros of f . By Kronecker’s

theorem, f is a cyclotomic polynomial. If f(1) = 0, then the remaining zero
of f should be on the unit circle since f is reciprocal. And f is again a
cyclotomic polynomial. We thus obtain f(1) < 0 and then a zero β > 1
of f , which is followed by f(1/β) = 0. The set {β, 1/β} ∪ {eθi

√
−1 | i =

1, 2, . . . , d − 2} exhausts the whole set of zeros of f .

The above situation of (1) is said that the zeros of f on the unit circle
interlace the zeros of (xd − 1)/(x − 1). Here we adopted the interlacing
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property to construct Salem numbers.

For a vector u = (u1, u2, . . . , ud−1) ∈ Rd−1, we consider the following:

L(u) := min
y∈R

d−1∑
i=1

|ui − y|.

The exact value of L(u) is attained when y is the median of the coordinates
ui. To be more precise we may assume u1 ≤ u2 ≤ · · · ≤ ud−1. Then it is
easy to see that L(u) =

∑d−1
i=1 |ui − y| for all y satisfying ubd/2c ≤ y ≤ udd/2e.

Here, a number m(u) is defined to be the largest such y, i.e., m(u) := udd/2e.
The next lemma follows immediately from the identity,

xd − 1

x − 1
= xd−1 + xd−2 + · · · + 1.

Lemma 2.2. Let f(x) = xd − b(xd−1 + xd−2 + · · · + x) + 1. Then we have

f

(
exp

(
2kπ

√
−1

d

))
= b + 2

for every k = 1, 2, . . . , d − 1.

Assume that f(x) = xd − ad−1x
d−1 − ad−2x

d−2 − · · · − a1x + 1 ∈ Z[x] is
reciprocal and a = (a1, . . . , ad−1) ∈ Zd−1. If we put b = m(a), then one finds
that ∣∣∣∣f (

exp

(
2kπ

√
−1

d

))
− (m(a) + 2)

∣∣∣∣ ≤ L(a) (2)

for all k = 1, 2, . . . , d − 1. Accordingly, we have another sufficient condition
for Salem numbers. The following theorem is easier to check than Theorem
2.1. It refers to the coefficients only.

Theorem 2.3. Let f(x) = xd−ad−1x
d−1−ad−2x

d−2−· · ·−a1x+1 ∈ Z[x] be
a reciprocal polynomial, and a = (a1, a2, . . . , ad−1) ∈ Zd−1. Suppose m(a) ≥
L(a)−2. If f is non-cyclotomic, then f gives a Salem number as in Theorem
2.1.

Proof. The hypothesis implies that f
(
exp

(
2kπ

√
−1

d

))
≥ 0 for every k =

1, 2, . . . , d − 1.
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Two theorems in this section do not specify the irreducibility of f . But if
it is reducible, then Kronecker’s theorem implies that it should be a product
of the minimal polynomial of a Salem number and a cyclotomic polynomial.

Example 1. Let a = (a1, a2, . . . , a9) = (4, 4, 5, 4, 4, 4, 5, 4, 4) and f(x) =
x10 − a9x

9 − a8x
8 − · · · − a1x + 1. Then we have m(a) = 4 and L(a) = 2.

Therefore, Theorem 2.3 shows that f gives a Salem number. But f is factored
into

f(x) = (x8 − 5x7 − 4x4 − 5x + 1)(x2 + x + 1).

Note that the polynomial x8−5x7−4x4−5x+1 does not satisfy the condition
of Theorem 2.3.

It is not known whether there are Salem numbers arbitrarily close to
1. The smallest Salem number ever found [33] is the zero of its minimal
polynomial

l(x) := x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1.

Example 2. Let b = (b1, b2, . . . , b9) = (−1, 0, 1, 1, 1, 1, 1, 0,−1). Since
m(b) = 1 and L(b) = 6, Theorem 2.3 does not work for l(x). But we cannot
exclude the case where there exists d(x), a cyclotomic polynomial such that
d(x)l(x) satisfies the condition of Theorem 2.3. A calculation shows that

min
1≤k≤9

l

(
exp

(
kπ

√
−1

5

))
= l

(
exp

(
3π

√
−1

5

))
> 0.14.

Thus Theorem 2.1 tells us that l gives a Salem number.

