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Abstract. Let α be an algebraic integer and assume that it is expanding,

i.e., its all conjugates lie outside the unit circle. We show several results

of the form Z[α] = B[α] with a certain finite set B ⊂ Z. This property is

called height reducing property, which attracted special interest in the self-

affine tilings. Especially we show that if α is quadratic or cubic trinomial,

then one can choose B = {0, ±1, . . . , ± (|N(α)| − 1)}, where N(α) stands

for the absolute norm of α over Q.

1. Introduction

Let α be an algebraic integer with conjugates α1 = α, α2, . . . , αd lying

outside the unit circle (including α itself). Such numbers are called expanding

algebraic numbers. We are interested in the height reducing property of α,

that is

Z[α] = B[α]

for a certain finite set B ⊂ Z. We note that

Lemma 1. If an algebraic integer α, |α| > 1, has height reducing property,

then α is expanding.

Proof. Suppose α has height reducing property with a finite set B ⊂ Z. First

assume it has a conjugate β with |β| < 1. Set B = maxb∈B |b| and take an
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integer K > B
1−|β| . Then K has an expression K =

∑n
i=0 biα

i for some integer

n. Taking conjugate, we have

K <
∞∑
i=0

B|β|i

which gives a contradiction. Therefore all the conjugates of α must be not less

than one in modulus. Assume that there is a conjugate β with |β| = 1. Then

β must be a complex number and ββ′ = 1 where β′ is a complex conjugate of

β. By taking conjugate map which send β to α, we get a contradiction. �

Note that roots of unity (with all their conjugates on the unit circle) also

have height reducing property with a set B = {−1, 0, 1}.

When α is expanding, it is of interest whether it has height reducing

property, and how small can we take the set B. Denote by N(α) the ab-

solute norm of α over Q, i.e., N(α) = α1 · α2 . . . αd. If we can choose

B = {0, 1, . . . , |N(α)| − 1}, we say (α,B) forms a canonical number system

(CNS for short). The question of finding all α which gives CNS is studied

by many authors. The early studies are found in [13, 14, 11]. Readers may

consult [3, 2] for recent developments to solve the problem in a general frame

work called: shift radix system.

However not every expanding algebraic integer α generates a CNS. Indeed,

if there is a positive conjugate β of α, one sees that −1 can not be in B[α]

which is shown by taking conjugate.

For the rest of the paper let B = {0, ±1, . . . , ± (|N(α)| − 1)}.

Kirat and Lau [16] introduced a slightly different height reducing property

for expanding polynomials (all roots in |z| > 1, not necessarily irreducible)

to consider the connectedness of a class of self-affine tiles. In our notation,

they are interested in N(α) ∈ B[α] (see [17] for details).

In this paper we are mainly concerned with the following type of height

reducing problem:
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Question. Does the equality Z[α] = B[α] hold for any expanding alge-

braic integer?

In the study of self-affine tilings, Lagarias and Wang [21] answered this

question in affirmative manner using wavelet analysis by extending the result

of [12]. To read this result out of their consecutive works, see Corollary 6.2

in [21] and Theorem 1.2 (ii) of [20]. However their proof is rather indirect

and intricate, although the statement itself looks simple in nature. The first

author [1] asked for a direct proof of Z[α] = B[α] (see problem 12). In this

paper we shall give several attempts to solve this question. For the moment,

it is far from satisfactory but we hope this paper gives a starting point for

other trials. First we show

Theorem 2. For any expanding quadratic algebraic integer α the equality

Z[α] = B[α] holds.

Theorem 2 is derived from Theorem 4. We obtain a similar result for

expanding cubic trinomials.

Theorem 3. Let α be an expanding cubic algebraic integer whose minimal

polynomial is a trinomial (i.e., polynomial of the form x3 + ax2 + c or x3 +

bx+ c). Then Z[α] = B[α].

The set of expanding cubic trinomials splits into two disjoint subsets, say,

A and B. For the trinomials from A we apply Theorem 4. The subset B

consists of trinomials of the form x3 − cx± c, c > 2, c 6= 8. Theorem 10 (see

Section 3) shows that in case of a trinomial from B it is impossible to derive

Theorem 3 from Theorem 4. Theorem 3 for trinomials from B is proved by

constructing certain finite automaton, the so called counting automaton (see

Section 5).

In general we have the following result.
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Theorem 4. Suppose that an expanding algebraic integer α is a root of a

polynomial

P (x) = xd + ad−1x
d−1 + · · ·+ a0 ∈ Z[x]

with

|a0| > |a1|+ |a2|+ . . .+ |ad−1|+ 1.

Then Z[α] = B̃[α] with B̃ = {0, ±1, . . . , ± (|a0| − 1)} .

Theorem 4 follows from Proposition 3.1 of [9]. Nevertheless we present an

alternative proof of Theorem 4 in Section 3.

Note that the strict inequality |a0| > |a1| + |a2| + . . . + |ad−1| + 1 would

imply that all the roots of P (x) are expanding algebraic integers.

Unfortunately, not every expanding algebraic integer α possesses a poly-

nomial P (x) satisfying the conditions of the theorem with P (0) = ±N(α).

In the Note at the end of Section 3, we provide an infinite family of such

algebraic numbers whose minimal polynomials over Q are certain cubic tri-

nomials. Such examples are minimal in terms of degree and the number of

non-zero coefficients.

The best result we could obtain using Theorem 4 for a general expanding

algebraic integer is the following:

Theorem 5. Let α be an expanding algebraic integer of degree d (over Q).

Suppose that α1 is a conjugate of α of least modulus. Then for any integer

n > − log(21/d − 1)/ log |α1| we have

Z[α] = Bn[α]

with Bn = {0, ±1, . . . , ± (|N(α)|n − 1)} .

The upper bound |N(α)|n−1 for the size of digits in Bn is large. By using

more sophisticated division procedure, we were able to prove the next result.
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Theorem 6. Let α be an expanding algebraic integer of degree d whose con-

jugates are α1 = α, α2, . . . , αd. For any β ∈ Z[α] there exists a nonzero

polynomial P (x) ∈ Z[x] of height at most

max

{
|N(α)|

2
√
D(α)

d∑
i=1

√
|αi|2 − 1

(|αi| − 1)
√
|αi|2d − 1

d∏
j=1

√
|αj|2d − 1

|αj|2 − 1
, |N(α)|/2

}

such that β = P (α). Here D(α) stands for the discriminant of α.

The bound in our Theorem 6 seems to be much smaller than that of

Theorem 5, however, there is no way of direct comparison. Nevertheless, in

the division algorithm used in Theorem 6 we prove that in order to find the

representations of elements of Z[α] with smallest possible digits, it suffices

to find the expansions of finitely many elements of Z[α], whose conjugates in

Z[αi] have absolute value less than or equal to N(α)/2(|αi| − 1).

2. Proofs of Theorem 4 and 5

Theorem 4 follows from the next lemma.

Lemma 7. Suppose that an expanding algebraic integer α is a root of a poly-

nomial P (x) = xd + ad−1x
d−1 + · · ·+ a0 ∈ Z[x] with

|a0| > |a1|+ |a2|+ . . .+ |ad−1|+ 1,

and B̃ = {0, ±1, . . . , ± (|a0| − 1)} . Let A0, A1, . . . , Ad−1 be integers with

A0 /∈ B̃. Then there exist integers A′0, A
′
1, . . . , A

′
d−1 and c0, c1, . . . , ck ∈ B̃

such that

A0 + A1α + . . .+ Ad−1α
d−1 = c0 + c1α + . . .+ ckα

k+

(
A′0 + A′1α + . . .+ A′d−1α

d−1)αk+1

and |A′0|+ |A′1|+ . . .+ |A′d−1| < |A0|+ |A1|+ . . .+ |Ad−1|.
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Proof of Lemma 7. If A0 + A1α + . . . + Ad−1α
d−1 = 0 then we can take

k = 0, c0 = 0 and A′i = 0 for all i = 0, 1, . . . , d− 1.

Further, assume that A0 + A1α + . . .+ Ad−1α
d−1 6= 0.

Assume without loss of generality that A0 > 0. Then A0 /∈ B̃ implies

A0 > |a0|. Divide A0 by a0 :

A0 = c0 + qa0, 0 6 c0 < |a0|, q 6= 0.

(Note that qa0 > 0.) Then P (α) = 0 implies

a0 = −a1α− a2α2 − . . .− ad−1αd−1 − αd

and

A0 = c0 + qa0 = c0 − qa1α− qa2α2 − . . .− qad−1αd−1 − qαd.

Hence

A0 + A1α + . . .+ Ad−1α
d−1 = c0 + (A1 − qa1)α + . . .+

(Ad−1 − qad−1)αd−1 − qαd = c0 +
(
B0 +B1α + . . .+Bd−1α

d−1)α
where Bd−1 = −q and Bi = Ai+1 − qai+1, i = 0, 1, . . . , d− 2.