We briefly discuss the interlacing property appeared in the previous works.
Let f be the minimal polynomial of a Salem number. Then Boyd [13] proved
that if, for c(x) a cyclotomic polynomial, c(x)f(x) has no multiple root, then
it is of the form

c(x)f(x) = xp(x) ± p∗(x),

where p(x) is a power of x times the minimal polynomial of a Pisot number.
Later, Bertin and Boyd [10] generalized the choices for p and defined the
subsets of Salem numbers, Aq and Bq according to the specific distribution
of zeros of p and its constant term q = |p(0)|. They observed that the set T
of Salem numbers is equal to

⋃
q≥2 Aq =

⋃
q≥0 Bq, and presented a necessary
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and sufficient condition for each membership of Aq and Bq using the inter-
lacing property. In terms of our context, they showed that for the minimal
polynomial f of a Salem number, there exists a cyclotomic polynomial c(x)
and a reciprocal polynomial L such that the zeros of c(x)f(x) interlace the
zeros of L on the unit circle. In view of these results, one may say that the
set of Salem numbers is not so easy to grasp and the converse of Theorem
2.3 (by finding a suitable cyclotomic factor d(x) so that d(x)f(x) satisfies the
requirement) is unlikely to hold. However, for the moment, the relationship
to our construction is unclear, since we do not have an algorithm to find the
cyclotomic factors c(x) and d(x). Therefore it is hard to tell whether or not
a given Salem number belongs to a fixed Aq or Bq.

It turned out that this interlacing property is a nice tool to construct
Salem numbers. McKee and Smyth [37] constructed Salem numbers of any
prescribed integer trace by this idea.

3 Construction of Pisot numbers.

First we review known methods of constructing Pisot numbers. Put g(x) =
xd − cd−1x

d−1 − · · · − c0.

• cd−1 >
∑d−2

i=0 |ci|+1 and c0 6= 0 then g(x) is the minimal polynomial of
a Pisot number (cf. Chapter 5.2 of [11]).

• cd−1 ≥ cd−2 ≥ · · · ≥ c0 > 0 then g(x) is the minimal polynomial of a
Pisot number (cf. [15, 22]).

• There is a sufficient condition written by explicit inequalities of c0, . . . , cd−1.
This condition is also necessary if the degree is less than 5. It is con-
jectured to be a characterization for all degrees ([2]).

• A main theme of [11] is to study the distribution of Pisot numbers
on the real line using complex/real analytic techniques: Hardy spaces
and Schur’s algorithm. Deeper results on Pisot and Salem numbers are
derived along these lines ([14, 37]).

Using the idea of the previous section, we derive a sufficient condition for
Pisot numbers.
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Theorem 3.1. Let f(x) = xd − ad−1x
d−1 − ad−2x

d−2 − · · · − a1x + 1 ∈ Z[x]
with f(1) < 1 and ai = ad−i, i = 1, 2, . . . , d − 1. Put g(x) = f(x) − 1.

(a) Suppose

f

(
exp

(
2kπ

√
−1

d

))
> 1

for all k = 1, 2, . . . , d − 1. Then g is a power of x times the minimal
polynomial of a Pisot number. If a1 6= 0, then g(x)/x is the minimal
polynomial of a Pisot number.

(b) Suppose that the same values as Part (a) are greater than or equal to
1 for all k = 1, 2, . . . , d− 1, and that the equality holds at least once. If
a1 6= 0, then g(x)/x is a product of the minimal polynomial of a Pisot
number and a cyclotomic polynomial.

Proof. The condition f(1) < 1 guarantees a zero β > 1 of g.
Consider a closed curve C = {f(eθ

√
−1) | θ ∈ [0, 2π]} in the complex plane

C. Put θ0 = 0 and θd−1 = 2π, and let θ1, . . . , θd−2 be given as in (1). Since

f(eθ
√
−1) = (eθ

√
−1)d/2 · T f(θ)

and we take the principal values, we deduce

Imf(eθ
√
−1) < 0 for θm−1 < θ <

2mπ

d
(3)

Imf(eθ
√
−1) > 0 for

2mπ

d
< θ < θm (4)

for m = 1, 2, . . . , d − 1. The case where d is odd is demonstrated in the
example below.

Visualizing the result, one finds that C starts from f(1) < 1 in C, moves
anticlockwise, and passes through the following points:

f(1) → f

(
exp

(
2π

√
−1

d

))
→ 0 → f

(
exp

(
4π

√
−1

d

))
→ 0 → · · ·

→ f

(
exp

(
2(d − 1)π

√
−1

d

))
→ f(1).