Further, |a0| > |a1|+ |a2|+ . . .+ |ad−1|+ 1 implies

d−1∑
i=0

|Bi| =
d−1∑
i=1

|Ai − qai|+ |q| 6
d−1∑
i=1

|Ai|+ |q|

(
d−1∑
i=1

|ai|+ 1

)
6

d−1∑
i=1

|Ai|+ |q||a0| 6
d−1∑
i=0

|Ai|.

If c0 6= 0 then the last inequality is strict, since A0 = |c0+qa0| > |q||a0|. On

the other hand, if
∑d−1

i=0 |Bi| <
∑d−1

i=0 |Ai| then we can take k = 0, A′i = Bi,

i = 0, 1, . . . , d− 1 and we are done.

Further, assume that
∑d−1

i=0 |Bi| =
∑d−1

i=0 |Ai|. (Then c0 = 0.)

If Bi ∈ B̃ for all i = 0, 1, . . . , d − 1 then we can take k = d, cj = Bj−1,

j = 1, 2, . . . , d, A′i = 0 for all i = 0, 1, . . . , d− 1 and we are done in this case.
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Now suppose that Bt /∈ B̃ for some t ∈ {0, 1, . . . , d − 1}. Let s ∈

{0, 1, . . . , d − 1} be the smallest integer for which Bs 6= 0. If Bs ∈ B̃ (in

that case s < d− 1) then we can take k = s+ 1, c1 = . . . = cs = 0, cs+1 = Bs

and A′i = Bs+i+1, i = 0, 1, . . . , d− s− 2 and A′i = 0 for i > d− s− 2. Indeed,

d−1∑
i=0

|A′i| =
d−1∑
i=s+1

|Bi| <
d−1∑
i=s

|Bi| =
d−1∑
i=0

|Ai|.

Finally, if Bs /∈ B̃ then we can repeat the above procedure with the number

Bs + Bs+1α + . . .. After a finite number of iterations we will receive the

inequality
∑d−1

i=0 |A′i| <
∑d−1

i=0 |Ai|. Otherwise the number

A0 + A1α + . . .+ Ad−1α
d−1 6= 0

would be divisible by αn for every positive integer n, which is impossible,

since α is expanding. �

We will derive Theorem 5 from Theorem 4 using the following lemma.

Lemma 8. Let P (x) ∈ Z[x] be a monic polynomial such that all roots of

P (x) are of modulus strictly greater than one. Then there exists a monic

polynomial

Q(x) = xm + bm−1x
m−1 + . . .+ b1x+ b0 ∈ Z[x]

which is a multiple of P (x) and

|b0| > |b1|+ |b2|+ . . .+ |bm−1|+ 1.

Moreover, for any integer n > − log(21/d − 1)/ log |α1| one can choose Q(x)

with Q(0) = P (0)n, where d is the degree of P (x) and α1 is a root of P (x)

of least modulus.

Proof of Lemma 8. Let d be the degree of P (x). Suppose that α1, α2, . . . ,

αd are all complex roots of P (x) (not necessarily distinct). Assume without
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loss of generality that

1 < |α1| 6 |α2| 6 . . . 6 |αd|.

Let n be a positive integer. Set

G(x) =
d∏
i=1

(x− αni ) = xd + gd−1x
d−1 + . . .+ g1x+ g0.

Clearly, all the coefficients gi are integers. Now the inequality 1 + |gd−1| +

. . .+ |g1| 6 |g0| is equivalent to

1 + |gd−1|+ · · ·+ |g1|+ |g0| 6 2|g0|.

Dividing both sides by |g0| we obtain

1

|g0|
+
|gd−1|
|g0|

+ . . .+
|g1|
|g0|

+ 1 6 2.

Here the left hand side is

1+

∣∣∣∣∣
d∑
i=1

α−ni

∣∣∣∣∣+
∣∣∣∣∣∑
i<j

α−ni α−nj

∣∣∣∣∣+ . . .+

∣∣∣∣∣
d∏
i=1

α−ni

∣∣∣∣∣ 6
d∏
i=1

(1+ |α−ni |) 6 (1+ |α−n1 |)d.

Hence the inequality 1+|gd−1|+. . .+|g1| 6 |g0| holds provided (1+|α−n1 |)d 6 2

which is equivalent to n > − log(21/d − 1)/ log |α1|. Finally, note that the

polynomial Q(x) = G(xn) =
∏d

i=1(x
n − αni ) is the required one. �

Remark 9. In Lemma 8 we get g0 = ±P (0) provided the conjugates of α of

degree d all lie in |z| > (21/d − 1)−1.

Proof of Theorem 5. Let α be an expanding algebraic integer whose

minimal polynomial is P (x). By Lemma 8 for any integer n > − log(21/d −

1)/ log |α1| there is a monic polynomial Q(x) with Q(0) = P (0)n which sat-

isfies the condition of Theorem 4. Finally, note that P (0) = ±N(α). �

Note. Suppose that α is an expanding algebraic integer. In order to prove

the equality Z[α] = B[α] using Theorem 4 one needs a polynomial P (x)
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satisfying the conditions of Theorem 4 and P (0) = ±N(α). Unfortunately,

this is false in general. Consider an algebraic integer α which is the root of

cubic trinomial p(x) = x3− cx+ c, c > 2, c 6= 8, c ∈ Z. If p(x) is reducible in

Z[x], then it has an integer root, say, m. The equation m3 = c(m−1) implies

that m − 1 divides m3. Since gcd(m3,m − 1) = 1 and c > 0, this implies

m − 1 = 1. Thus m = 2, c = 8. Hence the polynomial p(x) is irreducible in

Z[x] if c > 2, c 6= 8. By direct substitution one easily checks that p(x) has

three real roots in intervals (−
√
c,−
√
c+ 1), (1 + 1/c, 3/2) and (

√
c− 1,

√
c)

if c > 7, all of modulus strictly greater than one. For c = 2, 3, 4, 5, 6, the

polynomial p(x) has one real and two complex roots outside the unit circle,

which can be verified by direct computation. Alternatively, use the Shur-

Cohn criterion [10], [23]. Thus α is a cubic expanding algebraic integer.

In Theorem 10 below, we prove that Z[α] = B[α] in principle cannot be

established by Theorem 4.

Theorem 10. The polynomial p(x) = x3 − cx + c, c ∈ Z, c > 2, c 6= 8

does not divide any polynomial P (x) = anx
n + · · · + a1x + a0 ∈ Z[x] with

|a0| > |a1|+ |a2|+ · · ·+ |an| and a0 = ±c.

Proof of Theorem 10. Assume that there exists a polynomial P (x) =

anx
n + · · · + a1x + a0 ∈ Z[x] which is a multiple of p(x) and satisfies |a0| >

|a1| + |a2| + · · · + |an| with a0 = ±c. Then P (x) = p(x)q(x) for some non

constant polynomial q ∈ Z[x]. Since a0 = ±c, q(0) = ±1. Hence, any

irreducible factor of q(x) has a root of modulus less or equal to 1. Let ζ be

one of such roots. Then P (ζ) = 0 implies

−a0 = a1ζ + a2ζ
2 + . . . anζ

n. (1)

This implies ζk = ±1 for any coefficient ak 6= 0, k = 1 . . . n. Otherwise, by

comparing the real parts of the complex numbers in both sides of (1), one

9



has

|a1|+ |a2|+ · · ·+ |an| > |<(a1ζ + a2ζ
2 + . . . anζ

n)| = |a0|,

which contradicts the assumption. This shows that ζ is a root of unity.

Thus q(x) is a product of cyclotomic polynomials and a constant a ∈ Z.

Since q(0) = ±1, a = ±1. We claim that

q(x) = ±(x− 1)r(x+ 1)s(x2 + 1)t(x2 + x+ 1)u(x2 − x+ 1)v, (2)

with integer exponents r, s, t, u, v > 0. To prove this, it suffices to show that

at least one coefficient a1, a2 or a3 is not equal to 0, so we have ζ = ±1,

ζ2 = ±1 or ζ3 = ±1 in (1).

Assume that a1 = a2 = a3 = 0. Let α be the root of polynomial p(x) =

x3 − cx + c. Then (1) with ζ replaced by α implies that α4 divides a0 = ±c

in the ring R of algebraic integers of Q(α). Note that p(α) = 0 gives α3 =

c(α−1). Thus α4|c in R implies α4|α3, so α is a unit in R. This is impossible,

since c > 2 and p(x) is irreducible if c 6= 8 so the claim (2) is proved.

Observe that t > 1 in (2) implies 2|k for every non zero coefficient ak,

k = 1 . . . n in (1), since ik = ±1 if and only if 2|k (here, as usual, i2 = −1).