Recall here that f(eθi
√
−1) = 0 for i = 1, . . . , d− 2, where θi come from (1) in

Theorem 2.1. Moreover {f(1), 0}∪{f
(
exp

(
2kπ

√
−1

d

))
| k = 1, 2, . . . , d−1} is
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the set of all the intersections between C and the real axis. We thus conclude
that C goes d− 1 times around 1, i.e., the winding number of f at 1 is d− 1.
Now the Argument Principle tells us that f(x) − 1 = g(x) has d − 1 zeros
strictly inside the unit circle. This proves Part (a).

Let ε be in the interval (f(1), 1), and put fε(x) := f(x)− ε. Then fε has
d− 1 zeros strictly inside the unit circle. Again by the continuity of zeros of
the polynomial [17], all zeros of g(x) = limε↑1 fε(x) other than β > 1 have
moduli less than or equal to 1. It remains to exclude the case where g(x)/x
gives a Salem number. If so, then g(x)/x would be a reciprocal polynomial.
This implies

−1 = a1 = ad−1 = a2 = · · · ,

i.e., g(x)/x = (xd − 1)/(x − 1), a contradiction.

With the help of Theorem 3.1, we also state a condition on the coefficients
to get Pisot numbers.

Theorem 3.2. Let g1(x) = xd−1 − ad−1x
d−2 − ad−2x

d−3 − · · · − a2x − a1 ∈
Z[x] with g1(1) < 0, a1 6= 0 and ai = ad−i, i = 1, 2, . . . , d − 1. Put a =
(a1, a2, . . . , ad−1) ∈ Zd−1.

(a) If m(a) ≥ L(a), then g1 is the minimal polynomial of a Pisot number.

(b) If m(a) = L(a)−1, then g1 is either the minimal polynomial of a Pisot
number, or a product of the minimal polynomial of a Pisot number and
a cyclotomic polynomial.

Proof. (a) Let f(x) := xg1(x) + 1. From (2), it follows that

f

(
exp

(
2kπ

√
−1

d

))
> 1

for all k = 1, 2, . . . , d − 1.
(b) In the inequality above, the equality may (or may not) occur. The
reducibility of g1 depends on the occurrence of the equality.

Theorem 1.1 immediately follows from Theorem 3.2, since m(a) = b or
b − 1 and L(a) ≤ b(d − 1)/2c.

Example 3. Let g1(x) = x4 − x3 − 1, f(x) = xg1(x) + 1 and a = (1, 0, 0, 1).
Then we have f(1) < 1, m(a) = 1 and L(a) = 2. Thus Theorem 3.2 shows
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Figure 1: T f(θ) and Im(eθ
√
−1)5/2 (left), and the contour of f(eθ

√
−1) (right)

that g1 gives a Pisot number, but does not tell us about its irreducibility. A
calculation leads us to

min
1≤k≤4

f

(
exp

(
2kπ

√
−1

5

))
= f

(
exp

(
2π

√
−1

5

))
> 1.38.

Now Theorem 3.1 says that g1 is the minimal polynomial of a Pisot number.
Actually, the real zero β ≈ 1.38028 of g1 is the second smallest among all
Pisot numbers [44].

In the left of Figure 1, the thick line represents T f(θ) and the thin line
the imaginary part of the principal values of (eθ

√
−1)5/2. From this figure, we

verify (3) and (4) in the proof of Theorem 3.1. The right one is the closed
contour C = {f(eθ

√
−1) | θ ∈ [0, 2π]}. We observe that the winding number

of f at 1 is 4.

Example 4. The real zero β ≈ 1.32472 of x3 − x − 1 is known to be the
smallest Pisot number [44]. Let g1(x) = x5 − x4 − 1, f(x) = xg1(x) + 1 and
a = (1, 0, 0, 0, 1). Note g1(x) = (x3 − x − 1)(x2 − x + 1). We have f(1) < 1,
m(a) = 0 and L(a) = 2. Thus Theorem 3.2 cannot be applied to g1. We
verify by a direct calculation,

f

(
exp

(
2kπ

√
−1

6

))
≥ 1,

for every k = 1, . . . , 5. And equality holds when k = 1, 5. Now Theorem 3.1
(b) proves that g1 is a product of the minimal polynomial of a Pisot number
and a cyclotomic polynomial. Here the cyclotomic part is x2 − x + 1.
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