In this case, P (x) = P (−x) = P1(x
2) for some polynomial P1 ∈ Z[x]. This

is impossible, since such a polynomial P (x) would be divisible by p(x) and

p(−x) so p(0)2 = c2 divides a0 = P (0) = ±c contradicting c > 2.

Similarly, 3|k for any non-zero ak in (1) provided u > 1 or v > 1, since

(±e±2πi/3)k = ±1 if and only if 3|k. In this case, P (x) = P1(x
3) for some

P1 ∈ Z[x]. Set ζ = e2πi/3. Then P (α) = P (ζα) = P1(α
3) = 0 for any root α

of p(x). The polynomials p(x) and p(ζx) have no roots in common, since

p(ζα)− p(α) = (ζ3α3 − cζα + c)− (α3 − cα + c) = c(1− ζ)α 6= 0.

This implies that P (x) is a multiple of p(x)p(ζx). Since all roots of P are

of modulus greater or equal to one, one has |P (0)| > |p(0)p(ζ0)| = |p(0)|2 =

c2 > c = |a0| = |P (0)|, which again leads to the contradiction.
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From the arguments given above, it follows that t = u = v = 0, thus

q(x) = (x− 1)r(x+ 1)s is the only remaining possibility. Then

|P (i)|2 = |p(i)q(i)|2 = |(i3 − ci+ c)2(i− 1)r(i+ 1)s|2 = ((1 + c)2 + c2)2r+s.

The inequality

|P (i)| 6 |an|+ · · ·+ |a1|+ |a0| 6 2|a0| = 2c,

implies

((1 + c)2 + c2)2r+s 6 4c2

which is impossible unless r = s = 0. This contradicts the assumption that

q(x) is a non constant polynomial and concludes the proof of Theorem 10.

3. Proof of Theorem 2

The following lemma provides a necessary condition for a quadratic alge-

braic integer to be expanding which will be used in the proof of Theorem 2.

Lemma 11. Let α be an expanding quadratic algebraic integer with the min-

imal polynomial x2 + ax + b. Then |a| 6 |b|. The equality |a| = |b| holds if

and only if b = |a| > 2 and |a| 6= 4.

One could employ the necessary and sufficient conditions (see Corollary 2.1

of [4]) developed using the Schur-Cohn criterion [10], [23]. Nevertheless, we

provide the proof of Lemma 11.

Proof of Lemma 11. We might assume that a > 0, since a = −(α + α′)

and α is expanding if and only if −α is expanding. Here α′ stands for the

conjugate of α.

Suppose, contrary to our claim, that a > |b|. This implies the inequalities

(a− 2)2 6 a2 − 4b < (a+ 2)2,

a− 2 6
√
a2 − 4b < a+ 2
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and ∣∣∣∣ −a+
√
a2 − 4b

2

∣∣∣∣ 6 1

which is a contradiction, since

{α, α′} =

{
−a±

√
a2 − 4b

2

}
.

Now, suppose that |b| = a > 0 and α is expanding. We claim that b = a.

Indeed, b = −a implies

0 <
−a+

√
a2 + 4a

2
=

2a

a+
√
a2 + 4a

<
2a

a+ a
= 1

which again leads to the contradiction.

Thus b = a > 0. Assume that b = a > 5. Then

min {|α|, |α′|} = min

{∣∣∣∣−a±√a2 − 4a

2

∣∣∣∣} =
a−
√
a2 − 4a

2
=

=
2a

a+
√
a2 − 4a

>
2a

a+ a
= 1

which implies that α is expanding.

Finally, one easily checks that b = a = 2 or 3 implies that α is expanding,

whereas b = a = 1 or 4 implies that α is not expanding quadratic algebraic

integer. �

Proof of Theorem 2. Let α be an expanding quadratic algebraic integer

with the minimal polynomial x2 + ax+ b. Assume without loss of generality

that a > 0. (Indeed, Theorem 2 holds for α if and only if it holds for −α.) By

Lemma 11, 0 6 a 6 |b|. If a+ 1 6 |b| then the result follows from Theorem 4

with P (x) = x2 +ax+ b. Suppose that a = |b|. By Lemma 11 b = a > 2 and

a 6= 4. Now the minimal polynomial of α is x2 + ax + a and we can apply

Theorem 4 with P (x) = (x− 1)(x2 + ax+ a) = x3 + (a− 1)x2 − a. �
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4. Proof of Theorem 3

In the proof of Theorem 3 we will construct a finite automaton, which is

called ”transducer” (cf. [5], [8]). We follow the notations of [25].

Definition 12. The 6-tuple A = (Q,Σ,∆, q, q0, δ) is called a finite transducer

automaton if

• Q,Σ and ∆ are non empty, finite sets, and

• q : Q× Σ→ Q and δ : Q× Σ→ ∆ are unique mappings.

The sets Σ and ∆ are called input and output alphabet, respectively. Q is the

set of states and q0 is the starting state. The mappings q and δ are called

transformation and result function, respectively.

We will use the following characterization of expanding cubic polynomials.

Lemma 13. The polynomial p(x) = x3 +ax2 + bx+ c with integer coefficients

is expanding if and only if  |b− ac| < c2 − 1,

|b+ 1| < |a+ c|.
(3)

Proof. This is Lemma 1 from Akiyama and Gjini [4]. �

Proof of Theorem 3. Suppose that α is an expanding cubic algebraic

integer whose minimal polynomial p(x) = x3 + ax2 + bx + c is a trinomial.

Then either a = 0 or b = 0. If b = 0 then the first inequality of (3) implies

|a||c| < c2−1 and |a| < |c|. Hence each expanding cubic trinomial x3+ax2+c

satisfies 1 + |a| 6 |c| and we can apply Theorem 4. Now suppose that

a = 0. Then the second inequality of (3) implies |b + 1| < |c|. If b > 0 then

1 + |b| < |c| and again we can apply Theorem 4. Let b < 0. Then the

inequality |b+ 1| < |c| implies b > −|c|. If b > −|c|+ 1 then 1 + |b| 6 |c| and

once again we can apply Theorem 4. Finally we are left with the trinomials

p1(x) = x3−cx+c, and p2(x) = x3−cx−c, c > 2. Note that p2(−x) = −p1(x).
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Hence it is enough to consider the trinomial x3−cx+c, c > 2. This trinomial

is irreducible provided c 6= 8 (see the note before Theorem 10). However

Theorem 10 shows that in this case it is impossible to apply Theorem 4.

Instead we will construct a finite automaton for this trinomial.

Now we briefly discuss how to construct the counting automaton A0(1)

which performs the addition of 1 in B[α]. We will follow the explanation pre-

sented in [25]. Denote (σN , . . . , σ0) =
∑N

j=0 σjα
j. We say that (σN , . . . , σ0) is

an α-adic representation of v ∈ Z[α] if v = (σN , . . . , σ0) and σ0, . . . , σN ∈ B.

Suppose v ∈ Z[α] has α-adic representation v = (dN(v), dN−1(v), . . . , d0(v)).

We want to add 1 to the α-adic representation of v, i.e., we want to construct

the α-adic representation of v+ 1 = (dN ′(v+ 1), dN ′−1(v+ 1), . . . , d0(v+ 1)),

dj(v+1) ∈ B. We perform the addition digit wise, from right to left. First we

add 1 to the first digit d0(v). The addition produces a carry q1 ∈ Z[α] obey-

ing the scheme d0(v) + 1 = d0(v+ 1) +αq1. Note that in contrast to [25] our

d0(v+1) and q1 are not unique unless d0(v+1) = 0. This reduces the problem

of adding 1 to v to the problem of adding q1 to (dN(v), dN−1(v), . . . , d1(v)).

Iterating this procedure yields the general scheme

dj(v) + qj = dj(v + 1) + αqj+1, j > 0. (4)

Since the division procedure (4) is not unique we restrict our iteration proce-

dure to the following: for each pair (qj, dj(v)) we fix the pair (qj+1, dj(v+ 1))

satisfying (4), and each time the iteration starts with (qj, dj(v)) we will use

the same pair (qj+1, dj(v + 1)). Adopting the notation of Definition 12 we

define the counting automaton A0(1) by setting

Q = the set of possible carries,

Σ = ∆ = B,

q0 = 1,

q : Q× Σ→ Q : (qj, dj(v)) 7→ qj+1 according to (4),

δ : Q× Σ→ ∆ : (qj, dj(v)) 7→ dj(v + 1) according to (4).
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Now we explicitly construct the counting automaton A0(1) for α – a root

of x3 − cx+ c, c > 2, c 6= 8. Consider the following table.

number of carry carry : input/output next carry

0 0 : k|k 0

1 1 : k 6 c− 2, k|k + 1 0

: c− 1|0 2

2 1 0 c : k|k 3

3 1 1 c : k|k 4

4 1 1 c− 1 : k 6 0, k|k + c− 1 5

: k > 1, k|k − 1 4

5 1 1 : k > c+ 2, k|k − 1 6

: c+ 1|0 7

6 1 : k > c+ 2, k|k − 1 0

: c+ 1|0 8

7 1 0 c− 1 : k > c+ 2, k|k − 1 9

: c+ 1|0 10

8 1 0 c : k|k 9

9 1 1 c : k|k 11

10 2 1 c+ c : k|k 12

11 1 1 c+ 1 : k 6 1, k|k + 1 11

: k > 0, k|k − c+ 1 13

12 2 2 1 + c+ c : k 6 1, k|k + 1 14

: k > 0, k|k − c+ 1 15

13 1 1 : k 6 c− 2, k|k + 1 1

: c− 1|0 16

14 2 2 2 + c+ c : k 6 2, k|k + 2 14

: k > 1, k|k − c+ 2 15
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number of carry carry : input/output next carry

15 1 2 c+ 2 : k 6 2, k|k + 2 17

: k > 1, k|k − c+ 2 18

16 1 0 c+ 1 : k 6 c− 2, k|k + 1 3

: c− 1|0 19

17 1 1 c+ 2 : k 6 2, k|k + 2 11

: k > 1, k|k − c+ 2 13

18 1 2 : k 6 c− 3, k|k + 2 1

: k > c− 2, k|k − c+ 2 16

19 2 1 c+ c : k|k 20

20 2 2 c+ c+ 1 : k 6 0, k|k + c− 1 21

: k > 1, k|k − 1 22

21 1 2 c− 2 : k 6 1, k|k + c− 2 23

: k > 2, k|k − 2 24

22 2 2 2 + c+ c : k 6 1, k|k + c− 2 21

: k > 2, k|k − 2 22

23 1 2 : k 6 c+ 2, k|k + c− 2 7

: k > c+ 3, k|k − 2 6

24 1 1 c− 2 : k 6 1, k|k + c− 2 5

: k > 2, k|k − 2 4

Here a denotes −a. The second column ”carry” indicates the carry. Carries

are numbered in the first column ”number of carry”. The third column

”input/output” defines the result function δ: k ∈ B denotes the input digit

and k|u(k) means that the corresponding output is u(k) ∈ B. The fourth

column ”next carry” defines the transformation function q indicating the

number of the next carry.
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One can check that this counting automaton A0(1) has no ”zero cycles,”

i.e., if we begin with any carry from the second column and start walking

the zero path (each time taking input 0) eventually we will reach the sync

point – carry 0. This means that we can add 1 to any α-adic representation

v ∈ Z[α] and obtain an α-adic representation of v + 1.

If we run the counting automaton A0(1) starting with the carry no. 6

(i.e. q0 := 1) this would produce the subtraction of 1. Now if we run A0(1)

starting with the carry no. 13 this would produce addition of 1 1 = α + 1.

Then we take the resulting representation and subtract 1. This gives the

addition of 1 0 = α. Similarly running A0(1) with the starting carry no. 5

and then adding 1 we obtain the subtraction of α. If we run A0(1) starting

with the carry no. 11, then subtract 1 0 = α and then for c− 1 times add 1

we would get the addition of 1 0 0 = α2. Finally running A0(1) with starting

carry no. 4, then adding 1 0 = α and then for c − 1 times subtracting 1

we obtain the subtraction of 1 0 0 = α2. Hence starting with 0 and applying

±1 or ±α or ±α2 we can find α-adic representation of any number lying in

Z[α] = Z + Zα + Zα2. �

Note. The polynomial x3 − cx + c, c > 2, c 6= 8 is not a CNS polynomial

(see Theorem 3 of [6]).

5. Proof of Theorem 6

Proof. Let p(x) = xd+ad−1x
d−1 + . . .+a1x+a0 be the minimal polynomial

of α . (Then N(α) = α1α2 · . . . · αd = ±a0.) Let γ ∈ Z[α], γ = C0 + C1α +

. . .+Cd−1α
d−1, Cj ∈ Z. Then the conjugates of γ are γi = C0 +C1αi + . . .+

Cd−1α
d−1
i , i = 1, 2, . . . , d. Consider the following division procedure. There

are integers r and q such that C0 = r + a0q and |r| 6 |a0|/2. The equality
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p(αi) = 0 implies

a0 = −a1αi − . . .− ad−1αd−1i − αdi .

Thus

C0 = r − αi
(
a1q + a2qαi + . . .+ ad−1qα

d−2
i + qαd−1i

)
.

Denote

γi = r + αiγ
′
i

where γ′i = C ′0 + C ′1αi + . . . + C ′d−1α
d−1
i with integers C ′j = Cj+1 − aj+1q,

0 6 j 6 d− 2, C ′d−1 = −q. (Note that the numbers C ′j do not depend on the

choice of conjugate γi.)

Now fix i ∈ {1, 2, . . . , d} and define the sequence x
(i)
n as follows.

x
(i)
0 = βi = B0 +B1αi + . . .+Bd−1α

d−1
i ,

Bj ∈ Z, j = 0, 1, . . . , d − 1, and x
(i)
n+1 is obtained from x

(i)
n via the division

procedure described above, i. e.,

x(i)n = rn + αix
(i)
n+1, |rn| 6 |a0|/2, n > 0. (5)

Then

βi = r0 + r1αi + . . .+ rn−1α
n−1
i + αni x

(i)
n (6)

and

|x(i)n | =
∣∣∣∣ βiαni − r0

αni
− . . .− rn−1

αi

∣∣∣∣ 6 |βi||αi|n +
|r0|
|αi|n

+ . . .+
|rn−1|
|αi|

6

|βi|
|αi|n

+
|a0|
2

(
1

|αi|
+

1

|αi|2
+ . . .

)
=
|βi|
|αi|n

+
|a0|

2(|αi| − 1)
.

Let m = min16i6d |αi| and M = max16i6d |βi|. Then the last inequality yields

|x(i)n | 6
M

mn
+

|a0|
2(|αi| − 1)

6
M

mn
+

|a0|
2(m− 1)

. (7)

Thus the set {x(i)n : 1 6 i 6 d, n > 0} is finite, since it consists of

algebraic integers of degree at most d whose conjugates are bounded. Now
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(5) implies that the sequence x
(i)
n is periodic starting from certain n > n0.

(Note that n0 does not depend on the choice of conjugate x
(i)
n .)

Further, take any δi ∈ {x(i)n : n > n0}. Since δi = x
(i)
n for infinitely many

positive integers n, (7) shows that

|δi| 6
|a0|

2(|αi| − 1)
=
|N(α)|

2(|αi| − 1)
(8)

for all i = 1, 2, . . . , d. Since δi ∈ Z[αi], there exist integers A0, A1, . . . , Ad−1

such that

A0 + A1αi + . . .+ Ad−1α
d−1
i = δi, i = 1, 2, . . . , d.

By Cramer’s rule,

Aj =
1

det(αri )

∣∣∣∣∣∣∣∣∣∣∣

1 α1 · · · αj−11 δ1 αj+1
1 · · · αd−11

1 α2 · · · αj−12 δ2 αj+1
2 · · · αd−12

· · · · · ·

1 αd · · · αj−1d δd αj+1
d · · · αd−1d

∣∣∣∣∣∣∣∣∣∣∣
(9)

for j = 0, 1, . . . , d − 1. Denote by Uk, 1 6 k 6 d, the determinant obtained

from the last determinant by omitting the k−th row and the j+1−th column.

On applying Hadamard’s inequality, one obtains

|Uk| 6
∏
r 6=k

√
|αr|2d − 1

|αr|2 − 1
. (10)

It’s well-known that det2(αri ) = D(α), where D(α) stands for the discrimi-

nant of α (see, e. g., Chapter 2 of [24]). Then in view of (9), (8) and (10),

we have

|Aj| =
1√
D(α)

∣∣∣∣∣
d∑

k=1

δkUk

∣∣∣∣∣ 6 1√
D(α)

d∑
k=1

|N(α)|
2(|αk| − 1)

∏
r 6=k

√
|αr|2d − 1

|αr|2 − 1
=

|N(α)|
2
√
D(α)

d∏
r=1

√
|αr|2d − 1

|αr|2 − 1

d∑
k=1

√
|αk|2 − 1

(|αk| − 1)
√
|αk|2d − 1

. (11)

19



Now, δi = x
(i)
n for certain n. Then in view of (6), we obtain

β = β1 = r0 + r1α + . . .+ rn−1α
n−1 + αnδ1 =

r0 + r1α + . . .+ rn−1α
n−1 + A0α

n + A1α
n+1 + . . .+ Ad−1α

n+d−1.

Finally, in view of (11), the polynomial

P (x) = r0 + r1x+ . . .+ rn−1x
n−1 + A0x

n + A1x
n+1 + . . .+ Ad−1x

n+d−1

is the required one. �
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[12] K. Gröchenig and A. Haas, Self-similar lattice tilings, J. Fourier Anal. Appl. 1

(1994), no. 2, pp. 131–170.
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